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Abstract

We study the sample complexity of teaching, termed as “teaching dimension” (TD)
in the literature, for the learning-with-equivalence-queries (LwEQ) paradigm. More
concretely, we consider a learner who asks equivalence queries (i.e., “is the queried
hypothesis the target hypothesis?”), and a teacher responds either “yes” or “no”
along with a counterexample to the queried hypothesis. This learning paradigm
has been extensively studied when the learner receives worst-case or random
counterexamples; in this paper, we consider the optimal teacher who picks best-
case counterexamples to teach the target hypothesis within a hypothesis class. For
this optimal teacher, we introduce LwEQ-TD, a notion of TD capturing the teaching
complexity (i.e., the number of queries made) in this paradigm. We show that a
significant reduction in queries can be achieved with best-case counterexamples, in
contrast to worst-case or random counterexamples, for different hypothesis classes.
Furthermore, we establish new connections of LwEQ-TD to the well-studied
notions of TD in the learning-from-samples paradigm.

1 Introduction

Learning-with-queries paradigm involves a learner who asks structured queries to a teacher in order
to locate a target hypothesis. This paradigm has been extensively studied in machine learning and
formal methods research, including automata learning [1, 2, 3, 4], model checking [5], oracle-guided
synthesis (OGIS) [6], model learning [7], among others. Classical literature involves different kinds
of queries that a learner could ask [1, 8, 9], such as membership queries (i.e., “is the queried instance
consistent with the target hypothesis?”) and equivalence queries (i.e., “is the queried hypothesis
the target hypothesis?”). In this paper, we consider the learning-with-equivalence-queries (LwEQ)
paradigm where the learner is only asking equivalence queries and the teacher responds to a query
either “yes" or “no" along with a counterexample on which the current hypothesis disagrees with
the target hypothesis. LwEQ paradigm captures a variety of important problem settings, such as
counterexample-guided synthesis (CEGIS) [10], data augmentation (CEGAR) [11], and learning
regular languages from counterexamples [12]. The focus of our work is to understand the query
complexity for the LwEQ paradigm, i.e., the number of equivalence queries needed by the learner
for the exact identification of a target hypothesis [9].

The query complexity clearly depends on the learner model (i.e., the query function deciding the next
hypothesis to query), as well as the informativeness of the counterexamples provided by the teacher.
In the literature, the query complexity for the LwEQ paradigm has been extensively studied when
the learner receives worst-case or random counterexamples [1, 9, 13, 14, 15]. To show worst-case
bounds [1, 13], classical works have studied a teacher who responds with worst-case counterexamples
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to maximize the number of equivalence queries asked by the learner. Recent work [14] has studied
this query complexity when facing a more benign teacher who provides counterexamples selected at
random from a known probability distribution. In particular, [14] proposed a learning algorithm (i.e.,
a query function for the learner) that achieves O (log n) query complexity on the expected number
of random counterexamples for any hypothesis class of size n. When contrasting this bound with
worst-case bounds, it shows that random counterexamples could lead to exponential improvement in
the query complexity when compared with worst-case counterexamples [13, 14]. Along these lines,
an important research question is to understand the query complexity where the counterexamples are
picked by a more informed and helpful teacher, instead of random or worst-case counterexamples.

In this paper, we consider a more powerful teaching setting, where the optimal teacher picks best-case
counterexamples to steer the learner towards a target hypothesis. Our goal is to characterize the query
complexity for this optimal teacher (also, referred to as teaching complexity in the paper), for the
LwEQ paradigm. This teaching complexity has been extensively studied for binary classification
in the learning-from-samples (LfS) paradigm [16, 17] and is termed as “teaching dimension”
(TD) [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. Beyond the LfS paradigm, various notions of
teaching complexity have also been studied in other learning paradigms (see Section 1.1 for further
details). We introduce a new notion of teaching complexity for the LwEQ paradigm, namely “LwEQ
teaching dimension” (LwEQ-TD), capturing the number of queries needed by the learner when
best-case counterexamples are provided by the optimal teacher. Our study of LwEQ-TD for some
prominent hypothesis classes reveals the power of teaching via best-case counterexamples—we
show a significant reduction in query complexity when compared to that for worst-case and random
counterexamples. Furthermore, we establish several new connections of LwEQ-TD to the existing
notions of TD in the LfS paradigm.1 Table 1 provides a summary of these different teaching settings
and learning paradigms; our main results and contributions are summarized below:

I. We characterize the query complexity for the optimal teacher in the LwEQ paradigm, termed
as learning-with-equivalence-queries teaching dimension (LwEQ-TD). (see Section 3)

II. We study the query complexity in the LwEQ paradigm under different teaching settings:
worst-case, random, and best-case, distinguished by the informativeness of counterexamples.
We showcase the power of best-case counterexamples picked by the optimal teacher, in
contrast to worst-case or random counterexamples, for different hypothesis classes, including
Axes-aligned hyperplanes, Monotone monomials, and Orthogonal rectangles. (see Section 4)

III. We establish new connections between LwEQ-TD and LfS-TD by studying LwEQ-TD
for different learner models based on the richness of their query functions. We show that
LwEQ-TD is the same as wc-TD [18], RTD [22, 24], and NCTD [27] for a hypothesis class
when restricting query functions to specific families. In general, LwEQ-TD is weaker than
LfS-TD, e.g., LwEQ-TD is lower-bounded by local-PBTD [26, 29] of the hypothesis class
when the learner’s next query depends on the previous query. (see Section 5)

```````````Learning
Teaching Worst-case Teacher Random-case Teacher Best-case Teacher

Learning-with-equivalence- Worst-case counterexamples Random counterexamples LwEQ-TD
queries (LwEQ) [1, 30, 9, 31, 13] [14, 32] This work

Learning-from-samples Worst-case examples i.i.d learning LfS-TD / classical TD
(LfS) (i.e., least informative) [16, 17] [18, 22, 25, 27, 29]

Table 1: An overview of different teaching settings in the context of LwEQ and LfS paradigms.

1.1 Background and Related Work

Learning-with-queries paradigm and equivalence queries. Learning-with-queries paradigm
was introduced in [1] which proposed L∗ algorithm for exact identification of DFAs (determin-
istic finite automaton) when the learner is allowed to ask membership queries and equivalence queries.
Classical work has studied different types of queries (subset, membership, equivalence, correction,
among others) [1, 8, 9]. Among these works, learning with membership queries has been explored in
a variety of problem settings, such as PAC learning [16], active learning [33, 34, 35], and agnostic

1We will collectively refer to these different notions of TD in the LfS paradigm as LfS-TD.
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learning [36]. In the learning-with-equivalence-queries (LwEQ) paradigm, the learner can ask only
equivalence queries; furthermore, in our work, we consider proper queries, i.e., the queried hypothesis
is within the hypothesis class (see Section 6 for a discussion on improper queries). In this LwEQ
paradigm, [13] studied query complexity when the teacher picks worst-case counterexamples for
some key hypothesis classes (e.g., DFA, NFA, Context-free Grammars), and showed an exponential
lower bound. [14] studied random counterexamples, and proposed a learning algorithm, namely
Max-Min, which achieves a substantially improved bound on query complexity. We will investigate
the query complexity of Max-Min learner for the hypothesis class of Axes-aligned hyperplanes in
Section 4.

Teaching in the LfS paradigm for binary classification. Algorithmic machine teaching, first
introduced by [18, 37], studies the interaction between a teacher and a learner where the teacher’s
goal is to find an optimal sequence of training samples to teach a target hypothesis. [18] introduced
a measure of teaching complexity, named teaching dimension (TD) of the hypothesis class, in
the learning-from-samples (LfS) paradigm. The classical notion of TD in [18] characterized the
minimum number of samples (i.e., examples) needed to teach a target hypothesis to a version-space
learner who picks hypothesis within the version space arbitrarily (in an adversarial way). In
the past two decades, several new teaching settings have been studied, driven by the motivation
to lower teaching complexity and to find settings for which TD has better connections with
Vapnik–Chervonenkis dimension (VCD) [38]. In particular, several new teaching models and
complexity measures have been proposed for both the batch teaching settings (e.g., worst-case [18],
recursive [22, 24], preference-based [25], and non-clashing models [27]) and the sequential settings
(e.g., local preference-based model [26, 29]). These teaching settings, in turn, lead to different
notions of TD, that we collectively refer to as LfS-TD. In recent work, [29] has characterized these
different notions of TD through a unified framework of modeling learners with preference/ranking
functions. In Section 5, we will build on this framework to model the learner’s query functions in
the LwEQ paradigm through ranking functions, allowing us to connect LwEQ-TD with LfS-TD.

Teaching in other learning settings. Within binary classification setting, teaching complexity
results have been extended beyond version space learners, including models for gradient learners [39,
40], models inspired by control theory [41, 42], and models for human-centered applications [43, 44,
45, 46]. Furthermore, a recent line of research has studied robust notions of teaching in settings where
the teacher has limited information about the learner’s dynamics [47, 48, 49]. Given the importance of
teacher-learner interactions in many real-world applications, teaching has also been studied in richer
domains. In particular, teaching complexity has been investigated for imitation learning settings
where the teacher provides demonstrations [50, 51, 52, 53, 54], and for reinforcement learning
settings where the teacher provides reward feedback [55, 56]. We see these works as complementary
to ours, and we refer the reader to see [28] for an overview.

2 Problem Setup

Teaching framework. Let X be a ground set of unlabeled instances and Y the set of labels. LetH
be a finite class of hypotheses; each element h ∈ H is a function h : X → Y . Here, we only consider
boolean functions, and hence Y = {0, 1}. Let Z ⊆ X × Y be the ground set of labeled examples.
Each element z = (xz, yz) ∈ Z represents a labeled example where the label is given by the target
hypothesis h∗, i.e., yz = h∗(xz). Furthermore, for any Z ⊆ Z , we define version space induced
by the examples Z as the subset of hypothesesH(Z) ⊆ H that are consistent with the labels of all
the examples, i.e.,

H(Z) := {h ∈ H | ∀z = (xz, yz) ∈ Z, h(xz) = yz } . (1)

Equivalence queries. We consider the LwEQ paradigm where a learner seeks to identify a target
hypothesis from the hypothesis class via equivalence queries. In an equivalence query, the learner
asks if the current hypothesis, say h′ ∈ H, is equivalent to the target hypothesis h∗ or not. The
teacher provides a response r where r is either “yes” if h′ ≡ h∗ or “no” along with a counterexample
z := (xz, yz) ∈ Z , such that h′(xz) 6= yz .

Learner model and query protocol. We consider a generic model of the learner that captures our
assumptions about how the learner conjectures its hypothesis for equivalence queries based on the
responses received from the teacher. A key aspect of this model is the learner’s query function `
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over the hypotheses. Based on the information encoded in the inputs of this query function (i.e., the
current hypothesis and the history of counterexamples), the learner will choose one hypothesis inH.
In the beginning, the learner starts with an initial hypothesis h0 ∈ H, the history is Z0 = ∅, and the
version space is H0 = H. At a time step t ≥ 1, the learner first picks the hypothesis ht as follows:

`(Zt−1, ht−1) −→ ht ∈ H(Zt−1), (2)

where Zt−1 is the history of counterexamples seen up until time t andH(Zt−1) is the corresponding
version space. The learner then queries ht for equivalence to h∗ and receives a response rt.
Then, the query protocol proceeds as follows: (i) if rt is “yes”, the learner has identified h∗ and
stops; (ii) otherwise rt is “no” along with a counterexample zt using which the learner updates
Zt = Zt−1 ∪ {zt}, and continues. We summarize this query protocol in Algorithm 1.

Algorithm 1: Query protocol between the learner and the teacher
1 Learner’s initial hypothesis is h0 ∈ H, history is Z0 = ∅, and version space isH0 = H;
2 for t = 1, 2, 3, · · · do
3 learner picks ht ∈ H(Zt−1) based on Zt−1 and ht−1 as per Eq. (2);
4 learner performs an equivalence query with ht;
5 teacher provides a response rt that is either “yes” or ‘no” along with a counterexample zt;
6 if rt is “yes” then

learner has identified h∗ and stops;
7 else

learner updates Zt = Zt−1 ∪ {zt};

We assume that both the learner and the teacher have full knowledge of X , Y , and H; in addition,
the teacher knows the target h∗ as well as the learner’s query function `. In this work, we consider
learner models which could be characterized by a specific query function ` as discussed above. These
include well-known learners studied in the literature, such as a constant query learner (denoted as
`const) who picks the next hypothesis ht arbitrarily inH(Zt−1) without any preference [18, 1, 29], a
global query learner (denoted as `global) who uses a global ranking overH to pick the next hypothesis
ht in H(Zt−1) as per Eq. (2) [25, 29], and the Max-Min learning algorithm (denoted as `Max-Min)
introduced in a recent work on LwEQ paradigm [14].

Complexity of teaching (i.e., the number of queries made). In this paper, we study the number of
equivalence queries asked by the learner to the teacher to identify a target hypothesis in Algorithm 1,
and we call it the query complexity or teaching complexity for LwEQ paradigm interchangeably.
Clearly, this query complexity depends on the learner’s query function ` and the choice of counterex-
amples by the teacher. In the following sections, we study this complexity for different teacher types
depending on the informativeness of the provided counterexamples, as well as for different families
of learner types.

3 The Query Complexity with Best-Case Teacher: LwEQ-TD

In this section, we consider the optimal teacher who picks best-case counterexamples with the
objective of minimizing the learner’s queries for identifying h∗. For this optimal teacher, we provide
a formal characterization of teaching complexity, namely learning-with-equivalence queries teaching
dimension (LwEQ-TD) paradigm, inspired by different notions of teaching dimension for the
learning-from-samples (LfS-TD) paradigm [18, 24, 26, 29].

Notation. We denote by L a family of learner models—alternatively, we can think of them as a
family of query functions. To begin, we fix a query function ` ∈ L that the learner uses to pick next
hypotheses for equivalence queries. Our characterization below will be based on understanding the
minimal “cost” (i.e., the number of queries needed) in steering the learner from a hypothesis h with
the history of counterexamples Z to the target hypothesis h∗—in Algorithm 1, h refers to ht−1 and
Z refers to Zt−1 at the beginning of time t.

Minimal cost of steering. We begin by providing a recursive function that captures this cost of steer-
ing and will be key to formalize teaching complexity in the LwEQ paradigm. As is typically consid-
ered in the LfS paradigm [18, 24, 26, 29], we consider the “adversarial” perspective in how the learner
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breaks ties in picking the hypothesis w.r.t. its query function in Eq. (2). The optimal cost for steering
the learner from the current history (Z, h) to h∗ in the query protocol of Algorithm 1 is then given by:

D`(Z, h, h
∗) =

{
0, if `(Z, h) = {h∗}
1 + max

h′∈`(Z,h)
min

z:h′(xz)6=yz
D`(Z ∪ {z}, h′, h∗), otherwise (3)

Note that D` in Eq. (3) has a max operator w.r.t. the learner’s choice and min operator with the
teacher’s choice (see [29]). Furthermore, in this function, we are not counting the last query when the
learner’s queried hypothesis ht equals h∗ (hence, the number of queries is same as the number of
counterexamples received by the learner).

LwEQ-TD. Given a fixed query function ` ∈ L, an initial hypothesis h0, and a target hypothesis
h∗, LwEQ-TD w.r.t. ` and h∗ is the optimal cost for teaching the target hypothesis h∗:

LwEQ-TDX ,H,h0
(`, h∗) = D`(∅, h0, h

∗). (4)

To characterize the teaching complexity for the hypothesis class, we consider the worst-case target
hypothesis inH, given by:

LwEQ-TDX ,H,h0
(`) = max

h∗
D`(∅, h0, h

∗). (5)

Finally, to compare LwEQ-TD with existing notions of TD in the LfS paradigm (i.e., LfS-TD, see
Footnote 1), we define LwEQ-TD for a given family of query functions L. Based on [24, 27, 29], we
define LwEQ-TD w.r.t the family L as the teaching complexity w.r.t. the best ` in that family:

LwEQ-TDX ,H,h0
(L) = min

`∈L
max
h∗

D`(∅, h0, h
∗). (6)

In the following two sections, we will investigate how LwEQ-TD (the complexity of the optimal
teacher in the LwEQ paradigm) compares with various other complexity notions. In Section 4, we
investigate different teachers in the LwEQ paradigm, showcasing the power of the optimal teacher.
In Section 5, we establish new connections of LwEQ-TD with LfS-TD.

4 The Query Complexity for Different Teachers in the LwEQ Paradigm

In this section, we study the query complexity in the LwEQ paradigm for different types of teachers.
In Section 3, we characterized the query complexity for the optimal teacher who provides best-case
counterexamples. The goal of this section is to compare the query complexity for the optimal teacher
with other variants of teachers as discussed below. We will denote the teacher as TEQ, and we
consider the following four variants of teachers:

• best-TEQ responds “yes” or “no” along with best-case counterexamples (see Section 3).
• random-TEQ responds “yes” or “no” along with random counterexamples (picked uniformly at

random). As discussed in [14], we characterize the query complexity for random-TEQ as the
expected number of counterexamples provided by random-TEQ in Algorithm 1.

• worst-TEQ responds “yes” or “no” along with worst-case (least informative) counterexamples.
We characterize query complexity for worst-TEQ by replacing the min over the choice of
counterexamples with a max in the function D` in Eq. (3).

• binary-TEQ responds “yes” or “no” without any counterexamples.

In the rest of the section, we compare the query complexity for these teachers when interacting with
different learners and we characterize this complexity by the richness of their query functions.

4.1 Warm-up: Query Complexity Bounds When Teaching Different Types of Learners
In this section, we study the query complexity bounds for different teachers when teaching various
learner models characterized by the richness of the underlying query functions. In particular, we
consider the query functions `const, `global, and `Max-Min (see Section 2). `const picks the next
hypothesis ht arbitrarily inH(Zt−1) without any preference [29]. `global uses a global ranking over
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H to pick the next hypothesis ht in H(Zt−1) as per Eq. (2) and is popularly studied in the LfS
paradigm [25, 29]. `Max-Min uses a richer history-dependent query function, and was introduced for
achieving a better query complexity when the counterexamples are chosen randomly [14]. To study
the query complexity for different settings (corresponding to four teachers and three learners), we
consider the hypothesis class of Axes-aligned hyperplanes, a simple yet rich hypothesis class, that
generalizes the canonical hypothesis class of threshold boolean functions to higher dimensions. Next,
we introduce this hypothesis class.2

Definition 4.1 (Axes-aligned hyperplanes). Fix an input space X = {1, 2, . . . , n}d in Rd with labels
set Y = {0, 1}, where an input x ∈ X is a d-dimensional point in Rd, i.e., x := (x1, x2, . . . , xd)
such that all xi ∈ [1, n+ 1]. We define the hypothesis class of Axes-aligned hyperplanes as:

Haxh := {h | ∃ i ∈ [1, d+ 1], j ∈ [n+ 1], s.t. ∀x ∈ X , h(x) = 1 if xi ≤ j, otherwise 0} . (7)

We summarize the query complexity bounds for `const, `global, and `Max-Min under different teaching
scenarios in Table 2. We note that |Haxh| = d · (n + 1). To capture the global ranking of `global,
we use a ranking function g : Haxh → {0, . . . , |Haxh| − 1}. For a target hypothesis h∗ ∈ Haxh

and a ranking function g, the bounds for `global in Table 2 are described using the following two
quantities: (i) t∗g :=

∣∣{h ∈ Haxh s.t. g(h) ≤ g(h∗)}
∣∣ and (ii) n∗g is defined as the highest number

of hypotheses aligned along one of the axis that are preferred over h∗ as per the ranking function g.
Note that 1 ≤ t∗g ≤ d · (n+ 1) and 1 ≤ n∗g ≤ n+ 1. In the Appendix of the supplementary, we state
the bounds from Table 2 as theorems and provide detailed proofs.

XXXXXXXXXLearner
Teacher binary-TEQ (Yes/No) worst-TEQ random-TEQ best-TEQ

`const d · (n+ 1) Ω (d · (n+ 1)) O (d · log(n+ 1)) 2
`global t∗g Ω

(
t∗g
)

O
(
d · log n∗g

)
1

`Max-Min (Not-Applicable) Ω (d · log(n+ 1)) O (log(d · (n+ 1))) 2

Table 2: Query complexity for the Axes-aligned hyperplanes considering different teachers and
learners; see Section 4.1 for details.

4.2 Lower and Upper Bounds on Query Complexity

To establish lower bounds on the query complexity for three teachers (binary-TEQ, worst-TEQ,
random-TEQ), we will consider learner models characterized with optimal query functions. In
contrast to these lower bounds, we establish upper bounds on the query complexity for the best-case
teacher (best-TEQ) by considering a weaker learner model characterized with a global query function
(see Section 2). To study the bounds in these different teaching settings, we consider two more
hypothesis classes beyond Axes-aligned hyperplanes: (i) Monotone monomials [18, 37] and (ii)
Orthogonal rectangles [31, 18, 57, 58], that have been extensively studied in the LfS paradigm.

We summarize the results in Table 3 with detailed proofs deferred to the Appendix of the
supplementary. First, we state the results on query complexity for Axes-aligned hyperplanes in the
theorem below.

Theorem 1. Consider the hypothesis class of Axes-aligned hyperplanesHaxh (see Eq. (7)). There
exists a global learner `global such that best-TEQ achieves LwEQ-TD(`global) of exactly 1. In contrast,
for any optimal learner, random-TEQ provides at least Ω (log d) counterexamples “in expectation”
and worst-TEQ provides at least Ω (d+ log(n+ 1)) counterexamples “in the worst-case”.

The results in the above theorem are based on the following key ideas. The bound for best-TEQ is
based on results from Section 4.1, where we showed that a specific choice of `global upper bounds
the query complexity for best-TEQ by 1. On the other hand, as per Theorem 25 (see [14]), the query
complexity for a random teacher is connected to the VC dimension of a hypothesis class independent
of the learner model. We show that VCD(Haxh) is Ω (log d), which entails a direct lower bound
on the query complexity for random-TEQ for any learner model. Furthermore, we note that the

2Given two positive integers a and b where a < b, we use the following shorthand notation: [a, b] =
{a, a+ 1, . . . , b− 1} and [b] = {0, 1, . . . , b− 1}.
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hhhhhhhhhhhhhhHypothesis class
Teacher binary-TEQ (Yes/No) worst-TEQ random-TEQ best-TEQ

Axes-aligned hyperplanes Ω (d · (n+ 1)) Ω (d+ log(n+ 1)) Ω (log d) 1
Monotone monomials Ω (2n) Ω (n) Ω (n) 1
Orthogonal rectangles Ω

(
(n · (n+ 1))d

)
Ω (d · log(n+ 1)) Ω (d) 2

Table 3: Lower and upper bounds on query complexity for the Axes-aligned hyperplanes, Monotone
monomials, and Orthogonal rectangles when considering different teaching settings. The lower
bounds for three teachers (binary-TEQ, worst-TEQ, random-TEQ) are established based on learner
models characterized with optimal query functions; the upper bounds for the best-case teacher (best-
TEQ) are established based on learner models characterized with a global query function. Additional
details are provided in the proofs of Theorems 1, 2, and 3.

worst-TEQ could force any learner to query a hypothesis in every axis in addition to Ω (log(n+ 1))
queries in the axis of the target hypothesis.

Now, we define the hypothesis class of Monotone monomials and then state the aforementioned query
complexity bounds for this class in Theorem 2.
Definition 4.2 (Monotone monomials). Fix a set of literals {v1, v2, . . . , vn}, an input space X =
{0, 1}n, and labels set Y = {0, 1}. A monotone monomial is a negation-free conjunction of literals.
If mono(i1, i2, . . . , ik) denotes a monotone monomial over the set of k literals {vi1 , vi2 , . . . , vik},
then it canonically represents a hypothesis h(x) := xi1 ∧ xi2 ∧ . . . ∧ xik over the input space. With
these notations, we define the hypothesis class of Monotone monomials as:

Hmono := {h | ∃ {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n}, s.t. ∀x ∈ X , h(x) = xi1 ∧ xi2 ∧ . . . ∧ xik } .
(8)

Theorem 2. Consider the hypothesis class of Monotone monomialsHmono (see Eq. (8)). There exists
a global learner `global such that best-TEQ achieves LwEQ-TD(`global) of exactly 1. In contrast, for
any optimal learner, random-TEQ provides at least Ω (n) counterexamples “in expectation” and
worst-TEQ provides at least Ω (n) counterexamples “in the worst-case”.

Now, we define the hypothesis class of Orthogonal rectangles and then state the aforementioned
query complexity bounds for this class in Theorem 3.

Definition 4.3 (Orthogonal rectangles). Fix an input space X = {1, . . . , n}d in Rd with labels set
Y = {0, 1}, where an input x ∈ X is a d-dimensional point in Rd, i.e, x := (x1, x2, . . . , xd) such
that all xi ∈ [1, n+ 1]. We define the class of Orthogonal rectangles as:

Hrec :=

{
h

∣∣∣∣ ∃ {aj , bj}j∈[1,d+1] ⊂ [n+ 1] , s.t. ∀x ∈ X , h(x) =

{
1 if ∀j, aj < xj ≤ bj
0 otherwise.

}
.

(9)

Theorem 3. Consider the hypothesis class of Orthogonal rectanglesHrec (see Eq. (9)). There exists
a global learner `global such that best-TEQ achieves LwEQ-TD(`global) of exactly 2. In contrast, for
any optimal learner, random-TEQ provides at least Ω (d) counterexamples “in expectation” and
worst-TEQ provides at least Ω (d · log(n+ 1)) counterexamples “in the worst-case”.

Similar to Axes-aligned hyperplanes (see Theorem 1), the lower bound results are significantly worse
than the upper bound results for rich classes of Monotone monomials (see Theorem 2) and Orthogonal
rectangles (see Theorem 3), thereby establishing the power of the best-case teacher. These results are
summarized in Table 3.

5 Teaching Dimensions for the LwEQ and LfS Paradigms

In this section, we draw new comparisons of the notion of LwEQ-TD in the LwEQ paradigm to
existing notions of TD in the LfS paradigm. Based on the teaching setting and the learner models,
one gets different notions of teaching complexity and we collectively refer to these notions as LfS-TD
(see Footnote 1) [18, 21, 22, 25, 27, 59, 29]. For comparisons with LfS-TD below, we consider the
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framework of [29] that provides a unified view of teaching settings by modeling the learners through
preference/ranking functions. In the following, we first introduce a notation for these ranking functions
σ and then discuss how a ranking function σ, in turn, induces a learner in the LwEQ paradigm.

Learner’s query function ` using a framework of a ranking σ. Consider a hypothesis classH, a
version space H ⊆ H, and hypotheses h′, h′′, h ∈ H such that h′, h′′ ∈ H . Building on the notation
for a preference function σ (see [29]), we define a ranking function σ : H × 2H ×H → R where
σ(h′;H,h) signifies how h′ is ranked in the version space H from the current hypothesis h. Thus,
we say h′ is ranked (or preferred) over h′′ in the current version space H from the current hypothesis
h if σ(h′;H,h) ≤ σ(h′′;H,h), and vice versa. Similar to preference-based learners [29], a learner’s
query function (see Section 2) could use this ranking to pick the most preferred hypothesis for an
equivalence query. In this section, we consider query functions for our learner model ` (see Section 2)
which use a framework of a ranking function σ to pick the next hypothesis ht based on the current
history of counterexamples seen Zt−1 and the current hypothesis ht−1 as follows:

`(Zt−1, ht−1) −→ ht ∈ arg min
h′∈H(Zt−1)

σ(h′;H(Zt−1), ht−1). (10)

In this section, we identify a learner model `σ3 with the corresponding ranking σ and consequently
use the notation LwEQ-TDX ,H,h0

(σ) (for fixed X ,H, h0) for LwEQ-TD (see Eq. (5), Section 3)
for the learner model `σ. We denote a family of ranking functions σ as Σ. For a family of ranking
functions Σ, the corresponding LwEQ teaching dimension is denoted as LwEQ-TDX ,H,h0

(Σ) (see
Eq. (6), Section 3).

For families of learner models induced by specific types of ranking functions, we connect LwEQ-TD
to existing notions of LfS-TD. In the following, we consider ranking functions broadly categorized
into two classes: (i) ranking functions independent of Zt−1 and ht−1; (ii) ranking functions dependent
on Zt−1 and/or ht−1.

5.1 LwEQ Learners with Ranking Functions Independent of Zt−1 and ht−1

These ranking functions induce learners whose next equivalence query at time t (i.e., choice of
the hypothesis ht) is independent of the history of counterexamples Zt−1 and independent of the
hypothesis ht−1 (see Algorithm 1, Section 2). In Section 4.1, we discussed these learner families
under the name of contant and global learners, and we formalize these families below using the
ranking functions framework of Eq. (10). In particular, we introduce two families of ranking functions:
(i) Σconst is a family of constant ranking functions where σ ∈ Σconst ranks every hypothesis equally
without any preference; (ii) Σglobal is a family of global ranking functions where σ ∈ Σglobal ranks
hypothesis based on a global preference. These two families are given below:

Σconst = {σ | ∃ c ∈ R, s.t. ∀h′, Z, h, σ(h′;H(Z), h) = c} . (11)

Σglobal = {σ | ∃ g : H → R, s.t. ∀h′, Z, h, σ(h′;H(Z), h) = g(h′)} . (12)

Given these ranking functions, the following theorem establishes the connection of
LwEQ-TDX ,H,h0

(Σconst) and LwEQ-TDX ,H,h0
(Σglobal) with existing notions of LfS-TD; also

see Eq. (6) in Section 3.

Theorem 4. Fix X ,H, h0. For learners whose query function is induced by a ranking function
independent of Zt−1 and ht−1, the corresponding LwEQ-TD is equivalent to the notions of LfS-TD
as follows:

LwEQ-TDX ,H,h0
(Σconst) = wc-TD(H). (13)

LwEQ-TDX ,H,h0
(Σglobal) = RTD(H). (14)

When the rankings are independent of Zt−1 and ht−1, Eq. (13) and Eq. (14) connect LwEQ-TD
to the notions of wc-TD [18] and RTD [22, 24] in batch teaching settings (the optimal teaching
sequence is invariant to its permutation) of the LfS paradigm. To show the equalities, we note
that if Z ′ ⊆ Z is a teaching sequence for fixed h∗ in the LfS paradigm, then there exists a per-
mutation of Z ′ which forms a teaching sequence of counterexamples for the learner in the LwEQ

3We use the notation `σ for a learner’s query function ` using a ranking σ.
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paradigm. Furthermore, this theorem allows us to connect LwEQ-TDX ,H,h0
(Σglobal) with VCD(H)

as RTD(H) = O
(
VCD2(H)

)
[24, 29]. A detailed proof of the theorem is in the Appendix of the

supplementary.

5.2 LwEQ Learners with Ranking Functions dependent on Zt−1 and/or ht−1

Here, we consider ranking functions that induce learners whose next equivalence query at time t
(i.e., choice of the hypothesis ht) is dependent on the history of counterexamples Zt−1 and/or on the
hypothesis ht−1 (see Algorithm 1, Section 2). We formalize these families below using the ranking
functions framework of Eq. (10). In particular, we introduce three families of ranking functions: (i)
Σgvs is a family of global version space ranking functions where σ ∈ Σgvs ranks hypotheses based
on a global preference dependent on Zt−1 but independent of ht−1; (ii) Σlocal is a family of local
ranking functions where σ ∈ Σlocal ranks hypotheses based on a local preference dependent only on
ht−1; (iii) Σlvs is a family of local version space ranking functions where σ ∈ Σlvs ranks hypotheses
based on a local preference dependent on Zt−1 and ht−1. These three families are given below:

Σgvs =
{
σ
∣∣ ∃ g : H× 2H → R, s.t. ∀h′, Z, h, σ(h′;H(Z), h) = g(h′,H(Z))

}
. (15)

Σlocal = {σ | ∃ g : H×H → R, s.t.∀h′, Z, h, σ(h′;H(Z), h) = g(h′, h)} . (16)

Σlvs =
{
σ
∣∣ ∃ g : H× 2H ×H → R, s.t. ∀h′, Z, h, σ(h′;H(Z), h) = g(h′,H(Z), h)

}
. (17)

As discussed in the LfS paradigm, these ranking functions could lead to the learner and the teacher
colluding to achieve arbitrarily low teaching complexity [29]. To avoid this, we consider a specific
collusion-free behavior where the ranking is consistent with its choice of hypothesis. More formally,

Definition 5.1 (Collusion-free ranking [29]). Consider a time t where the learner’s current hypoth-
esis is ht−1 and the history of inputs seen is Zt−1. Further assume that the learner’s preferred hypoth-
esis for time t is uniquely given by arg minh′∈H(Zt−1) σ(h′;H(Zt−1), ht−1) = {ĥ}. Let S be addi-
tional examples provided by an adversary from time t onwards. We call a ranking function σ collusion-
free if for any S consistent with ĥ, it holds that arg minh′∈H(Zt−1∪S) σ(h′;H(Zt−1 ∪ S), ĥ) = {ĥ}.

For the ranking functions in Eqs. (15)-(17), we consider subsets that satisfy Definition 5.1, and con-
sequently the corresponding collusion-free families are denoted as ΣCF

gvs, ΣCF
local, and ΣCF

lvs. For these
ranking functions, we study the connection of LwEQ-TDX ,H,h0

(ΣCF
gvs), LwEQ-TDX ,H,h0

(ΣCF
local),

and LwEQ-TDX ,H,h0
(ΣCF

lvs) with existing notions of LfS-TD, in particular NCTD [27], local-
PBTD [59, 29], and wc-TD [18, 29]. We state these connections in the following theorem and
provide detailed proofs in the Appendix of the supplementary.

Theorem 5. Fix X ,H, h0. For learners whose query function is induced by a ranking function
dependent on Zt−1 and/or ht−1, the corresponding LwEQ-TD is connected to the notions of LfS-TD
as:

LwEQ-TDX ,H,h0

(
ΣCF

gvs

)
= NCTD(H). (18)

local-PBTDX ,H,h0
≤ LwEQ-TDX ,H,h0

(ΣCF
local) ≤ wc-TD(H). (19)

lvs-PBTDX ,H,h0
≤ LwEQ-TDX ,H,h0

(ΣCF
lvs) ≤ wc-TD(H). (20)

To achieve equality in Eq. (18), we observe that the family of rankings ΣCF
gvs leads to a batch teaching

setting in the LfS paradigm. To show this equality, we establish the permutation invariance of a
teaching set Z ⊆ Z in the LfS paradigm to form a teaching sequence of counterexamples in the
LwEQ paradigm using the collusion-freeness property of the underlying ranking function.

To show the lower bounds in Eq. (19) and Eq. (20), we note that a teaching sequence of counterexam-
ples in the LwEQ paradigm forms a teaching sequence in the LfS paradigm. For the upper bound of
wc-TD(H), we note that a constant query learner (see Eq. (11)) could pick any consistent hypothesis
in a version space to maximize the number of counterexamples. This observation, along with the
results in Theorem 4, leads to the desired upper bound.
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6 Concluding Discussions

We investigated the query complexity for the learning-with-equivalence-queries (LwEQ) paradigm
when the counterexamples are provided by the optimal teacher. We introduced LwEQ-TD, a notion
of teaching dimension, to characterize the complexity of teaching (i.e., the number of queries made)
for the optimal teacher. We showed the power of best-case counterexamples picked by the optimal
teacher, in contrast to worst-case or random counterexamples, for different hypothesis classes,
including Axes-aligned hyperplanes, Monotone monomials, and Orthogonal rectangles. We further
established new connections of LwEQ-TD with existing notions of TD in the learning-with-samples
paradigm, including wc-TD, RTD, NCTD, and local-PBTD.

In the learning-with-queries paradigm, several works have analyzed the query complexity for a
combination of different query types [1, 8, 15], such as membership queries, equivalence queries,
among others. Building on our characterization of LwEQ-TD, an important research direction of
future work is to investigate similar notions of TD when a learner can ask a combination of different
queries. Alternatively, one could study LwEQ in the setting of improper equivalence queries where
the learner can pick the queried hypothesis outside the hypothesis class. [31] considered improper
equivalence queries in the LwEQ paradigm, leading to a reduction in query complexity for various
hypothesis classes. It would be important to characterize the teaching complexity for best-case
counterexamples with improper equivalence queries.

Another important research direction is to further investigate LwEQ-TD for more complex hypothesis
classes, including DFA (deterministic finite automaton), NFA (nondeterministic finite-state acceptors),
CFG (context-free grammars), among others. As a concrete hypothesis class, one could consider
DFA2

s (i.e., DFA with alphabet size 2 and state size s). For this hypothesis class, the query complexity
is exponential in s when considering worst-case counterexamples [13]. [60] computed VCD for
a variety of hypothesis classes including DFA2

s; this result along with query complexity bounds
of the Max-Min algorithm in [14] establishes the bound of Θ (s log s) on the expected number of
random counterexamples for DFA2

s. As future work, it would be interesting to investigate LwEQ-TD
for DFA2

s. A concrete direction is to study the query complexity when providing more structured
counterexamples (e.g., by picking minimal length counterexamples as considered in [12]) as this
would allow establishing an upper bound for best-case counterexamples.
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A List of Appendices

Now, we list the appendices which provide the proofs of our theoretical results in full detail. The
appendices are summarized as follows:

• Appendix B discusses different types of learners and contains proofs of the formal results in
Section 4.1.
– Appendix B.1 discusses learner models characterized by query functions `const, `global, and
`Max-Min.

– Appendix B.2 defines the hypothesis class of Threshold functions and provides query com-
plexity bounds for different teachers when teaching learner models characterized by query
functions `const, `global, and `Max-Min.

– Appendix B.3 contains proofs of the formal results shown in Table 2 for Axes-aligned hyper-
planes.

• Appendix C contains proofs of the formal results as shown in Table 3 in Section 4.2.
– The proof of Theorem 1 is in Appendix C.1.

– The proof of Theorem 2 is in Appendix C.2.

– The proof of Theorem 3 is in Appendix C.3.

• Appendix D contains proofs of the formal results in Section 5.
– The proof of Theorem 4 is in Appendix D.1.

– The proof of Theorem 5 is in Appendix D.2.
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B Query Complexity Bounds When Teaching Different Types of Learners
(Section 4.1)

In this appendix, we provide the proofs for the bounds shown in Table 2 on the query complexity
for Axes-aligned hyperplanes (Definition 4.1). We divide the appendix as follows: Appendix B.1
discusses learner models characterized by query functions `const, `global, and `Max-Min; Appendix
B.2 discusses Threshold functions and their query complexity bounds for different teachers; Appendix
B.3 provides the proofs to entries in Table 2.

B.1 Learner Types

In the following, we discuss learners characterized by the query functions `const, `global, and `Max-Min

used for the query complexity bounds in Table 2.

Constant query learner (`const). A constant query learner (`const) picks the next hypothesis ht
arbitrarily in H(Zt−1) without any preference [18, 1, 29]. To analyze the query complexity for
different hypothesis classes we assume that the learner picks the worst-case hypothesis inH(Zt−1)
to query for equivalence. Since all the constant query learners have the same query function (see
Section 2) the query complexity bounds are identified for the entire family of constant learners. We
characterize a family of constant query learners in Section 5.

Global query learner (`global). A global query learner (`global) uses a global ranking over H to
pick the next hypothesis ht in H(Zt−1) as per Eq. (2) [25, 29]. We denote the global ranking of
`global using a function g : H → [|H|]. Similar to a constant learner `const, we assume that `global

picks the worst ranked hypothesis according to the function g for querying (ties are broken arbitrarily).
We characterize a family of global query learners in Section 5.

Max-Min query learner (`Max-Min). In the LwEQ paradigm, [14] considered the setting where
a learner queries a hypothesis for equivalence and receives a random counterexample picked from
a known probability distribution and introduced the Max-Min learning algorithm. A Max-Min
query learner picks the next hypothesis ht based on the current history of counterexamples Zt−1 but
agnostic of the current hypothesis ht−1 as follows:

ht ∈ arg max
h∈H(Zt−1)

min
h′∈H(Zt−1)\{h}

E(h, h′) (21)

where E(h, h′) is given by the expected fraction4 of hypothesis eliminated from H(Zt−1) if an
equivalence query is posed with hypothesis h and target hypothesis h′, assuming counterexamples are
picked from a known probability distribution. In this work, we assume that the underlying probability
distribution is uniform. Furthermore, to evaluate a Max-Min query learner in the worst-case teaching
scenario (similar for best-case teaching), i.e when worst-TEQ provides counterexamples (see Column
2 in Table 2) we assume that the learner computes E(h, h′) modeling a uniform distribution over the
set of valid counterexamples. We discuss the query complexity bounds for `Max-Min under different
teaching scenarios in Appendix B.3.

B.2 Threshold Functions

Now, we discuss Threshold functions and study their query complexity bounds under different
teaching scenarios in the LwEQ paradigm. Results and insights gained in this section would be used
in many other results in our work. First, we define the hypothesis class of Threshold functions as
follows:

Definition B.1 (Threshold functions). Fix an input space X = {1, · · · , n} in R with labels set
Y = {0, 1}. We define the hypothesis class of Threshold functions as:

Hthreshold := {h | ∃ j ∈ [n+ 1], s.t. ∀x ∈ X , h(x) = 1 if x ≤ j, otherwise 0} . (22)

4Query function remains the same if we compute the expected number, i.e. expected fraction × total number
of hypotheses in the version space.
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We note that if a teacher provides two counterexamples corresponding to the threshold j of a target
hypothesis h∗ ∈ Hthreshold, then it eliminates any other hypothesis in the class. Thus, it is straight-
forward that LwEQ-TDX ,Hthreshold,h0(`const) = 2. On the other hand, providing just the rightmost
example classified as 1 is sufficient for a global learner `global, i.e. LwEQ-TDX ,Hthreshold,h0

(`global)
= 1.

In the following theorem, we establish query complexity bounds for worst-TEQ and random-TEQ
when teaching a constant query learner `const.
Theorem 6. Consider the hypothesis space of Hthreshold over the input space X . Fix a constant
query learner `const. “In the worst-case”, `const queries at least5 Ω (n+ 1) times to worst-TEQ.
Furthermore, `const queries at most O (log(n+ 1)) times "in expectation" to random-TEQ.

Proof. In the worst-case teaching scenario, it is easy to note that worst-TEQ acts as an adversary
and provides counterexamples chosen from the leftmost examples. Thus, “in the worst-case" `const

queries at least Ω (n+ 1) times to identify the target.

Now, we show the bound for random-TEQ when teaching a constant learner `const. For random-TEQ
which provides random counterexamples (sampled uniformly) to the queried hypothesis, we first show
that the expected number of counterexamples has the form

∑n
i=1

1
i , which in turn establishes the

bound. Consider the random variableXn to be the number of counterexamples given by random-TEQ
for the successful identification of a target hypothesis. Define W (n) to be the expected number of
counterexamples provided “in the worst-case” to `const for Threshold functions Hthreshold. Thus,
we note W (n) = E [Xn]. Using induction, we show that W (n) =

∑n
i=1

1
i . Note, W (1) = 1 and

W (2) = 1 + 1
2 . Assume the induction statement for n = k. Now, we would prove the statement for

n = k + 1. Consider the following:

W (k + 1)

=

k+1∑
i=1

i · PUk+1
(Xk+1 = i) (23)

=

k+1∑
i=1

i ·
(
PUk+1

(x1, Xk = i− 1) + PUk+1
(Xk = i)

)
(24)

=
1

k + 1
·
k+1∑
i=1

i · PUk(Xk = i− 1) +

k∑
i=1

i · PUk+1
(Xk = i) (25)

=
1

k + 1
·

(
k+1∑
i=1

(i− 1) · PUk(Xk = i− 1) +

k+1∑
i=1

PUk(Xk = i− 1)

)
+

k∑
i=1

i · PUk+1
(Xk = i)

(26)

=
1

k + 1
·
k∑
i=1

i · PUk(Xk = i) +
1

k + 1
·
k∑
i=1

PUk(Xk = i) +
k

k + 1
·
k∑
i=1

i · PUk(Xk = i) (27)

=
1

k + 1
·W (k) +

1

k + 1
· 1 +

k

k + 1
·W (k) (28)

= W (k) +
1

k + 1
(29)

Uk denotes the discrete uniform distribution over k samples. Eq. (23) follows using the definition of
expectation. In Eq. (24), we decompose based on the first example x1 is either chosen or not. Eq. (25),
Eq. (26), and Eq. (27) follow by switching the probability space from the uniform distribution Uk+1 to
Uk. In Eq. (28) we apply the induction statement. Thus, we have proven that W (n) =

∑n
i=1

1
i . Since∑n

i=1
1
i ≤ O (log(n+ 1)), thus random-TEQ provides at the most O (log(n+ 1)) counterexamples

“in the worst-case” to steer `const to the target hypothesis inHthreshold.

Now, we discuss the query complexity bounds for a Max-Min query learner. The bounds achieved
would be useful in analyzing the case of Axes-aligned hyperplanes in Appendix B.3.

5We use the size of the hypothesis class in the bounds.

17



Min-Max query learner for Threshold functions. To study the query complexity of Threshold
functions we construct an elimination graph Gelim(Hthreshold,Un) (see Definition 7 [14]) which is
an (n+1)×(n+1) matrix with rows and columns marked with ordered hypotheses inHthreshold and
every entry corresponding to h, h′ ∈ Hthreshold is E(h, h′) (see Appendix B.1). First, we represent
the hypothesis classHthreshold as a boolean matrix Cn+1 as

x1 x2 · · · xn



h0 0 0 · · · · · · · · · 0
h1 1 0 · · · · · · · · · 0
... 1 1 · · · · · · · · · 0
...

...
...

...
...

... 0
... 1 1 1 1 1 0
hn 1 1 · · · · · · · · · 1

which has n+ 1 rows for the hypotheses and n columns for the examples. Now, we would construct
the elimination graph corresponding to Cn+1 for uniform distribution over the examples. It is not
very difficult to note that the elimination graph Gelim(Cn+1,Un) has the form:

h0 h1 h2 h3 · · · hn



h0 0 1
(n+1)

3
2(n+1)

2
(n+1) · · · 1

2

h1
n

(n+1) 0 2
(n+1)

5
2(n+1) · · · n

2(n−1) −
1

(n−1)(n+1)

h2
(2n−1)
2(n+1)

(n−1)
(n+1) 0 3

(n+1) · · · n
2(n−2) −

1
(n−2)(n+1)

...
...

...
...

...
...

...
...

...
...

...
...

...
...

hn
1
2 · · · · · · · · · · 0

We note that `Max-Min picks the middle threshold function for querying based on Eq. (21). Thus,
`Max-Min performs a binary search over the set of consistent hypotheses. Thus, in the worst-case
teaching scenario `Max-Min queries at the least Ω (log(n+ 1)) times. Since binary search algorithm
over Threshold functions is optimal in terms of query complexity (use induction on j where n = 2j),
thus `Max-Min is an optimal learner for Threshold functions. But we also note that even in the
presence of best-TEQ the learner `Max-Min has to query at least twice for the worst-case threshold
function, and hence LwEQ-TDX ,Hthreshold,h0

(`Max-Min) = 2 as shown for a constant query learner.

Remarks. For the hypothesis class of Threshold functions, there could be ties when finding
arg maxh∈H(Zt−1) minh′∈H(Zt−1)\{h}E(h, h′) (rhs of Eq. (21)). A simple case is when the size n
of the input space is 1. At time step t = 0, we obtain the (2× 2) elimination graph Gelim such that
E(h0, h1) = E(h1, h0) = 1

2 . This observation could be generalized for any odd natural number n.
In particular, one can show that at time step t = 0, both the hypotheses hn−1

2
and hn+1

2
maximize

Eq. (21) such that E(hn−1
2
, hn+1

2
) = E(hn+1

2
, hn−1

2
) = 1

2 .

In the case of Threshold functions, the intuition that `Max-Min turns out to be performing binary
search is based on the computation of the elimination graph Gelim, as shown above. At time step
t = 0, it is clear that `Max-Min (using Eq. (21)) picks the middle threshold function. For time step
t > 0, we observe that the version space is a continuous interval of threshold functions (i.e., if h, h′
are in the version space then every threshold in between h and h′ is also in the version space). Hence,
we can again use the computation of the elimination graph as shown for time step t = 0. This is the
main intuition behind the query.

B.3 Analysis for Axes-aligned Hyperplanes

In this section, we provide the proofs to the query complexity bounds for `const, `global, and `Max-Min

under different teaching scenarios as shown in Table 2.

In the rest of the section, we refer a hypothesis h ∈ Haxh based on the axis of alignment i and the
index j, where i ∈ [1, d+ 1], j ∈ [n+ 1] such that ∀x ∈ X , h(x) = 1 if xi ≤ j, otherwise 0.
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For the sake of continuity, we redefine some of the quantities discussed in Section 4.1. We state
the bounds in terms of |Haxh| = d · (n + 1). To capture the global ranking of `global we use the
function g : Haxh → [|Haxh|]. For a target hypothesis h∗ ∈ Haxh and ranking function g, the
bounds for `global are described using the quantities—t∗g := | {h ∈ Haxh | g(h) ≤ g(h∗)} | (note
0 ≤ t∗g ≤ d · (n+ 1)). We denote the set {h ∈ Haxh | g(h) ≤ g(h∗)} asH∗. Now, we redefine the
quantity n∗g as n∗g := maxm∈[1,d+1] | {h ∈ H∗ : h is aligned along axis m} |. Note, 0 ≤ n∗g ≤ n+ 1.

To show the worst-case teaching bounds we don’t impose any restrictions on the learners `const,
`global, and `Max-Min. On the other hand, our bound for best-case teaching in the case of global
learners is for a specific learner `global depending on the target hypothesis h∗. To establish the
results, we state the following theorems and provide their proofs6: Theorem 7 states the bounds for
worst-TEQ, Theorem 8 states the bounds for random-TEQ, and Theorem 9 states the bounds for
best-TEQ.

Theorem 7 (Worst-case teaching). Consider the hypothesis class of Axes-aligned hyperplanesHaxh

(see Eq. (7)). In the LwEQ paradigm, the following bounds on the query complexity hold for
worst-TEQ:

1. For a constant query learner `const the query complexity is lower bounded by
Ω (d · (n+ 1)).

2. For a global query learner `global the query complexity is lower bounded by Ω
(
t∗g
)
.

3. For a Max-Min learner `Max-Min the query complexity is lower bounded by
Ω (d · log(n+ 1)).

Proof. Constant and Global query learners: Consider counterexamples of the form:

x =
(

0, · · · , 0, j
k-th component

, 0, · · · , 0
)
, x′ =

(
n, · · · , n, j

k-th component
, n, · · · , n

)
. (30)

(x, 1) or (x′, 0) eliminates at most 1 hyperplane aligned along an axis p 6= k. Using these coun-
terexamples worst-TEQ provides at least Ω (n+ 1) counterexamples “in the worst-case” along
an axis (see Threshold functions in Appendix B.2) thus for Haxh the query complexity is lower
bounded by Ω (|Haxh|) = Ω (d · (n+ 1)). Using a similar argument one achieves the lower bound of
Ω (|H∗|) = Ω

(
t∗g
)

for global query learner `global.

Max-Min query learner: Fix an arbitrary target hypothesis h∗ aligned along an axis i∗. Consider
hypotheses h, h′ ∈Haxh. Assume that h is aligned along axis k and indexed at i ∈ [1, n+1], whereas
h′ is aligned along axis k′ and indexed at j ∈ [1, n+ 1].

To prove the lower bound we show the following: i) worst-TEQ “could” pick counterexamples so
that less than half of the consistent hypotheses along an axis are eliminated in the version space, and
ii) “in the worst-case” `Max-Min has to query so that all the hypotheses aligned along any axis are
eliminated in the final version space to locate the target hypothesis.

We note that if `Max-Min queries h for equivalence such that target hypothesis is aligned along a
different axis, counterexamples based on Eq. (30) ensure at most one hypothesis aligned along p 6= k
is eliminated as well as worst-TEQ could pick (x, 1) or (x′, 0) such that at most half consistent
hypotheses aligned along k are eliminated. This completes the proof for i).

Assume that `Max-Min locates the target hypothesis h∗ in the query protocol of Algorithm 1 so that
Haxh(Z) contains hypotheses aligned along an axis other than i∗ where Z is the history of counterex-
amples received. We pick such a hypothesis ĥ ∈ Haxh(Z). Note ĥ is consistent with the counterex-
amples in Z. Thus if ĥ is chosen as the “target” hypothesis, the learner `Max-Min would be fooled in
querying h∗, and thus the query complexity increases. So, the assumption is invalidated. So, Z must
not have any consistent hypothesis aligned along an axis other than i∗. This completes the proof of ii).

Using i) and ii) we show that `Max-Min queries at the least Ω (log(n+ 1))7 times in an axis other
than i∗. Since we know that for Threshold functions worst-TEQ provides at the least Ω (log(n+ 1))

6We skip a theorem for binary-TEQ as the results are self-explanatory.
7We use the number of hypotheses aligned along an axis, i.e. (n+ 1).
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counterexamples to a Max-Min learner `Max-Min, thus even along the axis i∗ (one dimensional
threshold functions), the Max-Min learner `Max-Min queries at the least Ω (log(n+ 1)) times. Hence,
we have shown that the query complexity for `Max-Min is lower bounded by Ω (d · log(n+ 1)).

In the following, we state the theorem for random-TEQ when teaching `const, `global, and `Max-Min.
Theorem 8 (Random teaching). Consider the hypothesis class of Axes-aligned hyperplanesHaxh

(see Eq. (7)). In the LwEQ paradigm, the following bounds on the query complexity, i.e. the number
of counterexamples provided “in expectation” hold for random-TEQ:

1. For a constant query learner `const the query complexity is upper bounded by
O (d · log(n+ 1)).

2. For a global query learner `global the query complexity is upper bounded by O
(
d · log n∗g

)
.

3. For a Max-Min learner `Max-Min the query complexity is upper bounded by
O (log(d · (n+ 1))).

Proof. First, we note that the upper bound on the query complexity for a Max-Min learner follows
directly using theO (log |H|) (for finite hypothesis classH) bound on the number of counterexamples
in the random case as shown in [14]. So, we provide the proofs for `const and `global.

Constant query learner: To show the upper bound we argue that, if h ∈ Haxh aligned along the axis
k (dimension), is the next hypothesis picked by the learner `const for equivalence query then the
expected number of hypothesis eliminated in the current version space, say H , when random-TEQ
provides counterexamples to h is at the least half of the consistent hypotheses along the axis k in the
version space H . This is sufficient to yield the upper bound.

We argue for d = 2. Similar analysis works for d > 2 as the probability mass is integrated to
the inputs corresponding to the case of d = 2. Consider a hypothesis h′ 6≡ h ∈ Haxh. We note
that when h and h′ are aligned along the same axis, then using the analysis of Threshold functions
(see Appendix B.2), it could be easily shown that “in expectation” a random counterexample to
h for h′ eliminates at least half of the hyperplanes in the version space. We denote by Rkh,h′ the
expected number of consistent hyperplanes eliminated along the axis k when random-TEQ provides
counterexamples to h for h′ where h′ is aligned along an axis other than k. Notice that the set of
counterexamples are composed of inputs in two blocks (‘+’ for label 1 and ‘-’ for label 0) as shown
in 2D representation of the hypothesis class below.


+ +
+ +

i
− − −
− − −

j

We compute Rkh,h′ as follows:

Rkh,h′ =
(n− j) · i · (2n− i+ 1) + j · (n− i) · (n+ i+ 1)

2 [i · (n− j) + j · (n− i)]
(31)

where h and h′ are the i-th and j-th indexed hyperplanes in their respective axes. Rkh,h′ Here we
show the computation when none of the hyperplanes aligned along an axis are eliminated. Change
of parameters achieves the same result in the generic case. We need to show that Rkh,h′ ≥ n+1

2
irrespective of the choice of i and j. We note that:

(n− j) · i · (2n− i+ 1) + j · (n− i) · (n+ i+ 1)

= (n− j) · i · (n+ 1) + (n− j) · i · (n− i) + j · (n− i) · (n+ 1) + j · (n− i).i
≥ (n+ 1) · i · (n− j) + (n+ 1) · j · (n− i)

Thus, Rkh,h′ ≥ n+1
2 . This implies that if the constant query learner `const receives a counterexample

to h then at the least half of the consistent hypotheses along k is eliminated from the current
version space. Thus, the learner `const queries at mostO (log(n+ 1)) times to random-TEQ to either
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locate the target or eliminate all the hypotheses along an axis. Since there are d dimensions, thus
random-TEQ provides at most O (d · log(n+ 1)) counterexamples “in expectation”.

Global query learner: Now, we show the query complexity bound for a global query learner `global

based on the quantity n∗g. Using Eq. (31) we note that in expectation at least half of the consistent
hypotheses are eliminated along an axis if a random counterexample is provided. Since for any axis k
there are at most n∗g consistent hypotheses inH∗ thus for a global query learner `global random-TEQ
provides at the most O

(
d · log n∗g

)
counterexamples “in expectation”.

In the following, we state the theorem for best-TEQ when teaching `const, `global, and `Max-Min.
Theorem 9 (Best-case teaching). Consider the hypothesis class of Axes-aligned hyperplanesHaxh

(see Eq. (7)). In the LwEQ paradigm, the following bounds on LwEQ-TD hold for best-TEQ:

1. For a constant query learner `const, LwEQ-TD(`const) = 2.

2. ∃ a global query learner `global, LwEQ-TD(`global) = 1.

3. For a Max-Min learner `Max-Min, LwEQ-TD(`Max-Min) = 2.

Proof. Constant query learner: We note that two counterexamples corresponding to the opposite
sides of the target hyperplane are sufficient to fix the target hyperplane in the version space. Assume
h∗ be the target hypothesis aligned along an arbitrary axis k and indexed at i ∈ [1, n+ 1], i.e., ∀x ∈ X

h∗(x) =

{
1 ifxk ≤ i
0 otherwise

Consider x′,x′′ ∈ X such that x′k = i, x′k = i + 1, and all the other coordinates are same. Note,
h∗(x′) = 1 and h∗(x′′) = 0. But then any other hypothesis h′ 6= h∗ ∈ Haxh classifies both x′, x′′
either 0 or 1. Thus, Haxh({(x′, 1), (x′′, 0)}) = {h∗}. Since the learner `const arbitraily picks a
hypothesis in the version space to query LwEQ-TD(`const) = 2.

Global query learner: Consider the global query learner `global with the global ranking
g : Haxh → [|Haxh|] as follows: hypothesis which classifies the least number of inputs as
negative, i.e. 0 is ranked highest (thus picked if consistent in the version space). Alternatively, for
all h, h′ ∈ Haxh, g(h) ≤ g(h′) if

| {x : x ∈ X , h(x) = 1} | ≤ | {x : x ∈ X , h′(x) = 1} |

Now, if the target hypothesis is h∗ s.t. it is aligned along the axis i∗ ∈ [1, d+ 1] and indexed at
j ∈ [n + 1], then best-TEQ provides a counterexample x :=

(
0, · · · , 0, j

i∗-th component
, 0, · · · , 0

)
with label 1. Note, `global picks h∗ in the version spaceHaxh({(x, 1)}). Hence, the result follows.

Max-Min query learner: We note that similar to a constant query learner, LwEQ-TD(`Max-Min) = 2
as a Max-Min query learner picks the next hypothesis prefixed by the pairwise computation of the
expected number of elimination of hypotheses when an equivalence query is posed with hypothesis
h ∈ Haxh and target hypothesis h′ ∈ Haxh (see Appendix B.1). As noted in Appendix B.2, `Max-Min

would perform a binary search to locate a target hypothesis but then the analysis for a constant query
learner `const would apply. Hence, the result follows.
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C Lower and Upper Bounds on Query Complexity (Section 4.2)

In this appendix, we provide the proofs for the bounds shown in Table 3 on the query complexity for
different hypothesis classes as discussed in Section 4.2. We divide the appendix in the following way:
Appendix C.1 provides the proof to Theorem 1, Appendix C.2 provides the proof to Theorem 2, and
Appendix C.3 provides the proof to Theorem 3.

First, we highlight an important theorem from [14] that connects the VC dimension of a hypothesis
class and its query complexity for random-TEQ. Our proof for the lower bound on the query
complexity in the random teaching scenario for any query learner involves the computation of VC
dimension of the underlying hypothesis class.

Theorem 10 (Theorem 25 [14]). IfH is a hypothesis class of VC-dimension d, then any randomized
learning algorithm to learnH must use at least an expected Ω (d) equivalence queries with random
counterexamples for some target hypothesis.

Now, we provide the proofs to the theorems in the subsequent appendices.

C.1 Axes-aligned Hyperplanes

In the following, we prove Theorem 1 which establishes lower bounds and upper bound on different
teaching scenarios for Axes-aligned hyperplanes. Since the size ofHaxh is d · (n+1) thus any learner
queries at least Ω (d · (n+ 1)) times to binary-TEQ.

Proof of Theorem 1. Worst-case teaching: Consider a powerful learner ` which performs the follow-
ing procedure: first finds the dimension (axis) i along which target hypothesis h∗ is aligned and
then perform a binary search along the axis i. We show that ` is optimal and has a lower bound of
Ω (d+ log(n+ 1)) on the query complexity for worst-TEQ "in the worst-case".

For the sake of contradiction, assume `′ learns the worst-case hypothesis in less than 2d+ log(n+ 1)
counterexamples. Consider counterexamples of the form:

x =
(

0, · · · , 0, j
k-th component

, 0, · · · , 0
)
, x′ =

(
n, · · · , n, j

k-th component
, n, · · · , n

)
.

Notice Haxh({(x, 1)}) or Haxh({(x′, 0)}) contains at least one hypothesis aligned along axes
p 6= k. Thus, worst-TEQ provides at the least Ω (d) counterexamples, say, Xd ⊂ X such that
∀h′ ∈ Haxh(Xd), h′ is aligned along the axis i (i.e. for target hypothesis). First, we argue that
worst-TEQ could choose to provide at least one counterexample of the form discussed above along
each axis. Consider the case when d = 2. Assume that the target hypothesis is aligned along axis-1
but the learner queries a hypothesis aligned along axis-2. "In the worst-case", (x, 1) and (x′, 0)
(where x2 = x′2 = j) forms valid labeled counterexamples to equivalence queries for hypotheses
aligned along axis-2 and consistent with target hypothesis which is aligned along axis-1. Using a
similar analysis, we generalize this to arbitrary dimension d > 2. This implies, any learner queries
at least one hypothesis along each axis.

On the other hand, for any learner, worst-TEQ provides at the least Ω (log(n+ 1)) counterexamples
"in the worst-case" (see Appendix B.2). Hence, we show that ` is optimal and worst-TEQ provides
at the least Ω (d+ log(n+ 1)) counterexamples "in the worst-case".

Random teaching: The key to showing the lower bound of Ω (log d) on the query complexity for
random-TEQ, i.e number of counterexamples "in expectation", for any learner involves showing
a lower bound on the VC dimension of Axes-aligned hyperplanes as defined in Definition 4.1.

Denote the set of combinations of log d objects as Cd, where Cdi represents i-th combination in
Cd. Consider the set of log d inputs Hvc := {x1,x2, · · · ,xlog d} such that for every component
i ∈ [1, d + 1] the (log d)-tuple (x1,i, x2,i, · · · , xlog d,i) = (1, 2, · · · , log d)Cdi

, i.e. the tuple
(1, 2, · · · , log d) sets index not in Cdi as n else other keeps the values. Now, consider a (log d)-tuple
b of boolean values. We note that there exists an axis i and index j such that the corresponding
hypothesis h′ (i.e. ∀x ∈ X , h(x) = 1 if xi ≤ j, otherwise 0) classifiesHvc as b (component-wise).
This holds because for all m ∈ [1, (log d) + 1] such that bm = 1 (or bm = 0) (m-th boolean value
in b) xm,i ≤ j (or xm,i > j) for the (log d)-tuple (x1,i, x2,i, · · · , xlog d,i). This implies that Hvc is
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shattered byHaxh. Thus, VCD(Haxh) = Ω (log d), which directly gives a lower bound on the query
complexity for random-TEQ, i.e. on the number of counterexamples provided "in expectation".

Best-case teaching: In Theorem 9 (see Appendix B.3) we show there exists a global query learner
`global such that the query complexity for best-TEQ is 1, i.e. LwEQ-TDX ,Haxh,h0

= 1.

C.2 Monotone Monomials

Now, we proof Theorem 2 which establishes lower bounds and upper bound on query complexity in
different teaching scenarios for Monotone monomials. For the sake of clarity, we rewrite Eq. (8) here
Hmono := {h | ∃ {i1, i2, · · · , ik} ⊆ {1, 2, · · · , n}, s.t. ∀x ∈ X , h(x) = xi1 ∧ · · · ∧ xik } .

We note that |Hmono| = 2n. Thus, any learner queries at least Ω (2n) times to binary-TEQ. Fur-
thermore, we note that any hypothesis h ∈ Hmono represented as h(x) := xi1 ∧ xi2 ∧ · · · ∧ xik
for some {i1, i2, · · · , ik} ⊆ {1, 2, · · · , n} is “identified” with an input x′ ∈ X such that for all
m ∈ {i1, i2, · · · , ik}, x′m = 1 otherwise 0.

Proof of Theorem 2. Worst-case teaching: Consider a global learner ` which ranks hypothesis based
on the number of “dependent” literals, i.e. for all h, h′ ∈ Hmono, g(h) ≤ g(h′) (where g is the global
ranking for `) if h has at least as many dependent literals as h′. We show that ` is optimal and has a
lower bound of Ω (n) on the query complexity for worst-TEQ "in the worst-case".

First, we show that ` asks at least Ω (n) queries to worst-TEQ "in the worst-case". We use the
representation of a monomial in terms of its set of literals. Fix a starting hypothesis h0 :=
mono (j1, j2, · · · , jm). Consider the following illustration for query protocol of Algorithm 1:

mono (j1, j2, · · · , jm)︸ ︷︷ ︸
starting monomial h0

t= 0−→ mono (1, 2, · · · , n)︸ ︷︷ ︸
` queries for equivalence

t= 1−→ · · · t= t′−→ mono (i1, i2, · · · , ik)︸ ︷︷ ︸
target monomial

Notice that the counterexample (x1, y1) to mono (1, 2, · · · , n) has to be a positive example (i.e,
h∗(x1) = y1 = 1) as {i1, i2, · · · , ik} ⊂ {1, 2, · · · , n}. Also, worst-TEQ picks x1 such that the
number of 1’s in the string is n− 1 to maximize the query complexity. Thus, it is straightforward
that at each time step worst-TEQ provides a counterexample such that the subset of literals of the
corresponding hypothesis (or monomial) is a superset of {i1, i2, · · · , ik} but has size 1 less than the
subset size for the current hypothesis (monomial). Essentially, the set {1, 2, · · · , n}\{i1, i2, · · · , ik}
is eliminated before the learner ` queries h∗ for equivalence. This implies that ` performs at least
Ω (n) queries to identify a target "in the worst-case" if worst-TEQ provides counterexamples.

Now, we argue there doesn’t exist a learner `′ with a better query complexity. For the sake of
contradiction, assume that some learner `′ achieves a query complexity less than n for worst-TEQ.
Note that `′ can’t query the target hypothesis, at some time step, such that there exists a monomial
mono (i1, i2, · · · , ik, ik+1) where {i1, i2, · · · , ik} ( {i1, i2, · · · , ik, ik+1} in the current version
space. This holds because, if Z ′ is the current history of counterexamples provided by `′, then
Z ′ is also a valid set of counterexamples for mono {i1, i2, · · · , ik, ik+1} as a target hypothesis.
Thus, worst-TEQ fools the learner `′ in this case. So, `′ queries monomials in a way to eliminate
at least all the supersets of {i1, i2, · · · , ik}. But if a monomial corresponding to a superset, say
mono {j1, j2, · · · , jk′}, is queried for equivalence, worst-TEQ could follow the strategy described
for the learner `. So, monomials with the set of literals, say S′ such that {i1, i2, · · · , ik} ⊆ S′ ⊆
{j1, j2, · · · , jk′} remain consistent. Since “in the worst-case” `′ has to query successively to reduce
the size of the set of literals S′ of the queried monomial, `′ performs at least Ω (n) queries. So, our
assumption on the query complexity for worst-TEQ teaching `′ is wrong, thus ` is optimal.

Random-case teaching: The key to showing the lower bound of Ω (n) on the query complexity for
random-TEQ, i.e number of counterexamples "in expectation", for any learner involves showing a
lower bound on the VC dimension of the hypothesis class of Monotone monomials as defined in
Definition 4.2. Consider the set Mvc defined as:

Mvc := {x ∈ X : ∃ !i ∈ [1, n+ 1] s.t. xi = 0}
We show thatMvc is shattered byHmono. We note that for all h 6≡ h′ ∈ Hmono, h(Mvc) 6= 8h′(Mvc).
To show this consider a literal vi′ present in h but not in h′. Now, for x ∈ Mvc such that xi′ = 0,

8We define h on a subset of X as a tuple of boolean values.
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h(x) = 0 but h′(x) = 1. Since |Hmono| = 2n and Mvc = n, we have shown that Mvc is shattered by
Hmono, leading to VCD(Hmono) = n. Thus, for any optimal learner the lower bound on query com-
plexity for random-TEQ, i.e. on the number of counterexamples provided "in expectation" is Ω (n).

Best-case teaching: Consider the global query learner `global with the global ranking
g : Hmono → [|Hmono|] as follows: ranks hypothesis based on the number of “dependent”
literals, i.e. if h, h′ ∈ Hmono then g(h) ≤ g(h′) if h has at least as many dependent literals as h′.
At the beginning, `global queries h(x) ≡ x1 ∧ x1 ∧ · · · ∧ xn. Then the optimal teacher best-TEQ
provides (x′, 1) as a counterexample where x′ identifies h∗ as discussed above. Now, the highest
ranked monomial in Hmono({(x′, 1)}) is h∗ which the learner `global queries for equivalence.
Since best-TEQ provides exactly 1 counterexample the worst-case hypothesis in Hmono, thus
LwEQ-TDX ,Hmono,h0

(`global) = 1 (for a fixed h0 ∈ Hmono). Hence, the result follows.

C.3 Orthogonal Rectangles

Now, we prove Theorem 3 which establishes lower bounds and upper bound on query complexity in
different teaching scenarios for Orthogonal rectangles. We note that the size ofHrec is of the order
Ω
(
(n · (n+ 1))d

)
, thus any learner queries at least Ω

(
(n · (n+ 1))d

)
times to binary-TEQ.

Proof of Theorem 3. Worst-case teaching: Similar to the case of worst-case teaching for Axes-
aligned hyperplanes (see Definition 4.1), we show that any optimal learner has a lower bound
of Ω (d · log n) on the query complexity for worst-TEQ "in the worst-case".

Consider a target hypothesis h∗ ∈ Hrec such that for all j ∈ [1, d+ 1], aj = 0. The choice of bj is
shown later. Now, consider counterexamples of the form:

x =

(
0, · · · , 0, m

k-th component
, 0, · · · , 0

)
.

Notice that labeled counterexamples (x, 0) or (x, 1) to h′ ∈ Hrec doesn’t affect the choice of bj
(doesn’t get fixed for consistent hypotheses in the version space) for all j ( 6= k) ∈ [1, d+ 1]. This
implies that worst-TEQ could provide counterexamples such that any learner has to query hypotheses
for equivalence along each axis i ∈ [1, d + 1]. Using the analysis of Threshold functions (see
Appendix B.2) we know that the worst-TEQ provides at least Ω (log(n+ 1)) counterexamples to
any learner along an axis. but, we could pick worst-case bj’s for a target hypothesis h∗ such that
worst-TEQ provides at least Ω (log(n+ 1)) counterexamples in every axis, implying that for any
learner worst-TEQ provides at the least Ω (d · log(n+ 1)) counterexamples "in the worst-case".

Random teaching: The key to showing the lower bound of Ω (d) on the query complexity for random-
TEQ i.e number of counterexamples "in expectation", for any learner involves showing a lower bound
on the VC dimension of the hypothesis class of Orthogonal rectangles as defined in Definition 4.3.
Consider the set Ovc defined as:

Ovc := {x ∈ X : ∃i ∈ [1, d+ 1], s.t. xi = bn/2c and ∀j 6= i, xj = 0}

We note that |Ovc| = d. Now, we show that Ovc is shattered by Hrec. Notice that for any d-tuple
b of boolean values, one can fix the choices of {aj , bj}j∈[1,d+1] ⊂ [n+ 1] to obtain a hypothesis
h ∈ Hrec where aj = 0, and bj = bn/2c if bi = 1 else bj = bn/2c − 1. This gives h(Ovc) = b.
So, we have shown that Ovc is shattered byHrec, which implies VCD(Hrec) = Ω (d). Thus, for any
optimal learner the lower bound on the query complexity for random-TEQ, i.e. on the number of
counterexamples provided "in expectation" is Ω (d).

Best-case teaching: We show that there is a global query learner `global which achieves the re-
quired query complexity bound of 2. In order to establish this, we note for fixed h0,X ,H,
LwEQ-TDX ,H,h0

(Σσglobal
) = RTD(H) (see Theorem 4, Section 5) for the family of ranking

functions Σσglobal
(see Section 5) which induce global query learners. We need to show that

RTD(Hrec) = 2. [25] showed that the TD (teaching dimension) notion of preference-based teaching
dimension (PBTD) of a finite hypothesis classH is the same as the RTD of the classH (see Corollary
9 [25]). On the other hand, [61] showed that PBTD(Hrec) = 2 (see Example 1 [61]). Thus, there
exists a global query learner `global such that LwEQ-TDX ,Hrec,h0

(`global) = 2.
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D Teaching Dimensions for the LwEQ and LfS Paradigms (Section 5)

In this appendix, we prove our main results for Section 5, i.e., Theorem 4 and Theorem 5, which
establish connections of LwEQ-TD in the learning-with-equivalence-queries (LwEQ) paradigm to
existing notions of TD in the learning-from-samples (LfS) paradigm. We divide the appendix based
on the connections established for learner types induced by a specific family of ranking functions.

First, we note that the framework of ranking functions (see Eq. (10), Section 5) leads to the definition
of a preference function as discussed in [29]. Thus, a ranking function σ could be, alternatively, used
as a preference function to define LfS-TDX ,H,h0

(σ) (for fixed X ,H, h0) for a learner induced by a
preference function σ as shown in [29] in the LfS paradigm. We illustrate this as follows:

σ (ranking function)x  σ (preference function)y
Eq. (10)

(LwEQ paradigm)
Protocol 1 [29]

(LfS paradigm)

With this understanding, we would interchangeably talk about teaching settings in the LfS paradigm
for learner models (in the LfS paradigm) induced by a framework of ranking functions. Our proof
technique uses the unification of teaching settings in the LfS paradigm [29].

D.1 LwEQ Learners with Ranking Functions Independent of Zt−1 and ht−1

For fixed X ,H, h0, we prove Theorem 4 establishing connections for LwEQ-TDX ,H,h0
(Σconst) and

LwEQ-TDX ,H,h0
(Σglobal).

Proof of Theorem 4. First, we show the connection for the family of constant learners Σconst. We
note that any sequential teaching set Z ⊆ Z in the LfS paradigm is permutation invariant. For
arbitrary h0 and h∗, if Z := {z1, z2, · · · , zl} is the minimal teaching set for teaching in the LfS
paradigm then any permutation of z1, z2, · · · , zl is also a teaching set (Σconst leads to a batched
teaching setting in the LfS paradigm). Since all the hypotheses are preferred equally, they are
eliminated in the teaching protocol at some time step. This implies that in the query protocol of
Algorithm 1 in the LwEQ paradigm, at any step t, the teacher could pick zt ∈ Z such that zt forms a
counterexample to the queried hypothesis ht ∈ `σconst

(Zt−1, ht−1). Thus, the teacher could always
permute Z to respond as counterexamples in Algorithm 1 so as to steer the learner from h0 to h∗.
Since h0 and h∗ are arbitrary, thus LwEQ-TDX ,H,h0

(σconst) ≤ LfS-TDX ,H,h0
(σconst).

Because any history of counterexamples Z ⊆ Z used in the query protocol of Algorithm 1 to
steer the learner from h0 to h∗, forms a solution for teaching in the LfS paradigm, we have
LwEQ-TDX ,H,h0

(σconst) = LfS-TDX ,H,h0(σconst). Now, we note the following:

min
σconst∈Σconst

LwEQ-TDX ,H,h0
(σconst) = min

σconst∈Σconst

LfS-TDX ,H,h0
(σconst) (32)

=⇒ LwEQ-TDX ,H,h0
(Σconst) = LfS-TDX ,H,h0

(Σconst) (33)

Eq. (32) is straightforward since for any σconst ∈ Σconst, LwEQ-TDX ,H,h0
(σconst) =

LfS-TDX ,H,h0
(σconst). Eq. (33) follows using the definition of LwEQ-TD for a family of query

functions Σconst and the definition of LfS-TD for a family of preference functions Σconst (see [29]).
Now, we note that using [29] (see Theorem 1) shows that LfS-TDX ,H,h0

(Σconst) = wc-TD(H),
which implies LwEQ-TDX ,H,h0

(Σconst) = wc-TD(H).

Now, for a global ranking function σglobal ∈ Σglobal we note that any hypothesis which is not
ranked strictly over the target hypothesis h∗ is never queried for equivalence. Thus, H∗ =
{h ∈ H | g(h) ≤ g(h∗)} where g is the global function for σglobal, needs to be eliminated both in the
query protocol in the LwEQ paradigm and the teaching protocol in the LfS paradigm. Using similar
ideas as discussed above for constant query learners, we note that LwEQ-TDX ,H,h0

(σglobal) =
LfS-TDX ,H,h0(σglobal), and hence LwEQ-TDX ,H,h0

(Σglobal) = LfS-TDX ,H,h0(Σglobal). Since
LfS-TDX ,H,h0

(Σglobal) = RTD(H) (Theorem 1, [29]), we show LwEQ-TDX ,H,h0
(Σglobal) =

RTD(H).
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Remark 1. WhenH is singleton, LwEQ-TDX ,H,h0
(`) = 0 as per the query complexity defined in

Eq. (5) for a query learner `. In the proof above, we implicitly assumed thatH is not singleton.

Remark 2. Note that if there exists a target hypothesis h∗ ∈ H for which `(∅, h0) = {h∗}, then
LwEQ-TDX ,H,h0

(`, h∗) = 0 as per the query complexity defined in Eq. (4); however, the teaching
complexity in the LfS paradigm (see Protocol 1 [29]) leads to LfS-TDX ,H,h0

(`, h∗) = 1. Since we
are interested in analyzing maxh∗∈H LwEQ-TDX ,H,h0

(`, h∗), the proofs focus on h∗ ∈ H for which
LwEQ-TDX ,H,h0

(`, h∗) > 0.

D.2 LwEQ Learners with Ranking Functions Dependent on Zt−1 and/or ht−1

For fixed X ,H, h0, we prove Theorem 5 establishing connections for LwEQ-TDX ,H,h0
(Σgvs),

LwEQ-TDX ,H,h0
(Σlocal), and LwEQ-TDX ,H,h0

(Σlvs).

Proof of Theorem 5. Connection for ΣCF
gvs. Fix an arbitrary global version space learner characterized

with a ranking function σgvs ∈ ΣCF
gvs. Furthermore, assume that g identifies σgvs in ΣCF

gvs (see Eq. (15),
Section 5.2).

First, we note that any history of counterexamples Z ⊆ Z used in the query protocol of Algo-
rithm 1 to steer the learner from h0 to h∗, forms a solution for teaching in the LfS paradigm for
the preference function σgvs (see Protocol 1 [29]). Denote |Z| by k and Zk := Z. Now, we
know that `σgvs(Zk, hk) = arg minh′∈H({Zk}) σgvs(h

′;H({Zk}), hk) = {h∗}. But then for all h,
arg minh′∈H({Zk}) σ(h′;H({Zk}), h) = arg minh′∈H({Zk}) g(h′;H({Zk})). This implies that Z
forms a teaching set in the teaching protocol as discussed in [29] in the LfS paradigm. Since h∗ is
arbitrarily picked, we have LfS-TDX ,H,h0

(σgvs) ≤ LwEQ-TDX ,H,h0
(σgvs).

Assume Z ′ := {z1, z2, · · · , zl} is the minimal teaching set for teaching in the LfS paradigm. The
optimal teacher (LwEQ paradigm) could pick a permutation of Z ′ to provide as counterexamples
in the LwEQ paradigm. At time t, if Zt−1 is the current history of counterexamples (assuming
Zt−1 ⊆ Z ′) and ht−1 is the current hypothesis, then in the query protocol of Algorithm 1 the learner
picks the next hypothesis as follows

ht ∈ arg min
h′∈H(Zt−1)

σgvs(h
′;H(Zt−1), ht−1) = arg min

h′∈H(Zt−1)

g(h′,H(Zt−1))

Notice that either i) ht = h∗ or ii) ∃z ∈ Z ′ s.t. z is a counterexample to ht. Assume that
neither i) nor ii) hold. Then @z ∈ Z ′ such that z is a counterexample to ht. This contradicts the
collusion-freeness of σgvs (see Definition 5.1) because

arg min
h′∈H(Zt−1)

σgvs(h
′;H(Zt−1), ht−1) = {ht},

but
arg min

h′∈H(Zt−1∪(Z′\Zt−1))

σgvs(h
′;H(Z ′), ht) = {h∗}

which contradicts the fact that ht is consistent with Z ′ \ Zt−1. Hence, LwEQ-TDX ,H,h0
(σgvs) ≤

LfS-TDX ,H,h0
(σgvs). Since we picked σgvs arbitrarily, we have

min
σgvs∈ΣCF

gvs

LwEQ-TDX ,H,h0
(σgvs) = min

σgvs∈ΣCF
gvs

LfS-TDX ,H,h0(σgvs)

(Eq. (6), Section 3)
=⇒ LwEQ-TDX ,H,h0

(ΣCF
gvs) = LfS-TDX ,H,h0(ΣCF

gvs)

(Theorem 1 [29])
=⇒ LwEQ-TDX ,H,h0

(ΣCF
gvs) = NCTD(H)

The last equation yields the desired result.

Connection for ΣCF
local. First, we prove the lower bound on LwEQ-TDX ,H,h0

(ΣCF
local) as stated in

Eq. (19). To show the bound, we note that LfS-TDX ,H,h0(ΣCF
local) := local-PBTDX ,H,h0 (see [29]).

Fix h0 and h∗ as the starting and target hypotheses. Now, fix the best ranking function σ∗local :=
arg minσlocal∈ΣCF

local
LwEQ-TDX ,H,h0

(σlocal), i.e. the best ranking function which minimizes the
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LwEQ-TD for the family of ranking functions ΣCF
local. Assume the optimal teacher provides the

following counterexamples to the learner `σ∗local in the query protocol of Algorithm 1:

h0
∅−→ h1

Z1−→ h2 · · ·
Zk+1−→ h∗ (34)

where Zi := Zi−1 ∪ {zi−1} for the counterexample zi−1 to hi−1. We show that there exists a choice
of a local ranking function σ′local ∈ ΣCF

local such that the history of counterexamples Zk+1 provided
by the optimal teacher in Algorithm 1 as shown above forms a sequence of teaching examples for a
learner characterized with the local ranking σ′local in the LfS paradigm (see Protocol 1 [29]).

Define σ′local as follows: for all h′ ∈ H({z1}), σ′local(h
′;H({z1}), h0) = σ∗local(h

′;H({z1}), h1)
(see Eq. (34)) where z1 is the counterexample provided by the optimal teacher to h1 (hypothesis
queried for equivalence with the current history of examples ∅, and the current hypothesis h0) for the
learner characterized by the ranking function σ∗local in the query protocol of Algorithm 1 as described
above; otherwise σ′local ≡ σ∗local. Thus, arg minh′∈H({z1}) σ

′
local(h

′;H({z1}), h0) = {h2} (see
Eq. (34)). Since h∗ is arbitrary, thus σ′local could be defined over all the triplets (h∗, z1, h2), i.e. for
any choice of target h∗, as shown in Eq. (34). Notice that σ′local is a valid local ranking function as
σ∗local is a local ranking function. Similarly, the collusion-freeness of σ′local follows from its definition
and the collusion-freeness of σ∗local.

For the learner characterized by σ′local in the LfS paradigm, the optimal teacher could provide the
counterexamples Zk+1 sequentially for teaching in Protocol 1 [29]. This is illustrated as follows:

h0
Z1−→ h2

Z2−→ h3 · · ·
Zk+1−→ h∗ (35)

Upon receiving the examples zi, the learner picks the next hypothesis hi+1 as shown above. Thus,
Zk+1 forms a teaching set in the LfS paradigm. This implies that LfS-TDX ,H,h0

(σ′local, h
∗) ≤ |Zk+1|.

Since h∗ is arbitrarily chosen, thus we have LfS-TDX ,H,h0
(σ′local) ≤ LwEQ-TDX ,H,h0

(σ∗local). But
this implies

min
σlocal∈ΣCF

local

LfS-TDX ,H,h0(σlocal) ≤ LfS-TDX ,H,h0(σ′local) ≤ LwEQ-TDX ,H,h0
(σ∗local)

(σ∗local minimizes LwEQ-TD(·))
=⇒ LfS-TDX ,H,h0

(ΣCF
local) ≤ LwEQ-TDX ,H,h0

(ΣCF
local)

Thus, from the last equation we have local-PBTDX ,H,h0 ≤ LwEQ-TDX ,H,h0
(ΣCF

local).

The upper bound on LwEQ-TDX ,H,h0
(σlocal) follows by noting that LwEQ-TDX ,H,h0

(σlocal) =
wc-TD(H) for a ranking function σconst ∈ Σconst (as shown in Theorem 4) and that constant query
learner could be adversarial compared to the local learners.

We would show the inequality using induction. Fix a local ranking function σlocal ∈ ΣCF
local, and

a constant ranking function σconst ∈ Σconst. Now, consider arbitrary h0 and h∗ as the starting
and target hypotheses respectively. The induction statement is on the worst-case optimal teaching
sequence size for steering the learner from a starting to a target hypothesis when the learner is
characterized with a constant ranking function. The inequality holds for Dσconst

(Z ⊆ Z, h0, h
∗) = 0.

By definition, for any Z ⊆ Z, h0, h
∗, we have Dσlocal

(Z, h0, h
∗) ≤ Dσconst

(Z, h0, h
∗) = 0 as

`σlocal
(Z, h0) = `σconst

(Z, h0) = {h∗}. Following the induction statement, assume that Dσlocal
(Z ⊆

Z, h0, h
∗) ≤ Dσconst(Z ⊆ Z, h0, h

∗) whenever Dσconst(Z ⊆ Z, h0, h
∗) ≤ k. Now, we need to

show the inequality when Dσconst(∅, h0, h
∗) = k+1 (similar argument holds for Z ⊆ Z). We unfold

the recursion for Dσconst :

Dσconst
(∅, h0, h

∗) = 1 + max
h′∈`σconst (∅,h0)

min
z:h′(xz)6=yz

Dσconst
({z}, h′, h∗) (36)

We note that for all h′ ∈ `σconst
(∅, h0),

min
z:h′(xz)6=yz

Dσconst({z}, h′, h∗) ≥ min
z:h′(xz)6=yz

Dσlocal
({z}, h′, h∗).

Since `σlocal
(∅, h0) ⊆ `σconst

(∅, h0) we have:

max
h′∈`σconst (∅,h0)

min
z:h′(xz) 6=yz

Dσconst({z}, h′, h∗) ≥ max
h′∈`σlocal (∅,h0)

min
z:h′(xz) 6=yz

Dσlocal
({z}, h′, h∗)
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Plugging this into Eq. (36) implies

Dσconst(∅, h0, h
∗) ≥ Dσlocal

(∅, h0, h
∗)

Since h∗ is arbitrary we get LwEQ-TDX ,H,h0
(σconst) ≥ LwEQ-TDX ,H,h0

(σlocal) for arbitrary
σconst and σlocal. Using the definition of LwEQ-TD for a family of ranking functions (Eq. (6) and
Section 5), we get

min
σconst∈Σconst

LwEQ-TDX ,H,h0
(σconst) ≥ min

σlocal∈ΣCF
local

LwEQ-TDX ,H,h0
(σlocal)

Hence we get LwEQ-TDX ,H,h0
(ΣCF

local) ≤ wc-TD(H) using Theorem 4.

Connection for ΣCF
lvs. Using similar arguments as used to show the bounds in Eq. (19) for the family

of local ranking functions ΣCF
local, the bounds in Eq. (20) follow as well.

Is there a gap between lvs-PBTDX ,H,h0 and LwEQ-TDX ,H,h0
(ΣCF

lvs)? In Theorem 5, we showed
that lvs-PBTDX ,H,h0 ≤ LwEQ-TDX ,H,h0

(ΣCF
lvs). An interesting research question could be to

understand the gap between lvs-PBTDX ,H,h0
and LwEQ-TDX ,H,h0

(ΣCF
lvs). We answer this question

partially and leave the unresolved part for future work. We present a problem instance that suggests
that there could be a strict gap between lvs-PBTDX ,H,h0

and LwEQ-TDX ,H,h0
(ΣCF

lvs).
Theorem 11. For learners whose query function is induced by a ranking function dependent on Zt−1

and/or ht−1, there exists a problem instance of X ,H, h0, σlvs ∈ ΣCF
lvs, such that

LfS-TDX ,H,h0(σlvs)� LwEQ-TDX ,H,h0
(σlvs)

i.e., LfS-TDX ,H,h0
(σlvs) is much lower than LwEQ-TDX ,H,h0

(σlvs).

Proof. Consider a d-dimensional lattice of finite size n (isomorphic to a cube in Rd of length n with
positive integer coordinates). H and X correspond to the nodes of the lattice. The hypothesis hv
corresponding to node v is identified as one which classifies v′ 6= v as positive and v as negative.
We consider learners characterized with the ranking function σlvs ∈ ΣCF

lvs such that it moves to
a close-by hypothesis measured via `1 (Manhattan) distance. It is not very difficult to note that
LwEQ-TDX ,H,h0

(σlvs) is at least Ω
(
nd
)
.

Now, we argue that LfS-TDX ,H,h0
(σlvs) is upper bounded by O

(
n · d2

)
. Consider the hypotheses9

h0 =
(

0, 0, 0, 0, · · · 0, 0, 0, 0︸ ︷︷ ︸
d

)
and h∗ =

(
n, n, n, n, · · ·n, n, n, n︸ ︷︷ ︸

d

)
. The teacher could try to steer

the learner in the following sequential form:

h0 99K h1 99K h2 99K · · · 99K hi 99K · · · 99K hd−1 99K hd = h∗

where hi =
(
n, n, n, n, · · · , n, n, n︸ ︷︷ ︸

i

, 0, 0, · · · , 0
)

. We show that with O (n · d) teaching examples

the learner could be taught to move from hi to hi+1 for any i ∈ [n]. Notice that the learner prefers to
stay on hv for a node unless v is provided as a positive example to steer it away. Thus, the teacher
first provides

{
(0, i1, i2, i3, · · · , id−1)

∣∣∣ ∑d−1
j=1 ij ≤ 1 s.t. ∃ !k ik 6= 0

}
. Then, the teacher provides

{(a, 0, 0, · · · , 0)}na=1 in the sequential order. Therefore, in O (n · d) examples the learner moves
from h0 to h1. Using a similar strategy, the teacher requires at most O

(
n · d2

)
examples (O (n · d)

for each dimension) to steer the learner to the target h∗. It can be easily verified that the same holds
for any h0 and h∗ and thus LfS-TDX ,H,h0(σlvs) is O

(
n · d2

)
. Hence, for the hypothesis classH of

a lattice in Rd of size n with the input space X := {1, 2, · · · , n}d we get,

O
(
n · d2

)
= LfS-TDX ,H,h0

(σlvs)� LwEQ-TDX ,H,h0
(σlvs) = Ω

(
nd
)
.

9We represent each hypothesis by the node that identifies it.
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