A RWSADMM: Algorithm

The RWSADMM scheme is as presented in Algorithm[I] Client i, is selected by Random Walk
via P(k), and ygk is the token from the previous update. Note that we only use one client in each
derivation iteration. Still, it is straightforward to generalize the algorithm to have multiple active
clients in S(i;) C N (ix) simultaneously to stabilize the computation better as follows:
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where S;, represents the volume of S(iy).
Algorithm 1 RWSADMM
1: Initialization:
Initialize Markov transition matrices {P(0),P(1),...,}.
Initialize {xV}" , =0, {zY}"_, = 0, and
1 & z)
1 0 i
yl=- ; (<= 5) (32)
2: RWSADMM(3,y):
3: repeat
4. forke0,1,2,...do
5: Client i, receives y; and updates X, Z, and y using equations (T1), (T5), and (14);
6: end for
k=099 x Kk

7: until the termination condition is TRUE.
RETURN X*, y*

B RWSADMM: Convergence Analysis

Our proof of convergence for the proposed stochastic ADMM-based federated learning algorithm
is non-trivial and non-straightforward. It introduces novel techniques to address the challenge of
integrating the mobilized server and stochasticity into our federated ADMM framework. Specifically,
we carefully consider the movement of the server, which is realized by using a dynamic Markov
matrix. This is a significant novelty and challenge in the proof, as it is the first method introduced
in federated learning that considers this type of server movement. By introducing assumptions on
the dynamic Markov matrix and accounting for the dynamic behavior of the server, we are able to
guarantee the convergence of our algorithm under certain conditions. While there are a few existing
works, such as [47] that address convergence rates and properties of LADMM algorithms, they are
not directly applicable to our random walk mobilization and stochastic update setting and are not
directly adaptable to the unique requirements of federated learning. As such, our work represents a
significant contribution to the field and provides valuable insights into the convergence properties
of stochastic ADMM-based federated learning algorithms. We believe that our novel approach and
careful consideration of the movement of the server will inspire further research and development in
this area, leading to more effective and efficient federated learning algorithms. The proof sketch of
the Convergence Theorem (Theorem[4.8)) is as follows.

Proof. The proof sketch is summarized as follows.

1. Under Assumption the sequence created by the RWSADMM, i.e., (y’“, Xk, Zk) ST
satisfies HZkH B ZkH _ Z ”ZZH B kaH < LHXT(k,zk)H _ xr(kiin)

2. Recall Lg defined in Eq. (23). For k& > 0, the RWSADMM iterates satisfy

LZ ~Ls <yk+17xk;zk) > Hyk _ yk+1||2



3. Under Assumptiond.2] for 8 > L and Vk > T,

Loyt XE; 24y — L > 52— LHXk _ Xk+1H2 _ %"Xr(k,ik)+1 _ xr(hin) 2
n n,

4. Recall M g defined in Eq. (23)); under Assumption for 3 >2L%>+ L +2andVk > T,
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5. For 3 > 2L? + L + 2, RWSADMM ensures a lower bounded sequence (M Zj)kzo.
O

The proof details are provided in the following. Several steps are taken to prove Lemma[4.7] We
introduce several Lemmas to represent these steps (Lemma [B.T{B.5). Lemma [B.1| shows that the
update of the primal variable can bound the update on the dual variable.

Lemma B.1. Under Assumption the sequence created by RWSADMM, (y*, Xk, Zk) kST
satisfies,

B[z5! - 2F| = Bflaf - ah, || < 1 E|[xrtinst - ki (34)

Proof. Note that client iy, is activated at iteration k. Denote x¥, z¥, and x¥ as the three groups of
variables owned by any client i (1 < Vi < n) at iteration k. Under the Assumption[d.4] the optimality
condition of X update for i = 7, implies that

Eelsgn(t')(g:(x}, &) +ef —2F) + py"™ —x[TH)] =0 (35)

ik
Substituting Eq. (33) into Eq. (T3) yields
E¢ [9:(xF, )] = Eg[zfﬂ], for i = iy (36)

N
Hence, for ¢ = ij, we have
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where 7(k, i) is defined in Eq. (24). The equality (a) holds because z¥ = zz(k’i)ﬂ, and equality (b)
holds because xf' = xz(k’z)ﬂ. On the other hand, when ¢ # iy, agent 7 is not activated at iteration k,
80 E¢[||z8+! — 2 ||] = LE¢[||xf*' — x!||] = 0. Therefore, we have the proof of Eq. (34). O

ik

Lemma [B.2]shows that the y-update in RWSADMM provides a sufficient descent of the augmented
Lagrangian.

Lemma B.2. Recall L}, defined in Eq. 23). For k& > 0, RWSADMM iterates satisfies

Lf - Lg (yk“,X'“;Z’“) > [|ly* - y* (38)

Proof. We rewrite the augmented Lagrangian function L in Eq. (§) by adding and subtracting the
term || Z||? /28 to the RHS of the equation and rearranging the terms. One can obtain
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B 26

So, the augmented Lagrangian update is
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Lk~ Ly (yk“,xk; zk) - %

The equality (a) is achieved by applying the cosine identity [|b + ¢||* — |ja + ¢||> = ||b — a||* + 2 <
a+c,b—a>,and d” is defined as

k. B - k+1 _ k| _ K ﬁ —
d” = Z ]y x7| — €'+ =0 41)
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which results from y —update in the RWSADMM algorithm. O

In Lemma|B.3] the lower bound of descent in the augmented Lagrangian over the updates of X and
Z is derived.

Lemma B.3. Recall Lg defined in Eq. Under Assumption for 8 > Land Vk > T,

_ 2 2 2
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Proof. For the augmented Lagrangian Lg, we derive
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Where equality (a) holds due to the cosine identity ||b 4 ¢||* — [ja + ¢||* = [|b — a||* +2 < a+¢, b—
a >, equality (b) holds because of y—update in RWSADMM, and equality (c) holds due to recursion
of y —update in RWSADMM. Next, we apply the stochastic property to Eq. @3) using Eq. (36),
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Where inequality (a) is achieved using Assumption@ (Eq. (I8)), and inequality (b) is due to Lemma

B.1](Eq. @G4)). O

In Lemma B 4] the sufficient descent in Lyapunov functions is established.
Lemma B.4. Recall M} defined in Eq. (23); under Assumption for 3 > 2L? + L + 2 and

Vk>T,
2 2
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Proof. Using Eq. (23), we can attain
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Substituting Eq. (33), one can obtain
2
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One can also substitute Eq. (33) into Eq. (@8), which leads to
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Using g -L_r2>11- % > 1. and B < 2, we complete the proof of Eq. (@3). O



Lemma states that the Lyapunov function M g is lower bounded.

Lemma B.5. For 8 > 2L% + L + 2, RWSADMM ensures a lower bounded sequence (M g) k>0 1N
expectation.

Proof. For k > T, we have
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where (a) holds due to Eq. (36). (b) holds because f; is Lipschitz differentiable (Eq. (22)). (c) holds
due to Young’s inequality. (d) follows from the assumption 3 > 2L? + L + 2 and the Lipschitz
smoothness of each f;, and (e) holds due to Assumption Therefore, M g is bounded from below
in expectation. O

Now we can prove Lemma 4.7 with the above lemmas.

Proof. Recall that the maximum hitting time 7" is almost surely finite. For Statement 1, the mono-
tonicity of Lyapunov function (M g) E>T in Lemma and their lower boundedness in Lemma

ensure convergence of (M%)>¢. For Statement 2, consider Statement 1 and the lower boundedness
of (MB )e>7 in Lemma|B.5|(Eq. (30)). L F'(y*) is upper bounded by max{ max_ { F( O MEY

and Hl ®yh - X’“H is upper bounded by max{ Jnax_ {Hl ®yh - X} || hLLETY By Assumptlon | the

.....

sequence {y|k = {0,1,..., }} is bounded. The boundedness of Hl ®yk- Xf” further leads to that of

{X%|k ={0,1,...,}}. Finally, Eq. (36) and Assumption 4.2|ensure (Zk) is bounded as well. Altogether,
(y*, X", Z*) is bounded. O



Based on Lemma the convergence of the subgradients of L’g can be established as follows.

Lemma B.6. With Assumption[4.5]and 3 given in Lemma[d.7] for any given subsequence (including
the whole sequence) with its index (ks)s>o, there exists a sequence (g*)x>o with (g%) € AL

containing an almost surely convergent subsequence (gksj )j>0, that s,

Pr (lim ‘gksj = OH) =1
j—oo

Proof. The proof sketch is summarized as follows.

1. We construct the sequence g~ € 8L§+1 and show that its subvector ¢} := (g5:, g%:, 95:)

2
satisfies klim ]Ei‘ qf:(‘s)fl H = 0, where the mixing time 7(9) is defined in Eq. (6).
Ede el

2. For k > 0, define the filtration of sigma algebras:

N :a(yo,...,yk,XO,.4.,Xk,Z0,...,Zk,io,..l,ik) We show that

“(

where 7, is the minimal value in the Markov chain’s stationary distribution. From this
bound and the result in Step 1, we can get klim g% = o.
— 00

2
k—7(0)—1

Xk’»r(é)) > (1 _ 5)7T*Hgk77—(5)71H2’

3. From the result in Step 2, we use the Borel-Cantelli lemma [48] to obtain an almost
unquestionably convergent subsubsequence of g".

O
The details of these steps are given as follows.

Proof. First, recall Lemma[B.4]and T < oo, we have

Z (EHyk _ yk+1H2 n ]EHXk _ Xk+1H2 + ]EHXT(;C,ik) _ XT(k,ik)+1Hz> < too (51)
k=0

Hence, by Lemma [B.4] one can infer
o 2 2
Z (]EHyk _ yk+1H2 +EHXk _ Xk+1H +E“Zk _ Zk+1H2) < 100 (52)
k=0

Step 1: The proof starts with computing the subgradients of the augmented Lagrangian Eq. (39) with
the updates in RWSADMM,

8
By E) —E(Xﬁjl — xfk) + E(ZZH — zZ) = whk (53)
1
Vi, Lyt =~ (ij (x5 =25+ Bt - y’““)) (54)
Vi, L = (R k) (55)
We define g* and ¢¥ as
U}k U}k
g = | VIxLET | gk = |V IET (56)



where i € V is the index of the agent and g* is the gradient of Lf. For o € (0,1) and k > 7(d) + 1,

2 2 (a) 2
k—r(0)—1|° _ || k—7(8)-1 k k k—7(8)—1 k k|12
(a8 (= — i+ || < 2|, -4 | 2ol sy
A B

We upper bound A and B separately. A has three parts corresponding to the three parts of g. Its first
part is

2
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Then by Eq. (54), we bound the 2nd part of A
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where D = (7(6) 4 2)(4 + 46% + 4L?), and (a) uses the inequality of arithmetic and geometric means
and Lipschitz differentiability of f; in Assumption From Eq. (53). The third part of A can be
bounded as

k—7(8)—1 2
HVZ’% Lﬁ - Vzik L/]§+1H
2 —7(8)— 2 k—7(8)— 2
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k
< W Z (Hyt _ yt+1||2 + th _ Xt+1H2)
t=k—7(5)—1

Plugging Eq. (38), Eq. (39), and Eq. into term A, we get a constant C; ~ O( T(i);l ), depending
on 7(9), B, L, and n, such that

k
A< 30 (I =y P I = e (61)
t=k—7(5)—1
To bound the term B, using Eq. (33) and Z-update (Eq. (13)), we have
1
Vi, L5 = 5@ —2) (62)
- : k+1,
Applying Eq. (54) and Eq. (36), we drive V, L'
1
Vi Ly = = (VI 00 = Vi () + 25, - 2,1) (63)

nf



So we have
B < Gy([[x" =x"" + ||z =21 (64)

for a constant Cs depending on L, 3, and n, in the order of O(#) Then substituting Eq. (61) and
Eq. (64) into Eq. (57) and taking expectations, it yields

2
E qfk—f(é)—1H
b 2 2 2 (65)
<C > (Ey -y +Ex - x|+ Ell2 -2
t=k—7(5)—1
where C = C + Cs, and C ~ O(%). Recalling Eq. (52)), we get the convergence
2
lim E qf‘T<‘”‘1H —0 (66)
k—o0 k
which completes the proof of Step 1.
Step 2: We compute the expectation:
k—r(&)—1|1?| k—r(s
E( 4, H X ( ))
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2 (a) 2
+ HVZJLE—T((;)H ) > (1 o 5)77_*Hgk—7'(6)—1H

where (a) follows from Eq. @) and the definition of g in Eq. (36). Then, with Eq. (63), one can
derive

lim E|[g*||° = lim 1EHgk*T<5>*1H2 —0, (68)
k—o0 k—o0
By the Schwarz inequality (EHgk ||)2 < IEHgk H2 we have
Jim E[|g*[| =0, (69)
Step 3: By Markov’s inequality, for each w > 0, it holds that

E k
Pr(|lgrll > w) < ”j” D i Pr(lgill > w) =0 (70)
o0

when a subsequence (k) s> is provided, Eq. (69) implies,

Pr(llgs,

>w)=0 (71)

Then, for j € N, select w = 277 and we can find a nondecreasing subsubsequence (ks.), such that

J

Pr(|lgx, || > 2_j) < 2_'j, Vkg > ksj (72)
We have . N

S Pr(lgrll>277) <Y 277 =1 )

Jj=1 j=1

The Borel-Cantelli lemma yields



Pr (nmsup{ngksn > w‘}) —0 74)
J

and thus

Pr (hjm”gksj H = O) =1 (75)

This completes Step 3 and thus the entire Lemma [B.6]
O

Proof of Convergence Finally, we present the proof of the convergence theorem (Theorem [f.8)) as
follows.

Proof. By statement 2 of Lemma the sequence (y*, Xk, yAd ) is bounded, so there exists a
convergent subsequence (y*, X*s Z"*) converging to a limit point (y*, X*, Z*) as s — oco. By
continuity, we have

Le(y™, X", Z7) = lim Lg(y", X", 2"%) (76)

Lemmaﬁnds a subsubsequence ¢~ € AL such that Pr(lim;_, o Hgksj =0) = 1. By the

definition of general subgradient ([49], def 8.3), we have 0 € OLg(y*, X", Z"). Hence, Theorem
is proved. ]

C RWSADMM: Convergence Rate Analysis

The detailed proof of the convergence rate theorem is as follows.

Proof. It can be verified that under specific initialization, Eq. (36) holds for all £ > 0. Consequently,

Lemmas hold for all k > 0. For g* defined in Eq. (56), Eq. (63) and Eq. (67) hold. Jointly
65)

applying Eq. (63)) and Eq. (67), for any k& > 7(d) + 1, one has
2 C
k—7(6)—1 v
Ble 0 < =5
3 2 2 5 )
Z (Ely* -y [? + E|IX - X1 + E||Z¢ - 2+
t=k—71(5)—1

According to Lemmas and[B.4] for k > 7(6) + 1, it holds,

k
> Elly -y Ex X B2 - 2
t=k—7(5)—1 (78)

L1+ L)n}(ELE 7O —ELE)

< max{ 2
- B—"
It implies that for any & > 0, it holds

E|l¢"|” < ¢’ (ELL — ELETTF?) (79)

where " = max{%, 1+ L%n}ﬁ. It can be verified that C’ = O((f_(‘?)::r* ). Let

7/ :=17(8) + 2; forany K > 7/, summing Eq. (79) over k € {K — 7/,..., mod, K } gives
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where the last inequality follows from the non-decreasing property of the sequence (L’é)kzo and the
fact that (L’;}) k>0 is lower bounded by f. According to Eq. (80),
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where the constant C’ (7" + 1) = O(%). O

We consider a reversible Markov chain on an undirected graph. Using the definition of 7(¢§) in Eq.
(6) and setting § = 1/2, one has 7(d) ~ 1“7”,6)) To guarantee ﬂ@}@EHgk H2 < w, certain number

1=X2(P(
of iterations is sufficient,

o[ ((1—;;(2;@»)2) +1) ®

D Experiments

D.1 Models

One strongly convex model and two non-convex models are utilized in our implementations. An
MLR model with a logistic regression classifier is implemented for the strongly convex setting.
For the first non-convex setting, an MLP model with two hidden dense layers of vector image size
(resizing the 2D image as 1D vector) and 100 hidden nodes in the hidden layer are implemented. The
cross-entropy loss is employed for this network. For the second non-convex setting, a CNN model
with two convolutional layers with convolution operations of size 5 x 5 and one fully-connected layer
of 512 followed by a Softmax layer is implemented. The cross-entropy loss is utilized in the network,
and dropout rates of 25% and 50% are applied after convolutional layers.

D.2 Graph Construction

To meet this requirement on Assumption 3.1} we propose using a Markov transition matrix P
with a maximum eigenvalue of less than 1 — 1/m?/3, where m is the number of edges. To fulfill
this inequality, we can increase the number of edges in the network. In our experiments, we have
addressed this issue by requiring each client to be a neighbor of at least M other clients, which ensures
a sufficient number of edges to satisfy the assumption on P. By incorporating this requirement
into our implementation, we can guarantee the validity of our results and ensure that our algorithm
performs optimally under realistic conditions.

D.3 Hyperparameter tuning

The two hyperparameters of RWSADMM (5 and «) must be fine-tuned to optimize the performance.
In the first stage of the experiments, we set £ = 0.001 and search for the optimal values of 3. The
fine-tuning process is performed for each dataset and each model separately. In Fig. |3| the effect of 3
values on the performance of RWSADMM for the MNIST dataset is presented.
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Figure 3: Effect of 3 on the convergence of RWSADMM in the MLR and MLP
models for MNIST dataset.

The « parameter, which affects the dual variable Z, is also fine-tuned in the second stage. Same as
the first stage, « is fine-tuned for the MNIST dataset for the MLR, MLP, and CNN models, and the
results are shown in Fig. 4] The optimal values of {x = 0.001,0.01} have the best performances for
MLR and MLP, respectively.

The proximal parameter, e, is set to a fixed value of {e = le — 5} for all the experiments. For the
MNIST dataset, the fine-tuned parameter values of 8 = 10 and x = 0.001 for MLR, 5 = 10 and
% = 0.01 for MLP are used. For the Synthetic dataset, 5 = 10 and x = 0.01 for MLR, g8 = 100 and
% = 0.01 for MLP models are utilized. Finally, for CIFAR10 dataset, # = 100 and x = 0.001 for
MLR, 8 = 100 and k¥ = 1 for MLP are used.

D.4 CIFARI10 figures

The performance comparison of RWSADMM, FedAvg, Per-FedAvg, pFedMe, APFL, and Ditto
for the Cifar10 dataset are depicted in Fig. 5] The fine-tuned values of 3 = 0.001 and £ = 0.001
are used for RWSADMM. The RWSADMM has a steep curve nearly reaching the optimal values
from the first few rounds in strongly convex and non-convex models, indicating a faster convergence
process than the benchmark algorithms. Also, RWSADMM shows a clear advantage for MLR or
DNN models for accuracy.

D.5 Synthetic figures

Due to the 1D nature of the synthetic dataset, only MLR and MLP models are utilized for it. The
performance comparison of RWSADMM, FedAvg, Per-FedAvg, pFedMe, APFL, and Ditto for
the Synthetic dataset are depicted in Fig. [6] The fine-tuned values of 3 = 100 and x = 0.001
are used for RWSADMM for all the settings. By comparing the accuracy and loss diagrams,
RWSADMM performs visibly better than the rest of the algorithms in both strongly convex and
non-convex settings. The accuracy rate of RWSADMM shows accuracy improvement compared with
the benchmark algorithms by the margin of 14% for both MLR and MLP models.
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Figure 6: Performance comparison (test accuracy and training loss) of RWSADMM, pFedMe, Per-
Avg, FedAvg, APFL, and Ditto for Synthetic dataset and different settings: strongly convex MLR
and non-convex MLP.

D.6 Different Number of Users

This appendix examines the effect of modifying the number of users/clients in the graph. The
configuration values are all the same as the optional configuration for the RWSADMM algorithm
with 20 agents. We keep the size of the neighborhood and the overall graph configurations the same
for all the experiments. The batch size is decreased to 5 due to memory limitations, and the number
of iterations is increased to 500. The total of users tested is 20, 50, and 100 users. The test accuracy
and train loss progress curves for different numbers of clients are shown in Fig. [7]

Non-Convex CNN 0.05 Non-Convex CNN
. s
—e— RWSADMM: num — users = 20
0.99 —+— RWSADMM: num — users = 50
0.041 —=— RWSADMM: num — users = 100
§0.98 @
o
g $0.03
g 2
S o97 <
7 © 0.02
i [
0.96 1 —»— RWSADMM: num — users =20 0.01
—¥— RWSADMM: num — users = 50
—=— RWSADMM: num — users = 100
0.95+
0 100 200 300 400 500 0 100 200 300 400 500
Global rounds Global rounds
(a) CNN acc (b) CNN loss

Figure 7: Performance comparison (test accuracy and training loss) of RWSADMM for different
graphs with 20, 50, and 100 users/nodes in the graph.

As the number of users increases and the graph expands, the convergence gets more challenging, the
test accuracy rates slightly decrease, and the time duration of the algorithm increases. The final test
accuracy rates and time consumption of different graphs are presented in Table 2]



MNIST
RWSADMM CNN
# of users acc(%) | t(s)
20 99.57 | 2929
50 99.25 | 6994
100 99.19 13878

Table 2: Test accuracy rate and time duration comparison of RWSADMM for different graphs with
20, 50, and 100 users/nodes in the graph.
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