23
24
25
26
27
28
29

39
40
41
42
43
44

Supplementary Materials: Maximizing Feature Distribution
Variance for Robust Neural Networks

Anonymous Authors

1 ALGORITHM OF MFDV-SNN
The algorithm of proposed MFDV-SNN is shown below.

Algorithm 1 : MFDV-SNN Training.
Require:
Dataset X with batch size B, label y, hyper-parameter A1, A3,
feature dimension D, noise parameter €.
Ensure:
Trained model M(; 0) with parameters 0;
1: Initialize 6;
2: for epoch = 1to E do
3. for each minibatch B do
Extract features F using any NN architectures;
Sample isotropic Gaussian noise z ~ N (0,2);
Construct feature distribution hyy; = hj + z;
Sample from the construct distribution;
0 — Lo-Mh 22 In(5) +awlw;
end for
end for
1: return 60

_
<

Figure 1: Tsne visualization of classification result on CIFAR-
10 trained on ResNet-18. No defense (Left). MFDV-SNN
(Right).

2 TSNE VISUALIZATION

We visualize the classification results on the CIFAR-10 dataset
trained on ResNet-18, as shown in Figure 1.

In practice, we sample 1000 data and visualize them using t-SNE.
No defense means we do not add randomness into the model, and
MFDV-SNN represents our proposed method. The visualization
results show that the proposed MFDV-SNN learns a more robust
architecture that achieves intra-class compactness and performs
better even in inter-class separation. The decision boundary is
smoother than the standard model, with many discrete samples.
These characteristics may significantly reduce the possible adver-
sarial regions.

3 MODULE IMPLEMENTATION IN PYTHON

To show implementation details of MFDV-SNN, we attach it core
Python code in the following. The complete code will be released
after the final decision.

import torch

2 import torch.nn as nn

import torch.nn.functional as F
from torch.distributions.normal import Normal

5 class ResNet18_Stochastic(nn.Module):

W W

Zero mean, trainable variance.
def __init__(self, D, disable_noise=False):
super () .__init__()
self.gen = GeneratorResNet18()
self.fcl=nn.Linear(512,D)
self.sigma = nn.Parameter (torch.rand(D),
requires_grad=True)
self.disable_noise = disable_noise

def forward(self, x):

x = self.gen(x)

x = F.relu(self.fcl1(x))

if not self.disable_noise:
dist=Normal (0,F.softplus(self.sigma))
x_sample = dist.rsample()
X = x + x_sample

return x

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

112

114
115

116



	1 Algorithm of MFDV-SNN
	2 TSNE Visualization
	3 Module Implementation in Python

