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Maximizing Feature Distribution Variance for Robust Neural
Networks

Anonymous Authors

ABSTRACT
The security of Deep Neural Networks (DNNs) has proven to be crit-
ical for their applicabilities in real-world scenarios. However, DNNs
are well-known to be vulnerable against adversarial attacks, such as
adding artificially designed imperceptible magnitude perturbation
to the benign input. Therefore, adversarial robustness is essential
for DNNs to defend against malicious attacks. Stochastic Neural
Networks (SNNs) have recently shown effective performance on en-
hancing adversarial robustness by injecting uncertainty intomodels.
Nevertheless, existing SNNs are still limited for adversarial defense,
as their insufficient representation capability from the fixed uncer-
tainty. In this paper, to elevate feature representation capability of
SNNs, we propose a novel yet practical stochastic neural network
that maximizes feature distribution variance (MFDV-SNN). In ad-
dition, we provide theoretical insights to support the adversarial
resistance of MFDV, which primarily derived from the stochastic
noise we injected into DNNs. Our research demonstrates that by
gradually increasing the level of stochastic noise in a DNN, the
model naturally becomes more resistant to input perturbations.
Since adversarial training is not required, MFDV-SNN does not
compromise clean data accuracy and saves up to 7.5 times compu-
tation time. Extensive experiments on various attacks demonstrate
that MFDV-SNN improves adversarial robustness significantly com-
pared to other methods.

CCS CONCEPTS
• Security and privacy→ Human and societal aspects of security
and privacy; • Computing methodologies → Artificial intelli-
gence.

KEYWORDS
Model Robustness, Model Uncertainty, Adversarial Defense

1 INTRODUCTION
Despite the promising performance of deep learning models, re-
cent studies have shown that Deep Neural Networks (DNNs) are
vulnerable to adversarial attacks [5, 10]. The typical attacks, such
as adding minor, carefully crafted perturbations to model inputs,
can potentially cause misguided and incorrect decisions for DNNs,
which is imperceptible to human recognitions. This poses a seri-
ous security threat to the practical application of deep models. To
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Figure 1: (a) represents a standard trained neural network,
while (b) depicts the same network, but with increased fea-
ture perturbations introduced during training.

tackle the challenge, researchers have intensified efforts to develop
defense methods to enhance the robustness of these models against
adversarial attacks.

Recently, Stochastic Neural Networks (SNNs) have demonstrated
significant potential for model robustness by introducing uncer-
tainty into model feature activations, such as in Variational Au-
toencoders [18], or into model weights, as exemplified by Bayesian
Neural Networks[13]. However, current implementations of SNNs
predominantly utilize Gaussian distributions with constant variance
to model this uncertainty and how the magnitude of the injected noise
affects adversarial robustness tends to be ignored.

However, we assume that this limitation restricts the potential
to achieve higher levels of adversarial robustness. The intuitive
motivation behind our approach is illustrated in Figure 1, which
conceptually represents how our noise injection method is designed
to improve the model resistance against adversarial attacks.

It is crucial to emphasize that the essence of adversarial robust-
ness lies in minimizing the chances of a model misclassifying an
input, especially when faced with adversarial perturbations. Fig-
ure 1(a) illustrates the decision boundaries of a standard trained
neural network. Despite the model’s high accuracy in standard clas-
sification scenarios, its decision boundaries are shown to be vulner-
able to adversarial perturbations. In such configurations, samples
near the decision boundary can easily cross it, thereby becoming
adversarial examples that are misclassified. In contrast, Figure 1(b)
depicts the training process under our proposed stochastic feature
perturbation scheme. During training, we persistently perturb the
feature embeddings and progressively increase the perturbation
intensity. Initially, this leads to classification errors.

To correctly classify these perturbed instances, the model must
adjust its internal parameters. Hence, we promote it to establish
decision boundaries that are more robust to input variations. To
be specific, at the beginning of the training, the model learns the
primary patterns from the data. As training progresses and the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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noise intensity increases, the model becomes increasingly resilient
to these perturbations. This ensures that foundational learning isn’t
overshadowed by the noise. In this way, the model leverages noise
as a regularizer. As a result, it not only enhances both the model’s
robustness and generalization capabilities but also maintaining a
stable and controlled training process. Benefited from these, the new
boundaries exhibit increased resilience to adversarial perturbations.
We have named this model the Maximizing Feature Distribution
Variance Stochastic Neural Network (MFDV-SNN).

In this work, our primary contribution is three-fold:
• To the best of our knowledge, we are the first to explore
how the magnitude of the injected noise affects adversarial
robustness in SNNs.

• We theoretically show that by gradually increasing the level
of stochastic noise in a DNN, the model naturally becomes
more resistant to input perturbations.

• The proposed method does not require adversarial training
and does not sacrifice clean data accuracy. Compared to ad-
versarial training, the computation cost saves up to average
7.5 times.

We conduct experiments on various white- and black-box attacks
to demonstrate the effectiveness of the proposed MFDV-SNN com-
pared to stochastic or non-stochastic defenses.

2 RELATEDWORK
2.1 Adversarial Attack
Researchers divide adversarial attacks into white-box and black-
box attacks according to whether they could obtain the gradient
information.
White-box attack: White-box attacks mean that the attacker
knows the model gradient information. A simple yet effective white-
box attack method is called Fast Gradient Sign Method (FGSM) [10],
which adds a small perturbation in the direction of the sign of the
gradient updates. It can be formulated as

®𝑥 ′ = ®𝑥 + 𝜖 · sign
(
∇®𝑥L(ℎ( ®𝑥), 𝑦)

)
(1)

where ®𝑥 denotes the input image, 𝜖 denotes the perturbation strength,
L denotes the loss function and ℎ(·) denotes the target model. Ku-
rakin further updated the one-step attack FGSM to a multi-step at-
tack named Basic Iterative Method (BIM) [19]. Compared to FGSM,
BIM uses a smaller step size to explore the possible adversarial
direction. Madry further updates BIM by randomly initializing the
input point, which is one of the strongest first-order attacks named
Projected Gradient Descent (PGD) [23]. It can be formulated as

®𝑥𝑡+1 = Π ®𝑥+𝑠
(
®𝑥𝑡 + 𝛼 · 𝑠𝑖𝑔𝑛

(
∇®𝑥L

(
ℎ( ®𝑥𝑡 , 𝑦

) )
(2)

where Π ®𝑥+𝑠 is the projection operation that force the adversarial
example in the ℓ𝑝 ball 𝑠 around ®𝑥 , and 𝛼 is the step size. Another
strong first-order attack algorithm is called C&W attack [5] which
finds adversarial examples by solving the following optimization
function formulated as

min
[
∥𝛿 ∥𝑝 + 𝑐 · ℎ( ®𝑥 + 𝛿)

]
s.t. ®𝑥 + 𝛿 ∈ [0, 1]𝑛 (3)

where 𝑝 is the norm distance, commonly choosing from {0, 2,∞}.
Black-box attack: Unlike white-box attacks, black-box attackers
can only access the model through queries. There are mainly two

ways to fool a model. One is to train a substitute of the model,
in which attackers query from the target model and generate a
synthesized dataset with input and the corresponding output. Due
to the transferability of adversarial examples, attackers can attack
alternative and target models. The limitation of this method is that
it cannot execute multiple queries in reality. The other is to estimate
the gradients viamultiple queries to the targetedmodel [27]. Among
them, zero-order optimization [6] algorithm aims to estimate the
gradients of the target model directly.

In this study, we use well-known white and black box attacks
to evaluate our method, including FGSM, PGD10, C&W, PGD100,
n-pixel attacks, and Auto attack [7].

2.2 Stochastic Defense
To improve the model’s robustness against unseen attacks. Stochas-
tic defenses are proposed which mainly introduce stochastic noises
into model weights/activations to simulate possible model parame-
ters and the related probability distribution. Typically stochastic
neural networks, such as Bayesian neural networks, introduce ran-
domness into model weights and transform the parameter point
estimates into distribution estimates. Unlike introducing random-
ness to model weights, methods such as Variational auto-encoders
(VAE) [18] improve model robustness by introducing randomness
to the model feature activations [32]. Our proposed method belongs
to the latter, and similar defense methods are as follows.

RSE [21] uses ensemble tricks to improve model robustness.
Specifically, they inject standard Gaussian noise into multi-layers
during training and then perform multiple forward passes to test
it. It means they only need training once and can be considered
an ensemble model. Adv-BNN [22] improves the robustness of the
model by introducing a standard isotropic Gaussian noise prior to
the model weights and further using adversarial training to find the
best model distribution. However, the above methods are all use
fixed noise parameters, and hence the uncertainty of the model is
fixed. Parameter noise injection (PNI) [12] further propose learning
a sensitive parameter to control the variance by adding trainable
Gaussian noise to each layer of features or weights of the model.
Moreover, L2P [16] updates PNI by introducing a perturbation in-
jection module and alternating training the perturbation injection
module and the neural network module, which they called "alter-
nating back-propagation," to improve the robustness of the model.

Our method is based on a stochastic neural network framework
and aims to explore the effect of noise injection on adversarial
robustness, and the results of the study can be extended to existing
stochastic neural network methods.

3 METHODOLOGY
In this section, we detail the implementation of the proposedMFDV-
SNN. The critical point is shown in Figure 2.

3.1 Implementation of Stochastic Layer
Figure 2 illustrates the process of constructing a stochastic layer.
The data passes through a neural network to get ℎ𝑙 , ℎ𝑙 ∈ R𝑁×𝑀 .
We build the Gaussian distribution by keeping the original feature
ℎ𝑙+1 plus a zero-mean matrix Gaussian distribution. In practice, we
use non-informative prior to initializing the Gaussian variance by
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Figure 2: Illustration of the proposed MFDV-SNN model. Input data is processed through a feature extraction layer to capture
essential data features. These features are thenmerged with stochastic noise, characterized by amean of zero and a progressively
increasing variance during training. Samples created from this resulting distribution are directed through a classifier layer,
yielding the final logit scores.

sampling the same dimension with the feature dimension from the
uniform distribution. Then, we establish a Gaussian distribution 𝑧

and sample from it. Finally, we take the plus of the sample and the
original hidden representation ℎ𝑙+1 to get the logit of the network.

3.2 Analysis of Noise Injection Regularization
In this section, we show that introducing additional stochastic noise
into a deep neural network (DNN) can naturally create an effective
regularization mechanism to counteract input perturbations.

Consider a standard DNN used for supervised learning. For a
single sample, the loss function L : R𝑑in → R is defined. The loss
depends on model parameters 𝜃 =𝑊 (ℓ ) , 𝑥 (ℓ ) , 𝑏 (ℓ ) |ℓ = 0, ..., 𝑁𝐿 − 1,
where 𝑁𝐿 is the number of layers, with weights, features, and biases
of a given layer being𝑊 (ℓ ) ∈ R𝑑ℓ×𝑑ℓ+1 , 𝑥 (ℓ ) ∈ R𝑑ℓ , 𝑏 (ℓ ) ∈ R𝑑ℓ+1 ,
respectively. In each optimizer iteration, a mini-batch B includes a
set of labeled examples,

(
𝒙𝑖 ,𝒚𝑖

)
𝑖 = 1 | B | ∈ R𝑑in × R𝑑label .

Adding stochastic noise (SN) in a given layer ℓSN corresponds to
a random scalar input, 𝜖 ∈ R. The batch average loss function with
SN can be written as a series expansion of the noise shift parameter
𝜖𝑊SN.

Introducing noise injection in a specific layer ℓSN transforms
the activation to 𝑧 (ℓSN ) +𝑊SN𝜖 . The single sample loss function for
transformed activation is expressed as

L (𝜽 ,𝑊SN; 𝒙, 𝜖,𝒚) = L
(
𝜽 ; 𝑧 (ℓSN ) +𝑊SN𝜖,𝒚

)
. (4)

Using the definition of the translation operator 𝑓 (𝑥 +𝑎) = 𝑒𝑎∇ 𝑓 (𝑥),
we can explicitly compute the batch average loss function

𝐿 (𝜽 ,𝑊SN) =
1
|B|

∑︁
{𝒙,𝜖,𝒚 }∈B

L (𝜽 ,𝑊SN; 𝒙, 𝜖,𝒚)

=
1
|B|

∑︁
{𝒙,𝜖,𝒚 }∈B

𝑒
𝜖𝑊𝑇

SN∇𝒛 (ℓSN ) L(𝜽 ; 𝒙,𝒚)

= 𝐿(𝜽 ) + 1
|B|

∑︁
{𝒙,𝜖,𝒚 }∈B

∞∑︁
𝑘=1

1
𝑘!

(
𝜖𝑊𝑇

SN · ∇
𝒛 (ℓSN )

)𝑘
L(𝜽 ; 𝒙, 𝜖,𝒚) .

(5)

Here, 𝐿(𝜃 ) is the loss function without any stochastic noise (SN),
and R𝑘 represents the batch average derivative of the loss function
with respect to activations prior to the noise injection layer.

R𝑘 (𝜽 ,𝑊SN) ≡
1
|B|

∑︁
{𝒙,𝜖,𝒚 }∈B

(
𝜖𝑊𝑇

SN · ∇𝒛 (ℓSN )

)𝑘
𝑘!

L(𝜽 ; 𝒙,𝒚) (6)

These functions are the products of moments of the injected noise,
values of WSN, and derivatives of the loss function’s activation
without noise injection.

Considering noise sampled from a zero-mean distribution, under
this assumption, the first two terms simplify to the following forms

R1 =𝑊𝑇
SN ·

〈
𝜖𝑔ℓSN

〉
, R2 =

1
2
𝑊𝑇

SN
〈
𝜖2HℓSN

〉
𝑊SN (7)

Here, batch average is denoted by ⟨· · ·⟩, and

𝑔ℓSN = ∇𝒛 (ℓSN )L(𝜽 , 𝒙,𝒚), HℓSN = ∇𝒛 (ℓSN )∇𝑇
𝒛 (ℓSN )L(𝜽 , 𝒙,𝒚), (8)

are the network-dependent local gradients and local Hessian, re-
spectively.

Under this condition, R1 and R2 act as follows: R1 induces con-
strained random walks on the norms of noise injection weights
and on the data weights in layers ℓ > ℓSN, with step sizes varying
according to local gradients during training. On the other hand,
R2 can be understood as a direct regularization term on the local
Hessian, striving to reduce its eigenvalues, thereby reducing local
curvature between layers. These results imply that when noise
is large, regularization through R2 becomes the dominant effect,
which is also a benefit of increasing stochastic noise.

Next, we show why pushing the local Hessian towards smaller
eigenvalues is beneficial for reducing sensitivity to noise perturba-
tions.

Consider a non-random network but with noisy input, repre-
sented as 𝑥 → 𝑥 + 𝛿 , where 𝛿 is a random vector. Similar to the
above, we can transform the pre-activation as 𝒛 (0) → 𝒛 (0) +𝑊 (0)𝜹

𝐿(𝜽 ) |𝒙→𝒙+𝜹 =
1
|B|

∑︁
{𝒙,𝒚 }∈B

𝑒
𝜹𝑇𝑊 (0) ·∇

𝒛 (0) L(𝜽 ; 𝒙,𝒚) (9)
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Table 1: Comparison of state-of-the-art SNNs for FGSM and PGD attacks on CIFAR-10 dataset with various network sizes
and capacities. The proposed MFDV-SNN is compared with Parametric Noise Injection (PNI) method [12] , Adv-BNN [22]
and Learn2Perturb (L2P) [16]. Results show that the proposed MFDV-SNN is effective in training robust model and achieves
state-of-the-art results.

PNI Adv-BNN L2P MFDV-SNN (Ours)

Model #Parameter Clean PGD FGSM Clean PGD FGSM Clean PGD FGSM Clean PGD FGSM
ResNet-20 269722 84.9 45.9 54.5 65.8 45.0 51.6 83.6 51.1 58.4 90.1 57.1 62.4
ResNet-32 464,154 85.9 43.5 51.5 63.0 54.6 50.3 84.2 54.6 59.9 90.7 57.4 62.7
ResNet-44 658,586 84.7 48.5 55.8 76.9 54.6 58.6 85.6 54.6 61.3 91.2 64.8 66.6
ResNet-56 853,018 86.8 46.3 53.9 77.2 54.6 57.9 84.8 54.6 61.5 91.4 71.6 75.0
ResNet-20[1.5×] 605,026 86.0 46.7 54.5 65.6 28.1 36.1 85.4 53.3 61.1 92.1 66.9 70.1
ResNet-20[2×] 1,073,962 86.2 46.1 54.6 79.0 53.5 58.3 85.9 54.3 61.6 92.0 73.6 77.7
ResNet-20[4×] 4,286,026 87.7 49.1 57.0 82.3 52.6 59.0 86.1 55.8 61.3 93.4 77.0 83.7
ResNet-18 11,173,962 87.2 49.4 58.1 82.2 53.6 60.0 85.3 56.1 62.4 93.7 79.6 85.7

Assuming the vector 𝛿 is sampled from the distribution N
(
0, 𝜎2

𝛿

)
,

similar to the aforementioned, the first two terms of the Taylor
expansion can be expressed as

R1 =
〈
𝛿𝑇𝑊 (0) · 𝑔0

〉
, R2 =

1
2
𝜎2
𝛿
Tr

((
𝑊 (0)

)𝑇
⟨H0⟩𝑊 (0)

)
(10)

It can be seen that if the noise injection reduces H0, it will also
correspondingly decrease the sensitivity to data perturbations.

Therefore, in the mechanism of stochastic noise injection, when
𝜎 is initially small, R1 >> R2, and at this point, noise injection
mainly follows a random walk with small steps without signifi-
cantly affecting the network’s behavior. As the injected noise 𝜎
gradually increases, R2 begins to surpass R1 and dominates in the
training process. During this phase, the model’s robustness against
adversarial defenses to input perturbations significantly increases.

3.3 Loss Function
As mentioned above, we need to improve the model uncertainty
during model training. In practice, we do not assign parameter
variances directly because we do not know the exact uncertainty
required by the model, which is closely related to the model archi-
tecture and dataset. Instead, we initialize the Gaussian variance
with a non-informative standard uniform prior. When the network
trains, the variance gradually increases in small steps. Also, the
unbounded variance does not collapse because the gradient is − 1

𝜎 ,
and once the variance is too large, it will not back-propagate the
gradient information.

Thus, the loss function can be formulated as

L = L𝐶 − 𝜆1

𝐷∑︁
𝑖=1

ln ( ®𝜎𝑖 ) + 𝜆2 ®𝑤𝑇 ®𝑤, (11)

where L𝐶 is the cross-entropy loss, and D denotes the feature di-
mension of the penultimate layer. Furtherly, we adopt the ln ( ®𝜎𝑖 )
operation in practice, which will facilitates the computation of gra-
dient derivatives, and slows down the numerical change of variance.
The final 𝐿2 regularization term penalizes over large weights. In ad-
dition, 𝜆1 and 𝜆2 control the power of variance and weight penalty,
respectively. The algorithm is shown in supplementary material.

4 EXPERIMENTS
4.1 Datasets & Adversarial Attacks
Six datasets are used in our experiments: MNIST, SVHN, CIFAR-10,
and CIFAR-100, Tiny-ImageNet and Imagenette.

The MNIST dataset consists of 60K training data and 10K testing
data of digit images. The SVHN dataset consists of 73K training data
and 26K testing data size 32x32x3 with ten classes. The CIFAR-10
dataset consists of 50K training data and 10K testing data of size
32x32x3 with ten classes. For the CIFAR-100 dataset, the size of
training data and testing data is the same as CIFAR-10, but with
one-hundred classes. Tiny-ImageNet contains 100K images of 200
classes (500 for each class) downsized to 64×64 colored images.
Each class has 500 training images, 50 validation images, and 50
test images. Imagenette is a subset of ImageNet with 10 classes and
full-resolution images. For adversarial attack methods, we adopt
various well-known white-box and black-box methods to evalu-
ate the proposed method. Specifically, we have used FGSM attack,
PGD10 attack, C&W attack, PGD100 attack, n-Pixel attacks, and
Auto-Attack [7].

4.2 Experimental Setting
In this subsection, we detail the experimental setting, specifically,
the attacks setting partically following the literature [12, 16]. the
attacks strength 𝜖 of FGSM and PGD are set as 8/255. For PGD10
attack, the steps 𝑘 is set as 10 and the 𝛼 is set as 𝜖/10. For C&W
attack, the learning rate 𝛼 is set as 5 · 10−4, the number of iter-
ations 𝑘 = 1000, initial constant 𝑐 = 10−3, and maximum binary
steps 𝑏𝑚𝑎𝑥 =9. For the n-Pixel attack, the population size 𝑁 =400
and maximum number 𝑘𝑚𝑎𝑥 =75 same as [16], and we conduct a
stronger 5-pixel attack which is not implemented in their setting,
to validate the strong adversarial robustness of proposed method.

Besides, we choose PGD100 and Auto-Attack as stronger white-
and black-box attack methods which are not implemented in their
experiments and apply different attack strength. Note that Auto-
Attack contains both white- and black-box attacks. We evaluate
them individually. For PGD100 attack, we set 𝑘 =100 and the 𝛼 is set
as 𝜖/100. For Auto-Attack, we refer to the implementation from [7].
All experiments are performed on the Pytorch platform and partial
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Table 2: Comparison of state-of-the-art SNNs for white-box
C&W attack and black-box n-Pixel attack on CIFAR-10 with
a ResNet-18 backbone.

Strength No Def AT Adv-BNN PNI L2P MFDV

Clean 92.9 85.5 82.2 87.2 85.3 93.7

C&
W

k=0 0.0 0.0 78.9 66.9 83.6 88.8
k=0.1 0.0 0.0 78.1 66.1 84.0 87.9
k=1 0.0 0.0 65.1 34.0 76.4 87.2
k=2 0.0 0.0 49.1 16.0 66.5 86.6
k=5 0.0 0.0 16.0 0.1 34.8 83.5

n-
Pi
xe
l 1 pixel 23.4 56.1 68.6 50.9 64.5 85.4

2 pixels 3.2 33.2 64.6 39.0 60.1 80.4
3 pixels 1.0 24.0 59.7 35.4 53.9 76.0
5 pixels - - - - - 68.0

Table 3: Comparison of state-of-the-art SNNs for FGSM and
PGD attacks on CIFAR-10 and CIFAR-100 datasets with a
ResNet-18 backbone.

CIFAR-10 CIFAR-100
Method Clean FGSM PGD Clean FGSM PGD

AT [23] 85.5 52.5 43.9 58.0 25.0 20.5
Adv-BNN [22] 82.2 60.0 53.6 50.0 30.0 27.0
PNI [12] 87.2 58.1 49.4 61.0 27.0 22.0
L2P [16] 85.3 62.4 56.1 58.0 30.0 26.0
SE-SNN [33] 92.3 74.3 - - - -
IAAT [31] - - - 63.9 - 18.5
MFDV-SNN (Ours) 93.7 85.7 79.6 69.4 47.1 37.3

attack algorithms follow foolbox1, a public attack library. All the
experiments are conducted on NVIDIA RTX 3090.

4.3 Comparison with Stochastic Defenses
Baselines: The stochastic defense baselines are as follows. Note
that all these stochastic defenses need adversarial training. No
defense [11]: models without stochastic injection served as base-
line. AT [23]: models with adversarial training. Adv-BNN [22]: A
combination of Bayesian neural network and adversarial training.
PNI [12]: Injecting Gaussian noise to multilayers. L2P [16]: Updat-
ing PNI by learning a perturbation injection module and alternating
training the noise and network module. SE-SNN [33]: Introducing
a margin entropy loss. Moreover, there are partial comparisons
against IAAT [31].
White-box Attacks Results: The white-box attacks include
FGSM attack, PGD10 attack, C&W attack, PGD100 attack, and Auto-
Attack. The results are reported in Table 1, Table 2 (Upper), Table 3,
and Table 4.

1https://github.com/bethgelab/foolbox

Table 4: Evaluating proposed MFDV-SNN against stronger
PGD100 and Auto-Attack, with a ResNet-18 backbone on
CIFAR-10 dataset.

𝜖/255 Clean 20 21 22 23 24 25 26 27

PGD100
No Defense 93.0 42.7 12.2 3.2 1.5 0 0 0 0
MFDV-SNN 93.6 85.7 85.1 83.4 79.2 63.4 26.4 9.1 2.4

AA (Black)
No Defense 93.0 59.9 24.6 2.8 0.3 0 0 0 0
MFDV-SNN 93.2 92.7 92.7 91.8 83.5 55.2 18.6 9.4 6.2

AA (White)
No Defense 91.1 72.6 47.0 12.0 1.8 0 0 0 0
MFDV-SNN 93.1 82.4 79.8 74.7 60.0 28.0 8.5 2.8 6.2

For Table 1, we compare the proposed method with PNI, Adv-
BNN, and L2P on various network sizes and capacities. The pro-
posed MFDV-SNN consistently achieves state-of-the-art results on
clean accuracy and robust accuracy.

For Table 2 (Upper) C&W attack, we compare the common con-
fidence level setting 𝑘 from [0,0.1,1,2,5]. The results show that the
proposed MFDV-SNN significantly exceeds the stochastic defense
methods even when the confidence level 𝑘 is 5. Specifically, com-
pared to existed state-of-the-art defense PNI [12] and L2P [16], we
have about 6.2%, 4.6%, 14.1%,30.2% and 140% improvement, respec-
tively.

For Table 3, we compare the state-of-the-art SNNs for FGSM
and PGD10 attacks on CIFAR-10 and CIFAR-100 datasets with a
ResNet-18 backbone. Specifically, for the CIFAR-10 dataset, we have
about 1.5%, 15.3%, and 41.9% improvement against prior state-of-the-
art stochastic defenses SE-SNN [33] and L2P [12]. For the CIFAR-
100 dataset, which has richer classes than CIFAR-10, the proposed
MFDV-SNN also achieves state-of-the-art results. Compared to
existed defense methods IAAT [31], L2P [12] and Adv-BNN [22],
we have about 8.6%, 57.0%, and 38.1% improvement, respectively.

For Table 4, we evaluate the proposed MFDV-SNN on stronger
attacks, PGD100 attack, and Auto-Attack (white-box). We divide
Auto-Attack into white- and black-box to better present our results.
The results demonstrate that the proposed MFDV-SNN maintains
great performance even on the stronger attack.
Black-box Attacks Results: The black-box attacks include n-
Pixel attack and Auto-Attack (black-box), which termed as Square
attack, as reported in Table 2 (Bottom) and Table 4. For n-Pixel
attack, which relies on evolutionary optimization and is derivative-
free. The attack strength is controlled by the number of pixels it
comprises. From the results in Table 2 (Bottom), we can see that the
proposed MFDV-SNN outperforms other state-of-the-art methods
in all attack strengths. Specifically, for 1−, 2−, 3− pixels attacks,
compared with the best defense method Adv-BNN, we have im-
provements of about 24.5%, 24.5%, and 27.3%, respectively. Furtherly,
we add a stronger 5-pixel attack to evaluate the proposed MFDV-
SNN’s efficiency. Moreover, Auto-Attack (black-box) results also
confirm the strong adversarial robustness of MFDV-SNN against
black-box attacks.

Overall, various white- and black-box attacks show that the
proposed MFDV-SNN is strong enough. It is worth emphasizing
that the proposed MFDV-SNN does not need adversarial training,
while the other state-of-the-art defensemethods all need adversarial
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Table 5: Comparison of the proposed MFDV-SNN with state-
of-the-art defense methods. All competitors evaluate their
models on the untargeted PGD attack on CIFAR-10. AT:
Use of adversarial training. Results show that our proposed
MFDV-SNN does not need adversarial training and achieves
state-of-the-art results on clean and robust accuracy among
defense algorithms.

Methods Backbone AT Clean PGD

PGD AT [23] ResNet-20 (4x) ✓ 87.0 46.1
RSE [21] ResNext × 87.5 40.0
DP [20] 28-10 Wide ResNet × 87.0 25.0

TRADES [34] ResNet-18 ✓ 84.9 56.6
PCL [24] ResNet-110 ✓ 91.9 46.7
PNI [12] ResNet-20 (4x) ✓ 87.7 49.1

Adv-BNN [22] VGG-16 ✓ 77.2 54.6
L2P [16] ResNet-18 ✓ 85.3 56.3

MART [30] ResNet-18 ✓ 83.0 55.5
BPFC [1] ResNet-18 × 82.4 41.7

RLFLAT [26] 32-10 Wide ResNet ✓ 82.7 58.7
SADS [28] 28-10 Wide ResNet ✓ 82.0 45.6

WCA-Net [9] ResNet-18 × 93.2 71.4
CAS [4] ResNet-18 ✓ 86.8 48.9
SEAT [29] ResNet-18 ✓ 83.7 56.0
FSR [17] ResNet-18 ✓ 83.3 54.8
SPAT [14] ResNet-18 ✓ 84.1 58.3

RobustResNet [15] 28-10 Wide ResNet ✓ 85.5 58.7
RPF [8] ResNet-18 ✓ 83.8 61.3

MFDV-SNN ResNet-18 × 93.7 79.6

training. The experiment results also demonstrate that the proposed
MFDV-SNN does not sacrifice clean data accuracy.

4.4 Comparison with State-of-the-art Defenses
We compare MFDV-SNN with state-of-the-art defense methods
proposed in recent years. Among these defense methods, some
methods are SNNs, and some are not. We present the results in
Table 5. All experiments are conducted on CIFAR-10 with the PGD
attack. AT means using adversarial training. The results show that
many defense methods need adversarial training, which requires a
high computational cost. The proposed MFDV-SNN outperforms
defense methods listed in Table 5, even with deeper network ar-
chitectures, and achieves the highest accuracy on clean data and
strong adversarial robustness.

5 ADDITIONAL ANALYSIS
5.1 Inspection of Gradient Obfuscation
Athalye et al. [2] claimed that some stochastic algorithms are false
defense methods. These methods mainly obfuscate the gradient
information to improve the model’s robustness, and they propose
a checklist to identify whether a defense is of an obfuscation gra-
dient. Once the defense belongs to gradient obfuscation, it can be
attacked by the proposed EOT attack [3]. In this section, we thor-
oughly inspect whether the proposed method belongs to gradient
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 for PGD attack, when Nstep=10
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Figure 3: On the CIFAR-10 test set, the perturbed-data accu-
racy of ResNet-18 under PGD attack (Upper) versus attack
bound 𝜖, and (Bottom) versus the number of attack steps
N𝑠𝑡𝑒𝑝 .

obfuscation by the two-stage inspection. In the first stage, we con-
duct experiments to check the gradient obfuscation list proposed
by Athalye [2], and experiment details follow [16]. In the second
stage, we directly evaluate our method by the EOT attack.
First Stage Inspection: Checklist
Criterion 1: One-step attack performs better than iterative attacks.
Refutation: The PGD attack is an iterative attack, and FGSM is a
one-step attack. From Table 1, we can see that the accuracy of
MFDV-SNN against FGSM attack is consistently higher than that
of PGD attack.
Criterion 2: Black-box attacks are better than white-box attacks.
Refutation: With the development of adversarial attack methods,
there are strong white-box attacks and black-box attacks, making
it difficult to have a common result. Nevertheless, we can partially
confirm in Table 4 that stronger black-box attacks perform worse
than strong white-box attacks.
Criterion 3: Unbounded attacks do not reach 100% success.
Refutation: Following [12], as drawn in Figure 3, we run experiment
by increasing the distortion bound-𝜖 . The results show that the
unbounded attack leads to 0% accuracy.
Criterion 4: Random sampling finds adversarial examples.
Refutation: Following [12], the prerequisite is that the gradient-
based (e.g., PGD and FGSM) attack cannot find adversarial examples.
However, Figure 3 indicates that when we increase the distortion
bound, our method can still be broken.
Criterion 5: Increasing the distortion bound does not increase the
success rate.
Refutation: The experiment in Figure 3 shows that increasing the
distortion bound improves the attack success rate.
Second Stage Inspection: EOT-Attack
Following [16, 25], we use a Monto Carlo method which expects
the gradient over 80 simulations of different transformations on
the CIFAR-10 dataset with the backbone ResNet-18. Experiment
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Table 6: Generalization study on different sizes of datasets. We evaluate MFDV-SNN on six datasets: MNIST, SVHN, CIFAR-10,
CIFAR-100, Tiny-ImageNet and Imagenette. We use ResNet-18 as a backbone (Except for the MNIST dataset). Results show that
the proposed method generalizes well on different sizes of datasets.

MNIST SVHN CIFAR-10

Model Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD
No Defense 99.3 33.5 18.1 94.9 18.6 5.9 92.9 21.3 2.3
MFDV-SNN 99.2 93.4 64.1 94.0 86.1 82.7 93.7 85.7 79.6

CIFAR-100 Tiny-ImageNet Imagenette

Model Clean FGSM PGD Clean FGSM PGD Clean FGSM PGD
No Defense 68.8 12.8 1.5 48.0 9.0 1.0 75.5 9.5 0.0
MFDV-SNN 69.4 47.1 37.3 48.1 26.0 19.1 75.5 34.5 24.2

Table 7: Generalization study on different network architec-
tures. We evaluate MFDV-SNN on various network architec-
tures. Results demonstrate that MFDV-SNN generalizes well
on various mainstream architectures.

VGG19 GoogLeNet DenseNet121

Model FGSM PGD FGSM PGD FGSM PGD

No Defense 16.2 3.7 14.6 1.4 13.9 0.2
MFDV-SNN 64.1 53.2 80.2 66.8 80.1 71.3

ResNet-32 ResNet-44 ResNet-56

Model FGSM PGD FGSM PGD FGSM PGD

No Defense 11.4 0.0 19.5 1.3 19.7 1.2
MFDV-SNN 62.7 57.4 66.6 64.8 75.0 71.6

ResNet-20[1.5×] ResNet-20[2×] ResNet-20[4×]
Model FGSM PGD FGSM PGD FGSM PGD

No Defense 8.1 0.0 7.3 0.0 10.7 0.3
MFDV-SNN 70.1 66.9 77.7 73.6 83.9 77.0

results show that PNI, Adv-BNN, and L2P can provide 48.7%, 51.2%,
and 53.3% robustness, respectively. The proposed MFDV-SNN can
have 79.2% robustness, which is higher than these non-gradient
obfuscation methods.

Moreover, we adopt 15 MC sampling expectations of the Gauss-
ian noise in the test phase, verified in the experiments to be stable
enough to ensure the experiment results are not stochastic gradient.
Overall, the proposed method passes the two-stage inspection of
gradient obfuscation, ensuring that the proposed MFDV-SNN is
not of gradient obfuscation.

5.2 Inspection of Generalization
We conduct experiments on different datasets and network archi-
tectures to evaluate the proposed MFDV-SNN generalization ability.
The results are reported in Table 6 and Table 7. In Table 6, we mainly
explore the datasets’ influence on the proposed MFDV-SNN. Six
different datasets are used in this experiment. The experiments are
based on the backbone ResNet-18, except for the MNIST dataset.

We evaluate MNIST dataset performance on the LeNet architecture.
The result shows that MFDV-SNN has a great generalization to
different datasets. In Table 7, we mainly explore the impact of the
network architectures on the proposed MFDV-SNN. Specifically, we
adopt various architectures, including VGG, GoogLeNet, DenseNet,
and ResNets. The results demonstrate that MFDV-SNN generalizes
well on various network architectures. We also confirm that MFDV-
SNN generalizes well on different network widths and depths in
Table 1.

Overall, we explore the generalization of the proposed MFDV-
SNN from two perspectives: network architectures and datasets.
For network architectures, we further explore the effect of different
types of networks and the effect of different widths and depths.
Both results show the proposed MFDV-SNN generalizes well to the
mainstream DNN models.

5.3 Comparison of Computation Time
We compare the computation time among the proposed MFDV-
SNN, No defense model, and Adversarial training model. Three net-
works and three datasets are used. The networks include ResNet-18,
ResNet-50, and WRN-34-10. The datasets include SVHN, CIFAR-10,
and CIFAR-100. The results are reported in Table 8. Specifically, we
report the average epoch time consumption as the evaluationmetric.
We have the following observations: 1) Our proposed MFDV-SNN
is computationally inexpensive and close to standard defense-free
training. We can observe this phenomenon in all the comparison
experiments. 2) Compared to AT, we save computation time from
6.5 to 7.5 times, which makes sense since we do not need to gener-
ate adversarial examples. 3) Although different architectures are
compared, the basic rules are almost identical. As the network
structure becomes more complex, the computation time increases
proportionally. i.e., From ResNet-18 to ResNet-50 to WRN-34-10,
the complexity of the model increases sequentially, and the WB-
SNN computation time increases accordingly. However, the ratio
of adversarial training to our proposed WB-SNN method varies
relatively steadily.

5.4 Further Analysis
Effectiveness of regularization loss. We conduct experiments
to evaluate the effectiveness of the proposed regularization mod-
ule on the FGSM attack and PGD attack trained on the CIFAR-10
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Table 8: Comparison of computation time among the proposed MFDV-SNN, No defense , and Adversarial training. Results show
that the proposed MFDV-SNN time cost is close to standard training, saving up to 7.5 × time cost than adversarial training.

ResNet-18 ResNet-50 WRN-34-10

Time (s) / epoch SVHN CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100 SVHN CIFAR-10 CIFAR-100

No Defense ∼ 102 ∼ 75 ∼ 74 ∼318 ∼223 ∼222 ∼848 ∼560 ∼561
AT ∼ 728 ∼ 500 ∼500 ∼2300 ∼1580 ∼1584 ∼6137 ∼4217 ∼4213
MFDV-SNN ∼ 104 ∼ 75 ∼ 77 ∼320 ∼225 ∼225 ∼845 ∼561 ∼561

AT / MFDV 7.0 6.7 6.5 7.2 7.0 7.0 7.3 7.5 7.5
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Figure 4: Ablation study on CIFAR-10 dataset with the back-
bone ResNet-18. Results show the effectiveness of the pro-
posed regularization module. FGSM attack (Left). PGD attack
(Right).

Table 9: Ablation study onwhere to apply stochastic layer.We
explore the effect of the number and location of stochastic
layers and regularization losses on the results.

Model Robust Acc
SimpleNet 33.5

+ Stochastic (linear1) 93.4
+ Stochastic (linear2) 65.6
+ Stochastic (linear3) 73.9
+ Stochastic (linear123) 95.2
+ Stochastic (linear12) 94.0
+ Stochastic (linear13) 94.2
+ Stochastic (linear23) 73.1

ResNet-20 [4x] 0.3
+ Stochastic (linear1) 77.0

+ Stochastic (linear12(1)) 78.5
+ Stochastic (linear12(12)) 54.4

dataset with the backbone ResNet-18. The result is shown in Fig-
ure 4. No defense means that we do not add randomness to the
model. Gaussian distribution means implementing the feature layer
to Gaussian distribution without regularization. In practice, we
achieve this by setting 𝜆1 to zero. MFDV indicates that we add
the proposed regularization loss to the Gaussian distribution. We
have the following observations. 1) Injecting stochastic into the
model can improve the model robustness; for instance, Gaussian
distribution has higher adversarial robustness than No defense. 2)
The proposed loss function is effective; it shows that MFDV outper-
forms the Gaussian distribution by a large margin, while the only
difference in this experiment is the proposed regularization loss.

Where to apply stochastic layer? We build a shallow and a
deep model to explore the location to apply stochastic layers. The
shallow model consists of two Conv and three linear layers, in
which we implement the stochastic layer to different layers. The
model robustness is evaluated on the FGSM attack. For notation, the
linear1-3 denoted different layers before the last classifier layer.
For example, linear1 means we implement the penultimate layer
as a stochastic layer, linear2 means we implement the third layer
from the classifier layer as a stochastic layer, linear12 means we
implement both two layers as stochastic layers, and so forth. The
result is shown in Table 9. Furtherly, we evaluate on a deeper model
ResNet-20 [4x] under PGD attack, in which linear12(1)means we
perform regularization at the penultimate layer, and linear12(12)
means we perform regularization on both layers.

We have the following observations. 1) Applying stochastic layer
to multiple high-level layers generally achieves a better perfor-
mance, for instance, in shallow model, linear12 and linear13 are
better than linear1, and linear123 achieves the best results. 2)
Applying stochastic layer to the penultimate layer is the key to
achieving strong adversarial robustness, for instance, in shallow
model, linear2, linear3 and linear23 are worse than linear1,
but linear12, linear13, and linear123 perform well. This makes
sense because linear1 is the closest to model prediction and tends
to capture label-related information. 3) Regularization on multi-
layers is not suitable for large network, i.e., in ResNet-20[4x] model,
linear12(1) achieves the highest robust accuracy, linear12(12)
is worse than linear12(1) and linear1.

6 CONCLUSION
In this paper, we have theoretically demonstrated that by gradually
increasing the level of stochastic noise within a deep neural net-
work, the model inherently enhances its resistance to input pertur-
bations. This principle guided the development of our MFDV-SNN
framework, which efficiently integrates noise intensity into the
model training process. Our comprehensive experiments validate
the superior adversarial robustness of MFDV-SNN against estab-
lished white-box and black-box attacks. Notably, the MFDV-SNN
framework achieves this robustness without depending on adver-
sarial training methods and maintains high accuracy on clean data
inputs. Furthermore, the computational overhead introduced by
our method is minimal, closely aligning with the costs of standard
model training which underscores its practicality and effectiveness.
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