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Abstract

Toeplitz Neural Networks (TNNs) [1] are a recent impressive sequence model2

requiring O(n log n) computational complexity and O(n) relative positional en-3

coder (RPE) multi-layer perceptron (MLP) and decay bias calls. We aim to reduce4

both. We first note that the RPE is a non symmetric positive definite kernel and5

the Toeplitz matrices are pseudo-Gram matrices. Further 1) the learned kernels6

display spiky behavior near the main diagonals with otherwise smooth behavior;7

2) the RPE MLP is slow. For bidirectional models, this motivates a sparse plus8

low-rank Toeplitz matrix decomposition. For the sparse component’s action, we9

do a small 1D convolution. For the low rank component, we replace the RPE10

MLP with linear interpolation and use Structured Kernel Interpolation (SKI) [2]11

for O(n) complexity. For causal models, “fast” causal masking [3] negates SKI’s12

benefits. Working in frequency domain, we avoid an explicit decay bias. To enforce13

causality, we represent the kernel via the real part of its frequency response using14

the RPE and compute the imaginary part via a Hilbert transform. This maintains15

O(n log n) complexity but achieves an absolute speedup. Modeling the frequency16

response directly is also competitive for bidirectional training, using one fewer FFT.17

We improve on speed and sometimes score on the Long Range Arena (LRA) [4].18
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(a) Long Range Arena (LRA). (b) Pre-training speedups using Fourier Domain.

Figure 1: (a) In LRA, our approaches, SKI and FD-TNN are faster than TNNs for 1d tasks with strong
LRA scores. Bubble sizes denote training model memory. (b) Our approach, FD-TNN, achieves
substantial speed ups in iterations/sec for pre-training both causal and bidirectional models. Note that
we do not include SKI-TNN in this plot as it does not use an MLP based RPE.
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1 Introduction19

Sequence modeling is important in natural language processing, where sentences are represented20

as a sequence of tokens. Successful sequence modeling typically involves token and channel21

mixing. Token mixing combines representations of different sequence parts, while channel mixing22

combines the information across different dimensions of embedding vectors used to encode tokens.23

Transformers [5] are arguably the most successful technique for sequence modeling, and variants24

including [6, 7] have achieved state of the art performance on natural language tasks. They use25

self-attention for token mixing and feedforward networks for channel mixing.26

Recently, [1] proposed Toeplitz Neural Networks (TNN) using Toeplitz matrices for token mixing.27

They use a learned neural similarity function, the Relative Positional Encoder (RPE), to form28

the Toeplitz matrices. Toeplitz matrix vector multiplication can be performed with sub-quadratic29

complexity using the Fast Fourier Transform (FFT), giving the TNN token mixing layer a total30

O(dn log n) computational complexity, where d is the embedding dimension and n is the sequence31

length. This achieved state of the art predictive performance and nearly state of the art speed for32

the long range arena (LRA) benchmark [4]. They also showed strong performance pre-training33

wikitext-103 [8] and on the GLUE benchmark[9]. Despite strong empirical speed performance,34

TNNs have two fundamental efficiency limitations: 1) super-linear computational complexity 2)35

many calls to the RPE: for each layer, one call per relative position.36

In this paper, we interpret the RPE as a non-SPD kernel and note 1) the learned kernels are discontin-37

uous near the main diagonals but otherwise smooth globally; 2) the ReLU RPE learns 1D piecewise38

linear functions: an MLP is slower than necessary. For bidirectional models, this motivates a sparse39

plus low-rank decomposition. We apply the sparse component’s action via a small 1D convolution.40

For the low rank component, we replace the RPE MLP with linear interpolation at a set of inducing41

points and an asymmetric extension of Structured Kernel Interpolation (SKI) [2] for O(n) complexity.42

Further, using an inverse time warp, we can extrapolate beyond sequence lengths observed during43

training. For causal models, even “fast” causal masking [3] negates the speed and memory benefits44

from SKI. Thus, we instead represent the real part of the kernel’s frequency response using the RPE45

MLP, and evaluate the RPE with finer frequency resolution to extrapolate to longer sequence lengths46

in the time domain. From the real part, we compute the imaginary part via a Hilbert transform during47

the forward pass to enforce causality. In the bidirectional setting, we remove the causality constraint48

and represent the complex frequency response of the kernel with the RPE MLP. Levels of smoothness49

in frequency response imply decay rates in the time domain: thus we model the decay bias implicitly.50

This maintains O(n log n) complexity but achieves an absolute speedup. Further, it often leads to51

better predictive performance on LRA tasks.52

This paper has three primary contributions: 1) a TNN sparse plus low rank decomposition, extending53

SKI to TNNs for the low rank part. We replace the RPE MLP with linear interpolation and apply54

inverse time warping to efficiently train bidirectional TNNs. We provide rigorous error analysis55

for our asymmetric SKI application; 2) alternatively, for both causal and bidirectional models, we56

work directly in the frequency domain and use the Hilbert transform to enforce causality in the57

autoregressive setting. We prove that different activation choices for an MLP modeling the discrete58

time Fourier transform (DTFT) lead to different decay rates in the original kernel. 3) Empirical59

results: we demonstrate that our approaches show dramatically improved computational efficiency,60

setting a new speed state of the art on LRA [10] on the 1d tasks, with strong LRA score. In section61

2 we describe related work. In section 3 we propose our new modeling approaches. In 4 we state62

several theoretical results regarding our modeling approaches. In 5 we extend the empirical results of63

[1], showing our speed gains with minimal prediction deterioration. We conclude in section 6.64

2 Related65

The most related papers use Toeplitz matrices for sequence modeling [1, 11, 12]. We build off of [1]66

and introduce several techniques to improve on their speed results. [11] took a similar approach, but67

applied Toeplitz matrices to self-attention rather than departing from it. [12] is also similar, using68

alternating Toeplitz and diagonal matrices as a replacement for self-attention within a Transformer.69

While we focus on the setting of [1] as it was released first, our approach is applicable to [12].70
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Also related are kernel based xFormers, particularly those using the Nyström method [13, 14]. The71

most related work is [15], which adapts a matrix Nyström method for asymmetric matrices [16] to72

self-attention. We instead adapt this along with SKI [2] to Toeplitz matrices. [17] extends [15] by73

embedding the self-attention matrix into a larger PSD kernel matrix and approximating the larger74

matrix instead. Their final approximate matrix has lower spectral error compared to [15] and higher75

average validation accuracy on LRA [4]. However, their method is slightly slower. Also somewhat76

related are random feature self-attention approximations[18, 19]. These extend [20], but use different77

random features that better approximate self-attention than random Fourier or binning features.78

Sparse transformers are also relevant. [21] proposed using strided and fixed patterns. [22] alternated79

between sparse locally banded and dense attention. Finally, [23] proposed combining random80

attention, window attention and global attention. Our use of a short convolutional filter is most similar81

to window attention. The space of efficient transformers is huge and there are many models that we82

haven’t covered that may be relevant. [10] provides an excellent survey.83

Other successful long sequence approaches include state space models [24, 25, 26], long convolution84

[27, 28], adding moving averages to gated attention [29] and more [30].85

3 Modeling Approach86

We review Toeplitz neural networks (TNNs) in section 3.1. We next speed up the TNN’s Toeplitz87

neural operator (TNO). We discuss using Nyström and SKI approaches to bidirectional training in88

3.2. We discuss frequency based approaches, particularly for causal training in 3.3.89

3.1 Preliminaries: Toeplitz matrices and Toeplitz Neural Networks90

TNNs [1] replace self-attention, which computes the action of self-attention matrices that encode91

the similarity between both observation values and absolute positions, with the action of Toeplitz92

matrices that encode similarity only based on relative positions. Toeplitz matrices have, for each93

diagonal, the same entries from left to right. That is, Tij = ti−j ,T ∈ Rn×n. Unlike self-attention94

matrices, which require O(n2) memory, a Toeplitz matrix has 2n− 1 unique elements and requires95

O(n) memory. Due to close connections with discrete-time convolution, Tx can be computed in96

O(n log n) time by embedding T in a circulant matrix and applying FFT.97

A TNN [1] has multiple sequence modeling blocks, which we show in Figure 3 in Appendix A. Each98

block has a Gated Toeplitz Unit (GTU), which does both token and channel mixing, followed by a99

Gated Linear Unit (GLU) [31], which does channel mixing. The core of the GTU is the Toeplitz100

Neural Operator (TNO), which does token mixing and is the part of the architecture that we modify.101

We now describe the TNO, shown in Figure 3b of Appendix A. Given a sequence X ∈ Rn×d of102

length n and dimension d in discrete time, there are 2n− 1 unique relative positions/times i− j for103

i, j = 1, . . . , n. An RPE : Z→ Rd neural network maps each relative position to a d-dimensional104

embedding. These embeddings are used to construct Toeplitz matrices Tl for l = 1, . . . , d using105

Tl
ij = λ|i−j|RPEl(i− j).

RPEl(i− j) is a learned similarity between positions for dimension l, while λ|i−j| with λ ∈ (0, 1)106

is an exponential decay bias penalizing far away tokens to be dissimilar. We can interpret Tl
ij as107

evaluating a stationary non-SPD kernel kl(i− j) = λ|i−j|RPEl(i− j). Thus Tl can be interpreted108

as a pseudo or generalized Gram matrix. Letting xl be the lth column of X, the TNO outputs109

TNO(X) = (T1x1 . . .Tdxd) ∈ Rn×d

where each Tlxl is computed via the FFT as described above.110

The main costs are the RPE’s MLP, the FFT, and the decay bias. We aim to eliminate the MLP and111

decay bias when possible. In the bidirectional setting, we use SKI to apply the FFT using a much112

smaller Toeplitz matrix. In a separate model we learn the RPE’s frequency response directly. In the113

bidirectional setting, this allows us to both avoid explicitly modeling the decay bias and use one fewer114

FFT. In the causal setting, it allows us to avoid explicitly modeling the decay bias.115
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Figure 2: Our SKI-TNO and FD-TNO modifications: (a) We decompose Toeplitz matrices into
sums of sparse + smooth components. Additionally, we use interpolation instead of an MLP to
learn the RPE. (b) We use a 1D convolution to apply the sparse component and SKI as a low-rank
approximation to the smooth component. (c) For the causal case, we use frequency domain RPE with
a Hilbert Transform to enforce causality. (d) Our FD-TNO also is competitive in the bidirectional
case, with one fewer FFT than TNO.

3.2 SKI Based Approaches for Bidirectional Training116

For a given Toeplitz matrix T, we assume it admits a decomposition that we can approximate with a117

sparse+low-rank representation, T = Tsparse +Tsmooth ≈ Tsparse +Tlow. Our bidirectional training118

thus consists of three primary components. The first, the sparse component Tsparse is straightforward.119

Applying the action Tsparsex of Tsparse ∈ Rn×n with m non-zero diagonals is equivalent to applying120

a 1D convolution layer with filter size m. We then discuss our asymmetric SKI for Tlow in section121

3.2.1. Finally, we discuss how we handle sequence lengths not observed in training for Tlow via an122

inverse time warp in section 3.2.2. Algorithm 1 summarizes our TNO based on these techniques.123

Algorithm 1 Sparse Plus Low Rank Bidirectional TNO with Asymmetric SKI

Given sequence X ∈ Rn×d with columns xl
Hyperparameters rank r ≪ n, sparse filter size m, interpolation degree N , decay parameter λ
Compute inducing points p1, . . . , pr evenly spaced on [0, n]
for l = 1, . . . , d do

Compute Tl
sparsex

l with a 1D convolutional filter, size m.
Let x(t) = sign(t)λ|t|.
Form Al ∈ Rr×r with entries Al

ij = kl(pi − pj) = RPEl(x(pi − pj))
Form Wl ∈ Rn×r degree N polynomial interpolation matrix
Compute Tl

lowx
l with Tl

low = WlAlWl⊤

end for
Return TNO(X) = (T1

sparsex
1 +T1

lowx
1, . . . ,Td

sparsex
d +Td

lowx
d)

3.2.1 SKI For Asymmetric Nyström124

Given an asymmetric stationary kernel k : R× R→ R, we wish to approximate the (pseudo) Gram125

matrix T ∈ Rn×n using a low-rank approximation based on a smaller Gram matrix A ∈ Rr×r, with126

r ≪ n. In context, A is formed using relative positions between a set of inducing points p1, . . . , pr127

instead of the full set 1, . . . , n that is used for T. That is,128

Tij = k(i− j) and Aij = k(pi − pj).

In our case, the inducing points are uniformly spaced. Some submatrices of A may be submatrices of129

T (if inducing points are also observation points). To derive the Nyström approximation, we form an130
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augmented Gram matrix K ∈ R(n+r)×(n+r) in block form as131

K =

(
A B
F T

)
,

where B ∈ Rr×n and F ∈ Rn×r are respectively the upper right and lower left partitions of the large132

Gram matrix K. Explicitly,133

Bij = k(pi − j) and Fij = k(i− pj).

Extending [16] to allow singular A,134

K̂ =

(
A
F

)
A† (A B) =

(
A AA†B

FA†A FA†B

)
where A† is the Moore-Penrose pseudo-inverse satisfying AA†A = A (but not necessarily AA† = I135

as in [16], which shows up in our different expressions for off-diagonal blocks of K̂). Following136

structured kernel interpolation (SKI) [2], we approximate F and B using interpolation. Specifically,137

F ≈WA and B ≈ AW⊤

where W ∈ Rn×r is a matrix of sparse interpolation weights with up to two non-zero entries per row138

for linear interpolation or up to four for cubic. These weights can be computed in closed form from139

the inducing points pi and the observation points i. Thus we have140

T ≈ FA†B ≈WAA†AW⊤ = WAW⊤

⇒ T̃ = WAW⊤

as desired. We can set Tlow = T̃ and compute T̃x by first applying W⊤x, which is an O(n)141

operation due to W ∈ Rn×r having sparse rows. Next, we apply A(W⊤x). Since A is a Toeplitz142

matrix, this is O(r log r) as per Section 3.1. Finally, W(AW⊤x), the action of W, is again an O(n)143

operation. Thus computing T̃x is O(n+ r log r) computation. On a GPU, this factorization achieves144

a speedup from having small r and being able to leverage efficient parallelized matrix multiplication145

on specialized hardware. However, in PyTorch [32], we note that for medium sized matrices up to146

n = 512, the time required for data movement in order to perform sparse-dense matrix multiplications147

can be higher than that of simply performing dense matrix multiplication. This means that in practice,148

we may instead choose to perform batched dense matrix multiplication, which yields an absolute149

speedup but a worse asymptotic complexity of O(nr2 + r log r).150

3.2.2 Inverse Time Warp151

TNNs use kl(i− j) = λ|i−j|RPEl(i− j), where RPEl(i− j) is an MLP. There are two issues: 1) the152

sequential computations required for an MLP are slow, and we only need to evaluate at 2r − 1 points153

using SKI instead of 2n− 1 to produce the full matrix; 2) extrapolation is used in extending to longer154

sequence lengths than the MLP was trained on, which is generally less reliable than interpolation.155

In Proposition 1, we note that an MLP f : R→ Rd with ReLU activations and layer normalization is156

d piecewise linear functions. As we only need to evaluate at 2r − 1 points, we could let RPEl be a157

piecewise linear function with r grid points. However, we still need to handle extrapolation. We use158

an inverse time warp and let RPEl linearly interpolate on [−1, 1] with the constraint RPEl(0) = 0159

and define x(t) = sign(t)λ|t| for some 0 < λ < 1. We then let kl(i− j) = RPEl(x(i− j)).160

3.3 Frequency Based Approaches161

3.3.1 Causal Training162

The SKI approach allows training bidirectional TNNs with linear complexity. However, fast causal163

masking negates SKI’s benefits (see Appendix B). Thus we need an alternate causal speedup. We164

use an MLP in the Fourier domain to avoid an explicit time domain decay bias, and use the Hilbert165

transform to enforce causality. We now describe how we can learn a causal kernel when working in166

frequency domain (FD). We first define the discrete Hilbert transform, the key tool for achieving this.167
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Definition 1. The discrete Hilbert transform of the discrete Fourier transform k̂ is given by168

H{k̂} = k̂ ∗ h
where ∗ denotes convolution and169

h[l] =

{
0, l even
2
πl , l odd

The real and imaginary parts of the Fourier transform of a causal function are related to each other170

through the Hilbert transform. Thus, in order to represent a causal signal, we can model only the real171

part and compute the corresponding imaginary part. That is, we first estimate an even real function k̂172

(symmetric about 0) using an MLP. We then take k̂causal(ω) = k̂(ω)− iH{k̂}(ω).173

The inverse Fourier transform kcausal of k̂causal will thus be causal. For a discussion of why this ensures174

causality, see [33]. See Algorithm 2 for TNO pseudocode using this approach. Different choices for175

the smoothness of the frequency domain MLP will lead to different decay rates in time domain, so176

that smoothness in frequency domain essentially serves the same purpose as the decay bias in [1]. We177

discuss this theoretically in Section 4.2. Note that we also find that working directly in the frequency178

domain for bidirectional models (without the Hilbert transform) is often competitive with SKI for179

speed (despite being O(n log n) instead of O(n+ r log r)) due to needing one fewer FFT.180

Algorithm 2 Causal TNO via Discrete Hilbert Transform

Given sequence X ∈ Rn×d with columns xl
Hyperparameters activation function
for l = 1, . . . , d do

x̂l ← F{xl}, where F is the rFFT.
Compute even real function k̂l = RPEl(ω), ω = mπ

n ,m = 0, . . . , n.
Take discrete Hilbert transformH{k̂l} via the rFFT and irFFT.
Compute k̂lcausal(ω) = k̂l(ω)− iH{k̂l}(ω) for ω = mπ

n ,m = 0, . . . , n.
yl ← F−1{k̂lcausal ⊙ x̂l}, where F−1 is the irFFT and ⊙ denotes an element-wise product.

end for
Return TNO(X) = (y1, . . . ,yd)

3.3.2 Bidirectional Training with FD TNN181

We extend the FD approach to bidirectional training by removing the causality constraint and model182

the complex frequency response of real valued time domain kernels directly. To do so we simply183

double the output width of the RPE and allocate each half for the real and imaginary parts of the184

kernel frequency responses, while explicitly forcing real-valued responses at ω = 0 and π. While185

increasing the complexity of the RPE slightly, we achieve the speed ups in Figure 1 by eliminating186

the FFTs for the kernels and causality constraint, in addition to the decay bias.187

4 Theory188

We show in Proposition 1 that an MLP mapping from scalars with layer norm and ReLU activations189

is piecewise linear and continuous, suggesting that using an MLP that we only need to evaluate at a190

small number of points may be overparametrized, justifying the use of interpolated piecewise linear191

functions. In section 4.1 we analyze the spectral norm of the matrix approximation error for SKI. We192

assume the sparse component is exactly identifiable and bound the error of approximating the smooth193

term via a low-rank SKI factorization. We leave the problem of relaxing this assumption to future194

work. In section 4.2, we analyze how by using different activations with different smoothness when195

learning the DTFT of the kernel, we obtain corresponding decay rates for the time domain signal.196

Proposition 1. A ReLU MLP f : R → Rd with layer norm and no activation on its output is d197

piecewise linear continuous functions.198

Proof. See Appendix C.199
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4.1 Matrix Approximation Spectral Norm Error200

We give our main error bound for our SKI based low rank approximation. Note that this requires201

that our kernel is N + 1 times continuously differentiable, while the kernel we use in practice uses a202

piecewise linear function and is thus non-differentiable. In theory, we would need a smoother kernel,203

adding additional computation overhead. However, we find that empirical performance is still strong204

and thus we simply use piecewise linear kernels but include the error bound for completeness. Our205

results depends on the Nyström error Enyst: its l2 norm is bounded in [16].206

Theorem 1. Assume that A is non-singular and k : [p1, pr]→ R is an N + 1 times continuously207

differentiable function, where p1 is the smallest inducing point and pr is the largest. Let Tr,opt be208

the optimal rank r approximation to T and let209

ESKI = WAW⊤ −Tr,opt

be the difference between the SKI approximation using linear interpolation and the optimal one, while210

Enyst = FA−1B−Tr,opt

is the difference between the Nyström approximation and the optimal one. Then211

∥ESKI∥2 ≤
√
nr max

pn1
≤i≤pnN

|ψN (i)|
(N + 1)!

L

(
(N + 1)

√
n+

min(σ1(F), σ1(B))

σr(A)

)
+ ∥Enyst∥2.

where ψN (i) =
∏N
j=1(i − pnj

) with pnj
being the jth closest inducing point to i, L is an upper212

bound on the N + 1th derivative of k, and σi(M) denotes the ith largest singular value of matrix M.213

Proof. See Appendix D.1.214

For linear interpolation |ψN (i)|
(N+1)! ≤

h2

8 , where h is the spacing between two neighboring inducing215

points. We have considered the sparse component of the Toeplitz matrix to be identifiable and focused216

on the error of approximating the smooth component. While there are potential approaches to relaxing217

this assumption [34, 35, 36, 37, 38, 39, 40], they must be adapted properly to the Toeplitz setting.218

Thus, this additional analysis is outside the scope of this paper and a fruitful direction for future work.219

4.2 Smoothness in Fourier Domain Implies Decay in Time Domain220

We now discuss activation function choices when directly learning the discrete time Fourier transform221

(DTFT) k̂ as an MLP. In practice, we sample the DTFT to obtain the actually computable discrete222

Fourier transform (DFT) by evaluating the MLP with uniform spacing. Different levels of smoothness223

of the MLP k̂ imply different decay rates of the signal k. One can think of the choice of activation224

function as a parametric form for the decay bias. For an MLP, using a GeLU activation implies225

super-exponential time domain decay. Using SiLU implies super-polynomial time domain decay. For226

ReLU the signal is square summable. While this subsection focuses on the theoretical relationship227

between smoothness and decay, in Appendix E.3 we show visualizations demonstrating that these228

relationships are observed in practice. We first define the DTFT and its inverse.229

Definition 2. The discrete time Fourier transform [41, 33] k̂ or F{k} of k is given by230

k̂(ω) ≡
∞∑

m=−∞
k[m] exp(−iωm)

Definition 3. The inverse discrete time Fourier transform of the DTFT k̂ is given by231

F−1{k̂}[n] ≡ 1

2π

∫ π

−π
k̂(ω) exp(iωn)dω

We now give three theorems relating smoothness of the DTFT to decay of the signal (its inverse).232

Theorem 2. Using a GeLU MLP for the DTFT k̂, for all a > 0, the signal k[n] will have decay233

k[n] = O(exp(−an)).

7



Proof. See Appendix E.1.234

Theorem 3. Using a SiLU MLP for the DTFT k̂, the signal k[n] will have decay235

|k[n]| ≤ 1

2π|n|N
∥∥k̂(N)

∥∥
1

for all n ̸= 0, N ∈ N.236

Proof. See Appendix E.2.237

Theorem 4. Using a ReLU MLP for the DTFT k̂ implies ∥k∥2 <∞ (the signal is square summable).238

Proof. Note that k̂ ∈ L2[−π, π] since it is continuous. Then apply Parseval’s theorem.239

5 Experiments240

We perform experiments in two areas: pre-training a causal language model on Wikitext-103 [8] and241

training bidirectional models on Long-Range Arena. We start with the repositories of the TNN paper1242

and use their training and hyper-parameter settings unless indicated otherwise. We use A100 and243

V100s for training, and a single A100 for timing experiments.244

5.1 Pre-training on Wikitext-103245

In the causal case we aim to predict the next token, conditional on a fixed length sequence of previous246

tokens. Table 1 compares FD-TNN’s causal pre-training perplexity [8] to existing models: it almost247

exactly matches that of TNNs. Our approach is faster for the same capacity: at sequence length 512248

with 6 layer RPEs (as in the TNN paper), FD TNN is 15% faster than the baseline TNN on a single249

A100 GPU. When both use a three layer RPE, FD TNN is 10% faster. We provide some additional250

details for this experiment as well as for bidirectional pre-training (we see larger speed gains) in251

Appendix F.252

5.2 Long-Range Arena253

The Long-Range Arena (LRA) is a benchmark with several long sequence datasets. The goal is to254

achieve both high LRA score (predictive performance) and training steps per second. Following [1],255

we take the TNN architecture and their tuned hyperparameter (HP) configurations2, simply replacing256

their TNO module with our SKI-TNO module with r = 64 and m = 32. We use λ = 0.99 where257

they set λ = 1, but otherwise perform no additional HP tuning on 1D tasks and use smaller layers258

r = 32 and m = 16 for the 2D tasks. For FD-TNN, we simply use a same-sized RPE for all tasks259

except a 3-layer RPE for the CIFAR task. We could potentially achieve even higher accuracy with260

more comprehensive tuning on the 2D tasks or any tuning for the 1D tasks. We select the checkpoint261

with the highest validation accuracy and report the corresponding test accuracy. SKI-TNN achieves262

similar average accuracy than TNN at lower size, while FD-TNN achieves higher accuracy. We263

suspect that for some of these problems, the square summable signal implied by ReLU in frequency264

domain is a better parametric form than applying exponential decay bias. We show our results in265

Table 2.266

We additionally perform timing and memory profiling tests on a single 1x A100 instance, keeping267

the per-GPU batch size constant as in the training runs. In Figure 1a, we plot for each 1D task the268

percentage of TNN accuracy achieved vs the percentage speedup relative to TNN, with the size of269

the marker corresponding to the peak memory usage measured. We highlight the 1D tasks because270

they required no tuning, and they represent the longest sequences at lengths ranging from 1024 to271

4096, whereas the 2D tasks are treated as separate 1D sequences in each dimension, so that a 32× 32272

image is seen as alternating length 32 sequences. We note that because the effective sequence lengths273

are shorter, there is less benefit from using our methods over the baseline TNN.274

1https://github.com/OpenNLPLab/Tnn
2https://github.com/OpenNLPLab/lra
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Architecture PPL (val) PPL (test) Params (m)
(Attn-based)
Trans 24.40 24.78 44.65
LS 23.56 24.05 47.89
Flash 25.92 26.70 42.17
1+elu 27.44 28.05 44.65
Performer 62.50 63.16 44.65
Cosformer 26.53 27.06 44.65
(MLP-based)
Syn(D) 31.31 32.43 46.75
Syn(R) 33.68 34.78 44.65
gMLP 28.08 29.13 47.83
(SS-based)
S4 38.34 39.66 45.69
DSS 39.39 41.07 45.73
GSS 29.61 30.74 43.84
(TNN-based)
TNN (reproduced, 3 layers) 23.98 (23.96) 24.67 (24.61) 48.68 (48.59)
FD-TNN: Ours, 3 layers 23.97 24.56 48.58

Table 1: Performance on Wikitext-103, Causal Language Model. We reproduce [1]’s table except
for the bottom two rows corresponding to the baseline TNN and our FD-TNN. For both we use the
same RPE config with 3 layers. We add in parenthesis the baseline TNN results that we reproduced.
We have nearly the same perplexity as the baseline TNN. Our approach is faster: at sequence length
512 with a six layer RPE (as in the TNN paper), FD TNN is 15% faster than the baseline TNN. For a
three layer RPE, it is 10% faster.

Architecture Text ListOps Retrieval Pathfinder Image Avg
TNN 86.39 47.33 89.40 73.89 77.84 74.97
SKI-TNN 83.19 45.31 88.73 68.30 76.46 72.40
FD-TNN 85.00 55.21 90.26 69.45 84.12 76.81

Table 2: Performance on Long Range Arena. We reproduce experiments and train our proposed
variants using tuned hyperparameters from [1]. We bold the best and underline the second in each
task. Our proposed SKI-TNN and FD-TNN achieve similar overall performance with no additional
hyperparameter tuning on 1D LRA tasks and a minimal amount of tuning on 2D tasks.

6 Conclusion275

In this paper, we note that [1]’s Toeplitz neural networks essentially apply the action of a generalized276

Gram matrix (the Toeplitz matrix) for an asymmetric kernel (the RPE times decay bias) as their main277

computationally expensive operation. The visualized learned Gram matrices motivate a sparse and278

low rank decomposition. We thus propose two different approaches to improve efficiency. In the279

bidirectional setting, we extend SKI to the asymmetric setting and use linear interpolation over a280

small set of inducing points to avoid the MLP entirely, while using an inverse time warp to handle281

extrapolation to time points not observed during training. This approach reduces the mathematical282

complexity from O(n log n) to O(n+ r log r), where r is the number of inducing points. However283

in practice, we do not actually use O(n+ r log r) code due to a reshape required for sparse tensors284

leading to them actually being slower than dense tensors. Thus we actually use O(nr2 + r log r) in285

code: still much faster than Baseline TNN for small r. For causal training, as causal masking negates286

SKI’s benefits, we instead eliminate the explicit decay bias. We do this by working directly in the287

frequency domain, enforcing causality via the Hilbert transform and enforcing decay in time domain288

via smoothness. For the bidirectional case, we eliminate the FFT applied to the kernels. While this289

maintains O(n log n) computational complexity, it leads to a substantial speedup in practice and290

beats TNNs on LRA score.291
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A Toeplitz Neural Network Architecture Diagrams427

TNN
Output

Input

.

GLU

Linear

Linear Linear

TNO

GTU

(a) TNN architecture.

TNO (concept)

Toeplitz Matrices

Output

Input

x d

MLPRPE

2n-1

(b) TNO module.

TNO (computation)
Output

Input

x d

MLPRPE

FFT

IFFT

. FFT

Filters

2n-1

(c) Fast computations to imple-
ment TNO.

Figure 3: Toeplitz Neural Network and Toeplitz Neural Operators: (a) The overall architecture of a
TNN layer [1]. (b) Conceptually, the TNO multiplies each channel of the input by a different Toeplitz
matrix. (c) Computationally, the TNO uses FFT’s for speed.

B Causal Masking negates SKI’s benefits428

We now show how requiring causal masking for SKI negates its computational benefits on popular429

hardware accelerators that optimize parallelized matrix multiplication, such as GPUs. Thus, we will430

need an alternative approach.431

First, let’s examine the algorithm from [3]. Let x′ = Tx, the subscripted wi ∈ Rr denote the i-th432

row of W taken as a column vector, and the subscripted square bracketed [W]i denote taking the433
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i-th row as a column. That is,434

x′ = (x′1 . . . x′n)
⊤

W = (w1 . . . wn)
⊤

x = (x1 . . . xn)
⊤

[W]i = wi.

Then435

x′i =

i∑
j=1

w⊤
i Awjxj

Let us define intermediate sums and resulting recursions,436

si
∆
=

i∑
j=1

wjxj ∈ Rr

⇒ si+1 = si +wi+1xi+1

s′i
∆
=

i∑
j=1

Awjxj ∈ Rr

⇒ s′i+1 = si +Awi+1xi+1

so that437

x′i = w⊤
i s

′
i = w⊤

i Asi = [WA]⊤i si.

While we want to apply the action of A to W⊤x ∈ Rr once, which takes O(r log r). Instead,438

we have to compute one of: (a) Asi ∀i = 1, . . . , n; (b) WA; or (c) AW⊤; all of which take at439

least O(nr). However, that is not even the largest practical loss. Instead, it is the fact that both440

cumulative sums si and s′i are sequential in nature to compute efficiently (it is possible to parallelize441

the computation with O(n2r) memory complexity, also defeating the purpose of this exercise). We442

found that the sequential nature of the cumulative sum makes it slower than the baseline TNN with443

FFTs in practice for moderate sequence lengths of at least up to 2048 on current GPUs (NVidia V100,444

A10, A100). Thus, we need to find an alternate approach for the causal setting.445

C Proofs Related to Proposition 1446

We first introduce two auxiliary lemmas, and then prove our main result, which follows immediately447

from the auxiliary lemmas.448

Lemma 1. A ReLU MLP f : R→ R with no activation on its output is piecewise linear continuous.449

Proof. Each pre-activation node is a linear combination of piecewise linear continuous functions,450

and is thus piecewise linear continuous. Each activation applies ReLU, which is piecewise linear and451

the composition of piecewise linear continuous functions is also piecewise linear continuous. The452

output is a pre-activation and is thus piecewise linear continuous.453

Lemma 2. Adding layer normalization to a ReLU MLP f : R→ R preserves piecewise linearity.454

Proof. Layer normalization applies the same affine transformation to each node in a layer. Since an455

affine transformation of a piecewise linear continuous function is still piecewise linear continuous,456

adding layer normalization to an MLP preserves piecewise linear continuity.457

Proposition 1. A ReLU MLP f : R → Rd with layer norm and no activation on its output is d458

piecewise linear continuous functions.459

Proof. Follows immediately from Lemmas 1 and 2.460

D Proofs for Matrix Approximation Error Spectral Norm461

D.1 Proof of Theorem 1462

Theorem 1. Assume that A is non-singular and k : [p1, pr]→ R is an N + 1 times continuously463

differentiable function, where p1 is the smallest inducing point and pr is the largest. Let Tr,opt be464

the optimal rank r approximation to T and let465

ESKI = WAW⊤ −Tr,opt
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be the difference between the SKI approximation using linear interpolation and the optimal one, while466

Enyst = FA−1B−Tr,opt

is the difference between the Nyström approximation and the optimal one. Then467

∥ESKI∥2 ≤
√
nr max

pn1≤i≤pnN

|ψN (i)|
(N + 1)!

L

(
(N + 1)

√
n+

min(σ1(F), σ1(B))

σr(A)

)
+ ∥Enyst∥2.

where ψN (i) =
∏N
j=1(i − pnj

) with pnj
being the jth closest inducing point to i, L is an upper468

bound on the N + 1th derivative of k, and σi(M) denotes the ith largest singular value of matrix M.469

Proof. We first decompose the difference between the SKI approximation and the optimal rank470

r approximation into the sum of two terms: the difference between the SKI and the Nyström471

approximations, and the difference between the Nyström and optimal rank r approximations.472

ESKI = WAW⊤ −Tr,opt

= WAW⊤ − FA−1B+ FA−1B−Tr,opt

= WAW⊤ − FA−1B+Enyst

so that473

∥ESKI∥2 ≤ ∥WAW⊤ − FA−1B∥2 + ∥Enyst∥2

We need to bound ∥WAMW⊤ − FA−1B∥2, the operator norm of the difference between the SKI474

and the Nyström approximations.475

∥WAA−1AW⊤ − FA−1B∥2
= ∥WAA−1AW⊤ − FA−1AW⊤ + FA−1AW⊤ − FA−1B∥2
≤ ∥WA− F∥2∥W⊤∥2 + ∥FA−1∥2∥AW⊤ −B∥2

≤ σ1(W)∥WA− F∥2 +
σ1(F)

σr(A)
∥AW⊤ −B∥2. (1)

The first term describes the error due to approximation of F, the left Nyström factor, while the second476

term describes the error due to approximation of B, the right one. We can use standard interpolation477

results to bound ∥WA− F∥2 and ∥AW⊤ −B∥2. Recall that the left Nyström factor and inducing478

Gram matrix have terms479

Fij = k(i, pj)

Aij = k(pi, pj),

so that (WA)ij = k̃(i, pj) approximates Fij = k(i, pj) using interpolation. For linear interpolation480

this is481

k̃(i, pj) = wik(pA, pj) + (1− wi)k(pB , pj).

where pA, pB are the two closest inducing points to i. More generally with polynomial interpolation482

of degree N we use pn1
, . . . , pnN

to denote the N closest inducing points to i. Using the Lagrange483

error formula, polynomial interpolation has the following error bound [42]484

|k̃(i, pj)− k(i, pj)| ≤
∣∣∣∣ ψN (i)

(N + 1)!

∣∣∣∣ max
pn1≤x≤pnN

∣∣∣∣ ∂N+1

∂xN+1
k(x, pj)

∣∣∣∣
where ψN (i) =

∏N
j=1(i− pnj

). As an example, for linear interpolation this gives485

|k̃(i, pj)− k(i, pj)| ≤
∣∣∣∣ (i− pA)(i− PB)2

∣∣∣∣ max
pA≤x≤pB

∣∣∣∣ ∂2∂x2 k(x, pj)
∣∣∣∣

≤ h2

8
max

pA≤x≤pB

∣∣∣∣ ∂2∂x2 k(x, pj)
∣∣∣∣ ,
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where h = pB − pA is the distance between any two neighboring inducing points. Note that we486

assumed the N + 1th partial is continuous and since we are interested in k on a compact domain, the487

N + 1th partial is bounded, say by L. Thus,488

|k̃(i, pj)− k(i, pj)| ≤
∣∣∣∣ ψN (i)

(N + 1)!

∣∣∣∣L
⇒ (k̃(i, pj)− k(i, pj))2 ≤

(
ψN (i)

(N + 1)!

)2

L2

and thus we can bound the error in the Frobenius norm of the left factor’s SKI approximation as489

∥WA− F∥2F ≤ nr max
pn1

≤i≤pnN

(
ψN (i)

(N + 1)!

)2

L2

⇒ ∥WA− F∥F ≤
√
nr max

pn1
≤i≤pnN

|ψN (i)|
(N + 1)!

L.

This implies an operator norm bound490

∥WA− F∥2 ≤ ∥WA− F∥F

≤
√
nr max

pn1
≤i≤pnN

|ψN (i)|
(N + 1)!

L.

The right factor approximation ∥AW⊤ −B∥2 has the same bound. Plugging into Eqn. 1, we have491

∥WAA−1AW⊤ − FA−1B∥2 ≤
√
nr max

pn1≤i≤pnN

|ψN (i)|
(N + 1)!

L

(
σ1(W) +

σ1(F)

σs(A)

)
which gives492

∥ESKI∥2 ≤
√
nr max

pn1≤i≤pnN

|ψN (i)|
(N + 1)!

L

(
σ1(W) +

σ1(F)

σr(A)

)
+ ∥Enyst∥2.

Now recall that493

σ1(W) = ∥W∥2
≤
√
n∥W∥∞

≤ (N + 1)
√
n

since W has at most N + 1 non-zero entries in each row , so that494

∥ESKI∥2 ≤
√
nr max

pn1
≤i≤pnN

|ψN (i)|
(N + 1)!

L

(
(N + 1)

√
n+

σ1(F)

σr(A)

)
+ ∥Enyst∥2.

Note that we could have alternatively expanded Eqn. 1 using terms based on B instead of F. This495

gives496

∥WAA−1AW⊤ − FA−1B∥2
= ∥WAA−1AW⊤ −WAA−1B+WAA−1B− FA−1B∥2

≤ ∥W∥2∥AW⊤ −B∥2 + ∥WA− F∥2∥A−1B∥2

≤ σ1(W)∥AW⊤ −B∥2 +
σ1(B)

σr(A)
∥WA− F∥2.. (2)

Using Eqn. 2 instead of Eqn. 1 and taking the min of both results leads to a bound of497

∥ESKI∥2 ≤
√
nr max

pn1
≤i≤pnN

|ψN (i)|
(N + 1)!

L

(
(N + 1)

√
n+

min(σ1(F), σ1(B))

σr(A)

)
+ ∥Enyst∥2.

498
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E Smoothness and Decay499

E.1 GeLU: Proofs Related to Theorem 5500

We analyze how modeling the DTFT with a GeLU MLP affects smoothness, the strongest form being501

an entire function, which is complex differentiable everywhere. We then analyze what this implies502

for the signal. We first recap three basic definitions from complex analysis. In Lemmas 3 and 4, we503

show GeLU MLPs are entire. In 2 we show that if a DTFT is entire then the signal will decay at faster504

than any exponential rate. Finally in Theorem 5, we show that modeling the DTFT with a GeLU505

MLP implies that the signal will decay faster than any exponential rate.506

Definition 4. The complex derivative of f : C→ C at z0 ∈ C is defined as507

f ′(z0) = lim
z→z0

f(z)− f(z0)
z − z0

.

Definition 5. A function f : C→ C is holomorphic at z0 ∈ C if it is differentiable on a neighborhood508

of z0.509

Definition 6. A function is entire if it is holomorphic on C.510

Lemma 3. The complex extension of the GeLU activation function is entire.511

Proof. The GeLU activation function is xΦ(x), where Φ(x) is the standard normal CDF. The complex512

extension is thus zΦ(z). Recall that513

Φ(z) =
1 + Erf(z/

√
2)

2

where Erf is the error function. Clearly z/
√
2 is holomorphic on C. It is well known that Erf is514

holomorphic on C (see [43] for proof) and compositions of holomorphic functions are holomorphic.515

Thus Φ(z) is holomorphic. Finally, the product of holomorphic functions is holomorphic, so that516

zΦ(z) is. Since all of this was holomorphic on C, the complex extension of the GeLU activation517

function is entire.518

Lemma 4. Each output node of a GeLU MLP with layer norm is an entire function.519

Proof. Linear combinations of holomorphic functions are holomorphic, as are compositions. Pre-520

activations are linear combinations and activations are compositions. The layer-norms are affine521

transformations, which are also holomorphic. Thus each output node is an entire function.522

Proposition 2. If the DTFT is entire then523

k[n] = O(exp(−an))
for all a > 0.524

Proof. Let’s consider the Fourier series of k̂(−ω), which is also entire. Its nth coefficient is given by525

cn =
1

2π

∫ π

−π
k̂(−ω) exp(−ωin)dω.

Let u = −ω; then du = −dω and526

cn = − 1

2π

∫ π

−π
k̂(u) exp(uin)du

= −k[n].
Now, Fourier series coefficients for analytic functions in a strip [−a, a] decay as O(exp(−an)).527

Theorem 5. Using a GeLU MLP for the DTFT k̂, for all a > 0, the signal k[n] will have decay528

k[n] = O(exp(−an)).

Proof. Follows immediately from Lemma 4 and Proposition 2.529
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E.2 SiLU: Proofs Related to Theorem 3530

We first argue in Lemma 5 that the SiLU activation function is C∞. We then show in Proposition 3531

that SiLU MLPs with layer norm are C∞ and have integrable derivatives on compact domains. Next532

in Lemma 6, we argue that for an integrable DTFT, its inverse is bounded by a term proportional to533

the integral of the DTFT. In Proposition 4, we use the previous lemma to show that the DTFT being534

N times differentiable implies a decay rate for the original signal. Finally, we prove our main result,535

that using a SiLU MLP to model a DTFT leads to faster than any polynomial rate in the time domain.536

Lemma 5. SiLU is C∞.537

Proof. The sigmoid function is C∞, as is the function x. The product of C∞ functions is C∞.538

Proposition 3. A SiLU MLP mapping scalars to scalars with layer norm is C∞ with integrable539

derivatives on [−π, π].540

Proof. A SiLU MLP with layer norm involves finite linear combinations and finitely many compo-541

sitions of C∞ functions, and is thus C∞. Now any SiLU MLP on a bounded domain has bounded542

derivatives of all orders (since they are continuous on a bounded domain). Thus, all derivatives are543

integrable on [−π, π].544

Lemma 6. If the DTFT k̂ ∈ L1[−π, π], then k is bounded and545

∥k∥∞ ≤
1

2π
∥k̂∥1

Proof. This essentially follows the proof technique of Lemma 9.2.3 in [44], but in the reverse order546

and using the DTFT instead of the continuous Fourier transform. The idea is to express the signal as547

the inverse DTFT, which we can since k̂ ∈ L1[−π, π], and then use the fact that the values on the548

complex unit circle have magnitude 1.549

|k[n]| =
∣∣∣∣ 1

2π

∫ π

−π
k̂(ω) exp(iωn)dω

∣∣∣∣
≤ 1

2π

∫ π

−π
|k̂(ω) exp(iωn)|dω

=
1

2π

∫ π

−π
|k̂(ω)|dω

=
1

2π
∥k̂∥1

550

The next proposition describes how smoothness of the DTFT implies decay of a time domain signal.551

While there are many very related results in the literature (for instance, [44] shows the opposite552

direction for the continuous Fourier transform using a very similar proof technique), we were not553

able to find exactly this result stated or proven rigorously. Thus we state and prove it.554

Proposition 4. If the Nth derivative of DTFT k̂ exists and is integrable on [−π, π] then555

|k[n]| ≤ 1

2π|n|N
∥k̂(N)∥1

for all n ̸= 0.556

Proof. We first take the derivative of the DTFT557

k̂(ω) =

∞∑
m=−∞

x[m] exp(−iωm)

k̂′(ω) =
1

i

∞∑
m=−∞

mx[m] exp(−iωm).
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Since k̂ is integrable over [−π, π], we can plug it into the inverse DTFT558

1

2π

∫ π

−π
k̂′(ω) exp(iωn) =

1

2π

∫ π

−π

1

i

∞∑
m=−∞

mk[m] exp(−iωm) exp(iωn)dω

=
1

i

∞∑
m=−∞

mk[m]δ[n−m]

=
n

i
k[n]

so that if k̂ and k̂′ are integrable, we obtain the key identity relating the inverse DTFTs of a DTFT559

and its derivative560

F−1{k̂} = i

n
F−1{k̂′}. (3)

Thus561

|k[n]| ≤ 1

|n|

∣∣∣F−1{k̂′}[n]
∣∣∣

≤ 1

n2

∣∣∣F−1{k̂(2)}[n]
∣∣∣ Eqn. 3, since k̂(2) integrable

≤ 1

|n|N
∣∣∣F−1{k̂(N)}[n]

∣∣∣ applying recursively, since N th derivative integrable

≤ 1

2π|n|N
∥∥k̂(N)

∥∥
1

where the last line follows from Lemma 6.562

Theorem 3. Using a SiLU MLP for the DTFT k̂, the signal k[n] will have decay563

|k[n]| ≤ 1

2π|n|N
∥∥k̂(N)

∥∥
1

for all n ̸= 0, N ∈ N.564

Proof. This follows immediately from Proposition 3 and Proposition 4.565

E.3 Visualizations for Smoothness and Decay566

We visualize the frequency responses and the corresponding impulse responses generated by the567

frequency domain (FD) RPE under the three activation functions for which we have shown theory,568

with results predicted by theory. For a randomly initialized FD RPE with Gelu activations the impulse569

responses decay to approximately 0 by n = 30: this is very rapid decay and the curves visually look570

like exponential decay. For a randomly initialized SiLU RPE, the resulting impulse responses are571

similar. For the ReLU case we show the generated filters from a trained FD TNN RPE from one of572

the TNN layers. We see the impulse responses visually decay to approximately 0 within the finite573

length of 512 points. This is a slower rate of decay than either of the previous two.574

F Experiment Details and Additional Results575

F.1 Wikitext-103576

F.1.1 Fourier Domain577

For both causal and bidirectional models we use the default model and training hyperparameters578

from the TNN repository as the TNN baseline, defined in the first two columns in [1] Table 13: LM579

(causal) and Roberta (bidirectional). One small HP discrepancy between the repository and table is580

the use of 7 decoder layers for the causal LM, which we used for all LM experiments, instead of the 6581

they had in their paper. We find that we can reduce the default number of RPE layers from 6 to 3 and582

improve the speed of the baseline with slight quality improvements. We provide these reproduced583
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Figure 4: Frequency and impulse responses for a randomly initialized FD RPE MLP with GeLU
activations. The curves on the left side are holomorphic, and theory predicts that the curves on
the right hand will decay at faster than any exponential rate. They appear to decay approximately
exponentially.

Figure 5: Frequency and impulse response for a randomly initialized FD RPE MLP with SiLU
activations. The curves on the left side are C∞, and theory predicts that the curves on the right will
decay at faster than any polynomial rate. They appear visually to have ‘almost’ exponential decay.

Figure 6: Frequency and impulse responses from an FD RPE MLP with ReLU activations, taken
from one layer of a trained FD TNN. The curves on the left are continuous, and theory predicts that
the curves on the right will be square summable. They clearly will vanish at infinity, although it is
not immediately visually clear at what rate.
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(a) Wikitext-103 Causal Pretraining. (b) Wikitext-103 Causal Pretraining.

Figure 7: a) In Wikitext-103 causal pretraining, our approach, FD TNN achieves equivalent perplexity
vs inference length to TNN. b) Validation Perplexity vs iterations. In the causal setting, FD TNN
converges to an equivalent quality at the same rate, but with a 5 to 15% increase in training speed
depending on the RPE MLP depth (see Figure 1). For these experiments, we used a learning rate
1e-3 for FD TNN and the default (5e-4) for the baseline.

(a) Wikitext-103 Bidirectional Pretraining. (b) Wikitext-103 Bidirectional Pretraining (close
up).

Figure 8: a) In Wikitext-103 bidirectional pretraining, after minimal HP tuning from the default,
we observed that FD TNN slightly lags the validation perplexity of the TNN baseline throughout
much of the 50k training iterations, but closes this gap during the last 10k iterations. As a result,
our 35-80% speed up in iterations/sec (Figure 1b) applies to wall clock time assuming one trains
for approximately 50k steps. For these results, we used a learning rate of 1e-3 for FD TNN and the
default (5e-4) for the baseline.

perplexity scores for the baseline in parenthesis in Table 1, next to those reported by [1]. For causal584

pretraining at a 512 sequence length, FD TNN achieves equivalent perplexity vs inference length as585

the TNN baseline (see Figure 7a). We achieve between a 5 and 15 % speed up for the causal case,586

and a nearly 80 % speed up in the best case (6 RPE layers) for the bidirectional case.587

588
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