Supplementary material for An analysis of Ermakov-Zolotukhin quadrature using kernels

Ayoub Belhadji

Univ Lyon, ENS de Lyon Inria, CNRS, UCBL LIP UMR 5668, Lyon, France ayoub.belhadji@ens-lyon.fr

A Detailed proofs

A.1 Proof of Proposition 2

By definition, we have

$$\forall x_1, x_2 \in \mathcal{X}, \ \kappa_N^{\gamma}(x_1, x_2) = \sum_{n \in [N]} \gamma_n \phi_n(x_1) \phi_n(x_2), \tag{1}$$

therefore

$$\forall x_1, x_2 \in \mathcal{X}, \ \kappa_N^{\gamma}(x_1, x_2) = \sum_{n \in [N]} \rho_n \phi_n(x_1) \tilde{\gamma}_n \phi_n(x_2), \tag{2}$$

where

$$\forall n \in [N], \ \rho_n = \frac{\gamma_n}{\tilde{\gamma}_n}.\tag{3}$$

Then

$$\forall \boldsymbol{x} \in \mathcal{X}^{N}, \ \boldsymbol{\kappa}_{N}^{\boldsymbol{\gamma}}(\boldsymbol{x}) = \boldsymbol{\Phi}_{N}^{\boldsymbol{\rho}}(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{\Phi}_{N}^{\tilde{\boldsymbol{\gamma}}}(\boldsymbol{x}) \ , \tag{4}$$

where

$$\mathbf{\Phi}_{N}^{\boldsymbol{\rho}}(\boldsymbol{x}) = (\rho_{n}\phi_{n}(x_{i}))_{(n,i)\in[N]\times[N]} \in \mathbb{R}^{N\times N},$$
(5)

and

$$\mathbf{\Phi}_{N}^{\tilde{\gamma}}(\mathbf{x}) = (\tilde{\gamma}_{n}\phi_{n}(x_{i}))_{(n,i)\in[N]\times[N]} \in \mathbb{R}^{N\times N}.$$
(6)

Moreover, by definition of μ_a^{γ} , we have

$$\forall x \in \mathcal{X}, \ \mu_g^{\gamma}(x) = \sum_{n \in [N]} \gamma_n \langle g, \phi_n \rangle_{\omega} \phi_n(x), \tag{7}$$

therefore

$$\forall x \in \mathcal{X}, \ \mu_g^{\gamma}(x) = \sum_{n \in [N]} \tilde{\gamma}_n \langle g, \phi_n \rangle_{\omega} \rho_n \phi_n(x), \tag{8}$$

so that

$$\forall x \in \mathcal{X}^N, \ \mu_g^{\gamma}(x) = \Phi_N^{\rho}(x)^{\mathsf{T}} \alpha, \tag{9}$$

where

$$\alpha = (\tilde{\gamma}_n)_{n \in [N]} \in \mathbb{R}^N. \tag{10}$$

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Combining (4) and (9), we prove that for any $x \in \mathcal{X}^N$ such that $\operatorname{Det} \kappa_N(x) > 0$, we have

$$\hat{\boldsymbol{w}}^{\boldsymbol{\gamma},N,g}(\boldsymbol{x}) = \boldsymbol{\kappa}_{N}^{\boldsymbol{\gamma}}(\boldsymbol{x})^{-1} \boldsymbol{\mu}_{g}^{\boldsymbol{\gamma}}(\boldsymbol{x})
= \boldsymbol{\Phi}_{N}^{\tilde{\boldsymbol{\gamma}}}(\boldsymbol{x})^{-1} \boldsymbol{\Phi}_{N}^{\boldsymbol{\rho}}(\boldsymbol{x})^{-1^{\mathsf{T}}} \boldsymbol{\mu}_{g}^{\boldsymbol{\gamma}}(\boldsymbol{x})
= \boldsymbol{\Phi}_{N}^{\tilde{\boldsymbol{\gamma}}}(\boldsymbol{x})^{-1} \boldsymbol{\Phi}_{N}^{\boldsymbol{\rho}}(\boldsymbol{x})^{-1^{\mathsf{T}}} \boldsymbol{\Phi}_{N}^{\boldsymbol{\rho}}(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{\alpha}
= \boldsymbol{\Phi}_{N}^{\tilde{\boldsymbol{\gamma}}}(\boldsymbol{x})^{-1} \boldsymbol{\alpha}.$$
(11)

A.2 Useful results

We gather in this section some results that will be useful in the following proofs.

A.2.1 A useful lemma

We prove in the following a lemma that we will use in Section A.3.

Lemma 1. Let $x \in \mathcal{X}^N$ such that $\operatorname{Det} \kappa_N(x) > 0$. For $n, n' \in [N]$, define

$$\tau_{n,n'}(\boldsymbol{x}) = \sqrt{\sigma_n} \sqrt{\sigma_{n'}} \phi_n(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{K}_N(\boldsymbol{x})^{-1} \phi_{n'}(\boldsymbol{x}). \tag{12}$$

Then

$$\forall n, n' \in [N], \ \tau_{n,n'}(\boldsymbol{x}) = \delta_{n,n'}. \tag{13}$$

Proof. We have

$$K_N(x) = \Phi_N^{\sqrt{\sigma}}(x)^{\mathsf{T}} \Phi_N^{\sqrt{\sigma}}(x), \tag{14}$$

where

$$\mathbf{\Phi}_{N}^{\sqrt{\sigma}}(\mathbf{x}) = (\sqrt{\sigma}_{n}\phi_{n}(x_{i}))_{(n,i)\in[N]\times[N]}.$$
(15)

Let $n, n' \in [N]$. We have

$$\sqrt{\sigma_n}\phi_n(x)^{\mathsf{T}} = e_n^{\mathsf{T}} \mathbf{\Phi}_N^{\boldsymbol{\sigma}}(x), \tag{16}$$

and

$$\sqrt{\sigma_{n'}}\phi_{n'}(\boldsymbol{x}) = \boldsymbol{\Phi}_{N}^{\boldsymbol{\sigma}}(\boldsymbol{x})^{\mathsf{T}}\boldsymbol{e}_{n'}.\tag{17}$$

Therefore

$$\tau_{n,n'}(\boldsymbol{x}) = \boldsymbol{e}_n^{\mathsf{T}} \boldsymbol{\Phi}_N^{\boldsymbol{\sigma}}(\boldsymbol{x}) \big(\boldsymbol{\Phi}_N^{\boldsymbol{\sigma}}(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{\Phi}_N^{\boldsymbol{\sigma}}(\boldsymbol{x}) \big)^{-1} \boldsymbol{\Phi}_N^{\boldsymbol{\sigma}}(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{e}_{n'}$$
(18)

$$= e_n^{\mathsf{T}} \Phi_N^{\boldsymbol{\sigma}}(\boldsymbol{x}) \Phi_N^{\boldsymbol{\sigma}}(\boldsymbol{x})^{-1} \Phi_N^{\boldsymbol{\sigma}}(\boldsymbol{x})^{\mathsf{T}^{-1}} \Phi_N^{\boldsymbol{\sigma}}(\boldsymbol{x})^{\mathsf{T}} e_{n'}$$
(19)

$$= e_n^{\mathsf{T}} e_{n'} \tag{20}$$

$$=\delta_{n,n'}. (21)$$

A.2.2 A borrowed result

We recall in the following a result proven in [1] that we will use in Section A.4.

Proposition 1. [Theorem 1 in [1]] Let x be a random subset of \mathcal{X} that follows the distribution of DPP of kernel κ_N and reference measure ω . Let $f \in \mathcal{L}_2(\omega)$, and $n, n' \in [N]$ such that $n \neq n'$. Then

$$\operatorname{Cov}_{\mathrm{DPP}}(I^{\mathrm{EZ},n}(f), I^{\mathrm{EZ},n'}(f)) = 0. \tag{22}$$

A.3 Proof of Proposition 5

Let $x \in \mathcal{X}^N$ such that the condition $\operatorname{Det} \kappa_N(x) > 0$ is satisfied, and let $g \in \mathcal{E}_N$. We start by the proof of (36). By definition of μ_g , we have

$$\mu_g(x) = \sum_{n \in [N]} \sigma_n \langle g, \phi_n \rangle_{\omega} \phi_n(x), \tag{23}$$

so that

$$\mu_g(\mathbf{x}) = \sum_{n \in [N]} \sigma_n \langle g, \phi_n \rangle_{\omega} \phi_n(\mathbf{x}). \tag{24}$$

Proposition 2 yields

$$\hat{\boldsymbol{w}}^{\mathrm{EZ},g} = \boldsymbol{K}_N(\boldsymbol{x})^{-1} \mu_g(\boldsymbol{x}). \tag{25}$$

Therefore

$$\hat{\boldsymbol{w}}^{\text{EZ},g^{\mathsf{T}}} \mu_{g}(\boldsymbol{x}) = \mu_{g}(\boldsymbol{x}) \boldsymbol{K}_{N}(\boldsymbol{x})^{-1} \mu_{g}(\boldsymbol{x})
= \sum_{n,n' \in [N]} \sigma_{n} \sigma_{n'} \langle g, \phi_{n} \rangle_{\omega} \langle g, \phi_{n'} \rangle_{\omega} \phi_{n}(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{K}_{N}(\boldsymbol{x})^{-1} \phi_{n'}(\boldsymbol{x})
= \sum_{n \in [N]} \sigma_{n} \langle g, \phi_{n} \rangle_{\omega}^{2} \tau_{n,n}(\boldsymbol{x})
+ \sum_{\substack{n,n' \in [N] \\ n \neq n'}} \sqrt{\sigma_{n} \sigma_{n'}} \langle g, \phi_{n} \rangle_{\omega} \langle g, \phi_{n'} \rangle_{\omega} \tau_{n,n'}(\boldsymbol{x}),$$
(26)

where $\tau_{n,n'}(\boldsymbol{x})$ is defined by

$$\tau_{n,n'}(\boldsymbol{x}) = \sqrt{\sigma_n} \sqrt{\sigma_{n'}} \phi_n(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{K}_N(\boldsymbol{x})^{-1} \phi_{n'}(\boldsymbol{x}). \tag{27}$$

Now, Lemma 1 yields

$$\sum_{n \in [N]} \sigma_n \langle g, \phi_n \rangle_{\omega}^2 \tau_{n,n}(\boldsymbol{x}) = \sum_{n \in [N]} \sigma_n \langle g, \phi_n \rangle_{\omega}^2$$

$$= \|\mu_g\|_{\mathcal{F}}^2, \tag{28}$$

and

$$\sum_{\substack{n,n'\in[N]\\n\neq n'}} \sqrt{\sigma_n} \sqrt{\sigma_{n'}} \langle g, \phi_n \rangle_{\omega} \langle g, \phi_{n'} \rangle_{\omega} \tau_{n,n'}(\boldsymbol{x}) = 0.$$
 (29)

Combining (26), (28) and (29), we obtain

$$\hat{\boldsymbol{w}}^{\mathrm{EZ},g^{\mathsf{T}}}\mu_{g}(\boldsymbol{x}) = \|\mu_{g}\|_{\mathcal{F}}^{2}.\tag{30}$$

We move now to the proof of (37). We have by the Mercer decomposition

$$K(x) = \sum_{m=1}^{+\infty} \sigma_m \phi_m(x) \phi_m(x)^{\mathsf{T}}$$
(31)

$$= \sum_{m=1}^{N} \sigma_m \phi_m(\mathbf{x}) \phi_m(\mathbf{x})^{\mathsf{T}} + \sum_{m=N+1}^{+\infty} \sigma_m \phi_m(\mathbf{x}) \phi_m(\mathbf{x})^{\mathsf{T}}.$$
 (32)

Moreover, observe that

$$\boldsymbol{K}_{N}(\boldsymbol{x}) = \sum_{m=1}^{N} \sigma_{m} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\mathsf{T}}, \tag{33}$$

and

$$\boldsymbol{K}_{N}^{\perp}(\boldsymbol{x}) = \sum_{m=N+1}^{+\infty} \sigma_{m} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\mathsf{T}}.$$
 (34)

Therefore

$$K(x) = K_N(x) + K_N^{\perp}(x), \tag{35}$$

so that

$$\hat{\boldsymbol{w}}^{\mathrm{EZ},g^{\mathsf{T}}}\boldsymbol{K}(\boldsymbol{x})\hat{\boldsymbol{w}}^{\mathrm{EZ},g} = \hat{\boldsymbol{w}}^{\mathrm{EZ},g^{\mathsf{T}}}\boldsymbol{K}_{N}(\boldsymbol{x})\hat{\boldsymbol{w}}^{\mathrm{EZ},g} + \hat{\boldsymbol{w}}^{\mathrm{EZ},g^{\mathsf{T}}}\boldsymbol{K}_{N}^{\perp}(\boldsymbol{x})\hat{\boldsymbol{w}}^{\mathrm{EZ},g}.$$
 (36)

In order to evaluate $\hat{w}^{\mathrm{EZ},g^{\mathsf{T}}} K_N(x) \hat{w}^{\mathrm{EZ},g}$, we use Proposition 2, and we get

$$\hat{\boldsymbol{w}}^{\mathrm{EZ},g} = \boldsymbol{K}_N(\boldsymbol{x})^{-1} \mu_g(\boldsymbol{x}), \tag{37}$$

so that

$$\hat{\boldsymbol{w}}^{\mathrm{EZ},g^{\mathsf{T}}}\boldsymbol{K}_{N}(\boldsymbol{x})\hat{\boldsymbol{w}}^{\mathrm{EZ},g} = \hat{\boldsymbol{w}}^{\mathrm{EZ},g^{\mathsf{T}}}\boldsymbol{K}_{N}(\boldsymbol{x})\boldsymbol{K}_{N}(\boldsymbol{x})^{-1}\mu_{g}(\boldsymbol{x})$$

$$= \hat{\boldsymbol{w}}^{\mathrm{EZ},g^{\mathsf{T}}}\mu_{g}(\boldsymbol{x})$$

$$= \|\mu_{g}\|_{\mathcal{F}}^{2}.$$
(38)

Finally, by definition

$$\hat{\boldsymbol{w}}^{\mathrm{EZ},g} = \boldsymbol{\Phi}_N(\boldsymbol{x})^{-1}\boldsymbol{\epsilon},\tag{39}$$

where $\epsilon = \sum_{n \in [N]} \langle g, \phi_n \rangle_{\omega} e_n$. Therefore

$$\hat{\boldsymbol{w}}^{\mathrm{EZ},g^{\mathsf{T}}}\boldsymbol{K}_{N}(\boldsymbol{x})^{\perp}\hat{\boldsymbol{w}}^{\mathrm{EZ},g} = \boldsymbol{\epsilon}^{\mathsf{T}}\boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\mathsf{T}}}\boldsymbol{K}_{N}(\boldsymbol{x})^{\perp}\boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1}\boldsymbol{\epsilon}.\tag{40}$$

A.4 Proof of Theorem 7

Let $m \in \mathbb{N}^*$ such that $m \geq N+1$. We prove that

$$\forall \epsilon, \tilde{\epsilon} \in \mathbb{R}^N, \ \mathbb{E}_{\mathrm{DPP}} \epsilon^{\mathsf{T}} \Phi_N(\boldsymbol{x})^{-1^{\mathsf{T}}} \phi_m(\boldsymbol{x}) \phi_m(\boldsymbol{x})^{\mathsf{T}} \Phi_N(\boldsymbol{x})^{-1} \tilde{\epsilon} = \sum_{n \in N} \epsilon_n \tilde{\epsilon}_n. \tag{41}$$

For this purpose, let $\epsilon, \tilde{\epsilon} \in \mathbb{R}^N$, and observe that

$$\boldsymbol{\epsilon}^{\mathsf{T}} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\mathsf{T}}} \phi_{m}(\boldsymbol{x}) = \sum_{n \in [N]} \epsilon_{n} \boldsymbol{e}_{n}^{\mathsf{T}} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\mathsf{T}}} \phi_{m}(\boldsymbol{x})$$
(42)

$$= \sum_{n \in [N]} \epsilon_n \hat{\boldsymbol{w}}^{\text{EZ},n} \phi_m(\boldsymbol{x}) \tag{43}$$

$$= \sum_{n \in [N]} \epsilon_n I^{EZ,n}(\phi_m). \tag{44}$$

and

$$\phi_m(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{\Phi}_N(\boldsymbol{x})^{-1} \tilde{\boldsymbol{\epsilon}} = \sum_{n \in [N]} \tilde{\epsilon}_n I^{\mathrm{EZ},n}(\phi_m). \tag{45}$$

Therefore

$$\boldsymbol{\epsilon}^{\mathsf{T}} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\mathsf{T}}} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1} \tilde{\boldsymbol{\epsilon}} = \sum_{n \in [N]} \sum_{n' \in [N]} \epsilon_{n} \tilde{\epsilon}_{n'} I^{\mathrm{EZ},n}(\phi_{m}) I^{\mathrm{EZ},n'}(\phi_{m}), \tag{46}$$

then

$$\mathbb{E}_{\mathrm{DPP}} \boldsymbol{\epsilon}^{\mathsf{T}} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\mathsf{T}}} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1} \tilde{\boldsymbol{\epsilon}} = \sum_{n \in [N]} \sum_{n' \in [N]} \epsilon_{n} \tilde{\epsilon}_{n'} \mathbb{E}_{\mathrm{DPP}} I^{\mathrm{EZ}, n}(\phi_{m}) I^{\mathrm{EZ}, n'}(\phi_{m}). \tag{47}$$

Now, for $n, n' \in [N]$,

$$\mathbb{E}_{\text{DPP}}I^{\text{EZ},n}(\phi_m) = \int_{\mathcal{X}} \phi_m(x)\phi_n(x)d\omega(x) = 0,$$
(48)

and

$$\mathbb{E}_{\text{DPP}}I^{\text{EZ},n'}(\phi_m) = \int_{\mathcal{X}} \phi_m(x)\phi_{n'}(x)d\omega(x) = 0. \tag{49}$$

Therefore

$$\mathbb{E}_{\text{DPP}}I^{\text{EZ},n}(\phi_m)I^{\text{EZ},n'}(\phi_m) = \mathbb{C}_{\text{OV}_{\text{DPP}}}(I^{\text{EZ},n}(\phi_m), I^{\text{EZ},n'}(\phi_m)). \tag{50}$$

Now, by Proposition 1, we have $\mathbb{C}ov_{DPP}(I^{EZ,n}(\phi_m),I^{EZ,n'}(\phi_m)) = \delta_{n,n'}$, so that

$$\mathbb{E}_{\text{DPP}}I^{\text{EZ},n}(\phi_m)I^{\text{EZ},n'}(\phi_m) = \delta_{n,n'},\tag{51}$$

and

$$\mathbb{E}_{\mathrm{DPP}} \boldsymbol{\epsilon}^{\mathsf{T}} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1^{\mathsf{T}}} \phi_{m}(\boldsymbol{x}) \phi_{m}(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{\Phi}_{N}(\boldsymbol{x})^{-1} \tilde{\boldsymbol{\epsilon}} = \sum_{n \in [N]} \sum_{n' \in [N]} \epsilon_{n} \tilde{\epsilon}_{n'} \mathbb{E}_{\mathrm{DPP}} I^{\mathrm{EZ}, n}(\phi_{m}) I^{\mathrm{EZ}, n'}(\phi_{m})$$

$$= \sum_{n \in [N]} \sum_{n' \in [N]} \epsilon_{n} \tilde{\epsilon}_{n'} \delta_{n, n'}$$

$$= \sum_{n \in [N]} \epsilon_{n} \tilde{\epsilon}_{n}. \tag{52}$$

Now, for $\epsilon \in \mathbb{R}^N$ and $m \in \mathbb{N}^*$ define $Y_{\epsilon,m}$ by

$$Y_{\epsilon,m} = \sigma_m \epsilon^{\mathsf{T}} \mathbf{\Phi}_N(\mathbf{x})^{-1^{\mathsf{T}}} \phi_m(\mathbf{x}) \phi_m(\mathbf{x})^{\mathsf{T}} \mathbf{\Phi}_N(\mathbf{x})^{-1} \epsilon.$$
 (53)

We have

$$\mathbb{E}_{\text{DPP}}Y_{\epsilon,m} = \sigma_m \sum_{n \in [N]} \epsilon_n^2, \tag{54}$$

and the $Y_{\epsilon,m}$ are non-negative since

$$Y_{\epsilon,m} = \sigma_m(\epsilon^{\mathsf{T}} \mathbf{\Phi}_N(\mathbf{x})^{-1^{\mathsf{T}}} \phi_m(\mathbf{x}))^2 \ge 0, \tag{55}$$

moreover,

$$\sum_{m=N+1}^{+\infty} \mathbb{E}_{\text{DPP}} Y_{\epsilon,m} < +\infty.$$
 (56)

Therefore, by Beppo Levi's lemma

$$\mathbb{E}_{\text{DPP}} \sum_{m=N+1}^{+\infty} Y_{\epsilon,m} = \sum_{m=N+1}^{+\infty} \mathbb{E}_{\text{DPP}} Y_{\epsilon,m}$$

$$= \sum_{n \in [N]} \epsilon_n^2 \sum_{m=N+1}^{+\infty} \sigma_m. \tag{57}$$

Now, in general for $m \in \mathbb{N}^*$ such that $m \geq N+1$, we have

$$\sigma_m \epsilon^{\mathsf{T}} \Phi_N(\boldsymbol{x})^{-1^{\mathsf{T}}} \phi_m(\boldsymbol{x}) \phi_m(\boldsymbol{x})^{\mathsf{T}} \Phi_N(\boldsymbol{x})^{-1} \tilde{\epsilon} \le \frac{1}{2} (Y_{\epsilon,m} + Y_{\tilde{\epsilon},m}), \tag{58}$$

so that for $M \geq N + 1$, we have

$$\sum_{m=N+1}^{M} \sigma_m \boldsymbol{\epsilon}^{\mathsf{T}} \boldsymbol{\Phi}_N(\boldsymbol{x})^{-1^{\mathsf{T}}} \phi_m(\boldsymbol{x}) \phi_m(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{\Phi}_N(\boldsymbol{x})^{-1} \tilde{\boldsymbol{\epsilon}} \leq \frac{1}{2} \left(\sum_{m=N+1}^{+\infty} Y_{\boldsymbol{\epsilon},m} + \sum_{m=N+1}^{+\infty} Y_{\tilde{\boldsymbol{\epsilon}},m} \right). \tag{59}$$

Therefore, by dominated convergence theorem we conclude that

$$\mathbb{E}_{\text{DPP}} \sum_{m=N+1}^{+\infty} \sigma_m \boldsymbol{\epsilon}^{\mathsf{T}} \boldsymbol{\Phi}_N(\boldsymbol{x})^{-1^{\mathsf{T}}} \phi_m(\boldsymbol{x}) \phi_m(\boldsymbol{x})^{\mathsf{T}} \boldsymbol{\Phi}_N(\boldsymbol{x})^{-1} \tilde{\boldsymbol{\epsilon}} = \sum_{m=N+1}^{+\infty} \sigma_m \sum_{n \in [N]} \epsilon_n \tilde{\epsilon}_n.$$
 (60)

A.5 Proof of Theorem 3

Let $g \in \mathcal{E}_N$, and denote $\epsilon = \sum_{n \in [N]} \langle g, \phi_n \rangle_\omega e_n$. Combining Theorem 6 and Theorem 7, we obtain

$$\mathbb{E}_{\text{DPP}} \| \mu_g - \sum_{i \in [N]} \hat{w}_i^{\text{EZ},g} k(x_i,.) \|_{\mathcal{F}}^2 = \sum_{m \ge N+1} \sigma_m \sum_{n \in [N]} \epsilon_n^2.$$
 (61)

Now let $g \in \mathcal{L}_2(\omega)$, we have

$$\|\mu_g - \sum_{i \in [N]} \hat{w}_i^{\text{EZ},g} k(x_i,.)\|_{\mathcal{F}}^2 = \|\mu_g - \mu_{g_N} + \mu_{g_N} - \sum_{i \in [N]} \hat{w}_i^{\text{EZ},g} k(x_i,.)\|_{\mathcal{F}}^2$$
(62)

$$\leq 2\Big(\|\mu_g - \mu_{g_N}\|_{\mathcal{F}}^2 + \|\mu_{g_N} - \sum_{i \in [N]} \hat{w}_i^{\text{EZ},g} k(x_i,.)\|_{\mathcal{F}}^2\Big), \tag{63}$$

where $g_N = \sum_{n \in [N]} \langle g, \phi_n \rangle_{\omega} \phi_n \in \mathcal{E}_N$.

Now, observe that

$$\mu_q^{\gamma,N} = \mu_{q_N}^{\gamma,N},\tag{64}$$

so that

$$\hat{\boldsymbol{w}}^{\mathrm{EZ},g} = \hat{\boldsymbol{w}}^{\mathrm{EZ},g_N}.\tag{65}$$

Therefore

$$\|\mu_g - \sum_{i \in [N]} \hat{w}_i^{\text{EZ},g} k(x_i,.)\|_{\mathcal{F}}^2 \le 2 \Big(\|\mu_g - \mu_{g_N}\|_{\mathcal{F}}^2 + \|\mu_{g_N} - \sum_{i \in [N]} \hat{w}_i^{\text{EZ},g_N} k(x_i,.)\|_{\mathcal{F}}^2 \Big).$$
 (66)

Now, we have

$$\|\mu_{g} - \mu_{g_{N}}\|_{\mathcal{F}}^{2} = \sum_{m \geq N+1} \sigma_{m} \langle g, \phi_{m} \rangle_{\omega}^{2}$$

$$\leq \sigma_{N+1} \sum_{m \geq N+1} \langle g, \phi_{m} \rangle_{\omega}^{2}$$

$$\leq r_{N+1} \|g\|_{\omega}^{2}. \tag{67}$$

Moreover, by (26) we have

$$\mathbb{E}_{\text{DPP}} \| \mu_{g_N} - \sum_{i \in [N]} \hat{w}_i^{\text{EZ}, g_N} k(x_i, .) \|_{\mathcal{F}}^2 = \sum_{n \in [N]} \langle g, \phi_n \rangle_{\omega}^2 r_{N+1}$$

$$\leq \|g\|_{\omega}^2 r_{N+1}.$$
(68)

Combining (66), (67) and (68), we obtain

$$\|\mu_g - \sum_{i \in [N]} \hat{w}_i^{EZ,g} k(x_i,.)\|_{\mathcal{F}}^2 \le 4 \|g\|_{\omega}^2 r_{N+1}.$$
(69)

References

[1] G. Gautier, R. Bardenet, and M. Valko. On two ways to use determinantal point processes for monte carlo integration. In *Advances in Neural Information Processing Systems*, volume 32, 2019.