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A Detailed proofs

A.1 Proof of Proposition 2

By definition, we have

Var, 0 € X, kY (21,22) = Z VO (21) P (22), (D
n€e[N]
therefore
Vo, 22 € &, HYV(Ila'rQ) = Z pn¢7b(z1)7~/n¢7z,(x2)a 2
ne[N]
where
Vn e [N], pn= 22, 3)
Tn
Then _
Ve e XN, KX (x) = ®R ()T} () , 4)
where
PR () = (pndn (@) (niyenyx vy € RV, &)
and i
(1)7\[(1") = (:Yn(ﬁn(xz))(nz)e[N]x[N] S RNV, (6)

Moreover, by definition of ,ug, we have

Vo e X, pJ(@) = D nlg dn)wdn(), (7)
née[N]
therefore
Vo e X, p)(x) = Y n(g: n)wpndn(2), ®)
n€[N]

so that
Ve e XN, 1) (xz) = 8% (2)Ta, 9)

where
a = (ﬁn)nG[N] € RN' (10
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Combining (4) and (9), we prove that for any € X such that Det ky(x) > 0, we have
WM (2) = kY () g (@)
= 2 (a) " @%(2) (@)
Y (z) ! ‘I’p( )R () e
o} (=) (1D

xr

22

A.2  Useful results
We gather in this section some results that will be useful in the following proofs.

A.2.1 A useful lemma

We prove in the following a lemma that we will use in Section A.3.
Lemma 1. Let x € XV such that Det k(x) > 0. For n,n’ € [N, define

Tn,n’(m) = \/a\/ Un’asn(x)TKN(:c)ild)n’(m)' (12)
Then
Vn,n' € [N], Tnn (€)= 6pp. (13)
Proof. We have
Ky(z) = o) (x)T @Y (), (14)
where e
DX (x) = (VO ,00(2i)) (n0) e[V [N]- (15)
Letn,n’ € [N]. We have
Vonon(x)" = ef 8% (), (16)
and
Vb (@) = B%(2) e a7)
Therefore
T () = €1 BF () (8 () DS (¢)) 8% (z)Te, (18)
= el 8% ()8 () 1B ()T B (2)Ten (19)
=eley (20)
=0p - 21
O

A.2.2 A borrowed result

We recall in the following a result proven in [1] that we will use in Section A.4.

Proposition 1. [Theorem I in [1]] Let x be a random subset of X that follows the distribution of
DPP of kernel . and reference measure w. Let f € Lo(w), and n,n’ € [N] such that n # n’. Then

Covppp (IF%4(f), IF%™ (f)) = 0. (22)

A.3 Proof of Proposition 5

Let x € XV such that the condition Det k() > 0 is satisfied, and let g € Ex. We start by the
proof of (36). By definition of x4, we have

pg() = Y onlg, bn)wdn (@), (23)
n€[N]
so that
1g() = > 0nlg, bn)uwtn (). 24)
n€[N]



Proposition 2 yields
W9 = Ky (@) ().
Therefore

~EZ.g7

w pg(x) = Mg(m)KN(m)_lﬂg(w)

= Z OnOp/ <g, ¢n>w<g7 ¢n/>w¢n(m)TKN(m)71¢n’ (m)

n,n’ €[N]
- Z Un<ga ¢n>i7—n,n($)
né€[N]
+ Z V Unan’<g7¢n>w<g7¢n’>w7-n,n’(w>7
n,n’ €[N]
n#n’

where 7,, v () is defined by
Tn’n/(m) = \/Jn\/dn/gf)n(a})TKN($)71¢n/(:B).
Now, Lemma 1 yields

Z O'n<ga¢n>i7—n,n(m) = Z U7l<g7¢n>i

ne[N] ne([N]
= llgll%,
and
Z VOn\On/ <ga¢n>w<gv¢n’>w7-n,n’(m) =0.
n,n'€[N]
n#n’
Combining (26), (28) and (29), we obtain
W9 pg(x) = ||Ng||2f-
We move now to the proof of (37). We have by the Mercer decomposition
+o00
K(:I)) = Z 0'7rz¢'rrL(m)¢7n(x)
m=1

Moreover, observe that

N
KN(:B) = Z 0nL¢m(m)¢m(m)Ta

m=1

and N
Kzl\_/(x) = Z G7rz¢m(m)¢m(m)T'
m=N-+1
Therefore
K(z) = Ky(z) + Ky (),
so that

WIT K (2) w49 = w9 Ky (@) wBh 9 wBhIT K () wPhe.

In order to evaluate w™%9" K y (z)w™

WwEL9 — KN(w)_lﬂg(w)a
so that

WP Ky (az)'LZJEZ’g = WP Ky (a:)KN(:c)_lug (x)

— EZ,gT

fig(x)

= [l

"9 we use Proposition 2, and we get

(25)

(26)

27)

(28)

(29)

(30)

€2y

(32)

(33)

(34)

(35)

(36)

(37

(38)



Finally, by definition
W9 = By (z) e, (39)

where € = 3, < (v)(9; &n)wen. Therefore

WP Ky (x) ™ = eT @y (z) " Ky (z) v (z) e (40)

A.4 Proof of Theorem 7

Let m € N* such that m > N + 1. We prove that

Ve, € € RN, Epppe™®n(z) " o (@) (@) @ (2) '€= D €nén. (41)
neN

For this purpose, let €, € € RY and observe that

EeN(x) pm(@) = Y enel®y(@) " fm() (42)
n€[N]
= > i (x) (43)
n€[N]
= > &I (¢m). (44)
n€[N]
and
O (2) TN () '€= D G (). (45)
n€e[N]
Therefore
@ N () p (@) b ()TN () = Y D €l I (¢) PP (61), (46)
n€[N] n’€[N]
then
EDppeT@N(m)*lem(a:)gbm( )T@N Z Z Gnﬁn/EDPPIEZn(ﬁbm)IEZ’n/(Qﬁm)‘
n€[N] n’€[N]
47
Now, for n,n’ € [N],
Bore ™" (6n) = [ 6n(@)on(a)d(z) = . (48)
X
and
EppplB27 (,,) = / G (@) o () de() = 0. (49)
X
Therefore , ,
Eppp "4 (¢0) I%%™ (¢m) = Covppp (IF4™ (¢m ), IF4™ (¢1n)). (50
Now, by Proposition 1, we have Covppp (IF4™(¢,,), I*%™ (¢m)) = Op v, s0 that
Eppp I %™ (¢ ) %™ () = G (51)
and
Epppe™®n (@) G (@) b ()TN (@) E= Y D enlwEppp P (¢ ) 1P (¢rm)
n€[N] n’€[N]
= Z Z 6n671/6n,n’
n€[N] n’€[N]
= €n€n. (52)
née[N]



Now, for € € R and m € N* define Y, ,, by

Yeun = Om€ @ () L ¢ (@) b () T® v () e (53)
We have
EpppYem = Om Y, €n, (54)
n€[N]

and the Y ,,, are non-negative since

Yem = om(eT @ (x) " b ())* > 0, (55)
moreover,
+oo
> EpppYem < +oo. (56)
m=N-+1

Therefore, by Beppo Levi’s lemma

+oo +oo
Eppp 5 Yem = E EpppYe,m
m=N+1 m=N+1

=> a > om (57)

Now, in general for m € N* such that m > N + 1, we have

T .1
Ome€T®N ()71 O ()0 ()TN (2) 1€ < S (Ve + Yem), (58)
so that for M > N + 1, we have
M 1 o0 —+o0
Y. om€ @y (@) dm(@)om (@) RN (2) TES (Y Yemt Y Yem) (59)
m=N+1 m=N+1 m=N+1

Therefore, by dominated convergence theorem we conclude that

+oo too
Eppp Y Ome ®n ()" g ()b () TRy ()€ = Tm > €nén.  (60)
m=N-+1 m=N+1 " ne[N]

A.5 Proof of Theorem 3

Let g € €y, and denote € = Zne[ N (g, dn)wen. Combining Theorem 6 and Theorem 7, we obtain
Epppllug — > 0F h(z, )3 = Y. om Y. €. 1)
i€[N] m>N+1 ne[N]

Now let g € Lo(w), we have

g = > 075 k(s M5 = g = tgn + gy — D @07 k() ||F (62)
1€[N] 1€[N]
< 2(llng = w3 + gy = - @ k(i ). (63)
i€[N]

where gN = ZnG[N] <97 ¢n>w¢n € 5N~

Now, observe that
pg ™ =gl (64)
so that
W9 = pPhIN, (65)



Therefore
g = 37 @ k(i I3 < 2(llng = panll + gy = 32 P k(i )IE).  (66)
i€[N] i€[N]

Now, we have

g = ponlF =D omlg, dm)l

m>N+1
S ON+41 Z (9, Pm)i
m>N+1
< rnllgl- (67)
Moreover, by (26) we have
Eppp gy — Wy N () F = Y (g dn)irve
i€[N] ne[N]
< llgllEraa- (68)
Combining (66), (67) and (68), we obtain
g = Y @ " k(i )5 < 4llgllZrn-1- (69)

€[N
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