
Solving Min-Max Optimization with Hidden
Structure via Gradient Descent Ascent

Lampros Flokas∗
Department of Computer Science

Columbia University
New York, NY 10025

lamflokas@cs.columbia.edu

Emmanouil V. Vlatakis-Gkaragkounis∗
Department of Computer Science

Columbia University
New York, NY 10025

emvlatakis@cs.columbia.edu

Georgios Piliouras
Singapore University of Technology & Design

georgios.piliouras@sutd.edu.sg

Abstract

Many recent AI architectures are inspired by zero-sum games, however, the behav-
ior of their dynamics is still not well understood. Inspired by this, we study standard
gradient descent ascent (GDA) dynamics in a specific class of non-convex non-
concave zero-sum games, that we call hidden zero-sum games. In this class, players
control the inputs of smooth but possibly non-linear functions whose outputs are
being applied as inputs to a convex-concave game. Unlike general zero-sum games,
these games have a well-defined notion of solution; outcomes that implement the
von-Neumann equilibrium of the “hidden" convex-concave game. We provide
conditions under which vanilla GDA provably converges not merely to local Nash,
but the actual von-Neumann solution. If the hidden game lacks strict convexity
properties, GDA may fail to converge to any equilibrium, however, by applying
standard regularization techniques we can prove convergence to a von-Neumann so-
lution of a slightly perturbed zero-sum game. Our convergence results are non-local
despite working in the setting of non-convex non-concave games. Critically, under
proper assumptions we combine the Center-Stable Manifold Theorem along with
novel type of initialization dependent Lyapunov functions to prove that almost all
initial conditions converge to the solution. Finally, we discuss diverse applications
of our framework ranging from generative adversarial networks to evolutionary
biology.

1 Introduction

Traditionally, our understanding of convex-concave games revolves around von Neumann’s celebrated
minimax theorem, which implies the existence of saddle point solutions with a uniquely defined value.
These solutions are called von Nemann solutions and guarantee to each agent their corresponding
value regardless of opponent play. Although many learning algorithms are known to be able to
compute such saddle points [13], recently there has there has been a fervor of activity in proving
stronger results such as faster regret minimization rates or analysis of the day-to-day behavior [46,
17, 7, 1, 66, 19, 2, 45, 5, 25, 70, 29, 6, 48, 30, 56].

This interest has been largely triggered by the impressive successes of AI architectures inspired by
min-max games such as Generative Adversarial Networks (GANS) [26], adversarial training [40]
and reinforcement learning self-play in games [63]. Critically, however, all these applications are
based upon non-convex non-concave games, our understanding of which is still nascent. Nevertheless,
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some important early work in the area has focused on identifying new solution concepts that are
widely applicable in general min-max games, such as (local/differential) Nash equilibrium [3, 41],
local minmax [18], local minimax [31], (local/differential) Stackleberg equilibrium [24], local robust
point [69]. The plethora of solutions concepts is perhaps suggestive that “solving" general min-max
games unequivocally may be too ambitious a task. Attraction to spurious fixed points [18], cycles [65],
robustly chaotic behavior [15, 16] and computational hardness issues [20] all suggest that general
min-max games might inherently involve messy, unpredictable and complex behavior.

Are there rich classes of non-convex non-concave games with an effectively unique game theoretic
solution that is selected by standard optimization dynamics (e.g. gradient descent)?

Our class of games. We will define a general class of min-max optimization problems, where each
agent selects its own vectors of parameters which are then processed separately by smooth functions.
Each agent receives their respective payoff after entering the outputs of the processed decision vectors
as inputs to a standard convex-concave game. Formally, there exist functions F : RN → X ⊂ Rn
and G : RM → Y ⊂ Rm and a continuous convex-concave function L : X × Y → R, such that the
min-max game is

min
θθθ∈RN

max
φφφ∈RM

L(F(θθθ),G(φφφ)). (Hidden Convex-Concave (HCC))

We call this class of min-max problems Hidden Convex-Concave Games. It generalizes the recently
defined hidden bilinear games of [65].

Our solution concept. Out of all the local Nash equilibria of HCC games, there exists a special
subclass, the vectors (θθθ∗,φφφ∗) that implement the von Neumann solution of the convex-concave
game. This solution has a strong and intuitive game theoretic justification. Indeed, it is stable even if
the agents could perform arbitrary deviations directly on the output spaces X,Y . These parameter
combinations (θθθ∗,φφφ∗) “solve" the “hidden” convex-concave L and thus we call them von Neumann
solutions. Naturally, HCCs will typically have numerous local saddle/Nash equilibria/fixed points
that do not satisfy this property. Instead, they correspond to stationary points of the F,G where their
output is stuck, e.g., due to an unfortunate initialization. At these points the agents may be receiving
payoffs which can be arbitrarily smaller/larger than the game theoretic value of game L. Fortunately,
we show that Gradient Descent Ascent (GDA) strongly favors von Neumann solutions over generic
fixed points.

Our results. In this work, we study the behavior of continuous GDA dynamics for the class of HCC
games where each coordinate of F,G is controlled by disjoint sets of variables. In a nutshell, we
show that GDA trajectories stabilize around or converge to the corresponding von Neumann solutions
of the hidden game. Despite restricting our attention to a subset of HCC games, our analysis has to
overcome unique hurdles not shared by standard convex concave games.

Challenges of HCC games. In convex-concave games, deriving the stability of the von Neumann
solutions relies on the Euclidean distance from the equilibrium being a Lyapunov function. In contrast,
in HCC games where optimization happens in the parameter space of θθθ,φφφ, the non-linear nature of
F,G distorts the convex-concave landscape in the output space. Thus, the Euclidean distance will
not be in general a Lyapunov function. Moreover, the existence of any Lyapunov function for the
trajectories in the output space of F,G does not translate to a well-defined function in the parameter
space (unless F,G are trivial, invertible maps). Worse yet, even if L has a unique solution in the
output space, this solution could be implemented by multiple equilibria in the parameter space and
thus each of them can not be individually globally attracting. Clearly any transfer of stability or
convergence properties from the output to the parameter space needs to be initialization dependent.
It is worth mentioning that similar challenges like transfering results from the output to the input
space was also faced in the simpler class of hidden bilinear games. However, [65] to sidestep this
issue assume the restricitve requirement of F,G to be invertible operators. Our results go beyond this
simplified case requiring new proof techniques. Specifically, we show how to combine the powerful
technologies of the the Center-Stable Manifold Theorem, typically used to argue convergence to
equilibria in non-convex optimization settings [34, 52, 54, 53, 35], along with a novel Lyapunov
function argument to prove that almost all initial conditions converge to the our game theoretic
solution.

Lyapunov Stability. Our first step is to construct an initialization-dependent Lyapunov function that
accounts for the curvature induced by the operators F and G (Lemma 2). Leveraging a potentially
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infinite number of initialization-dependent Lyapunov functions in Theorem 5 we prove that under
mild assumptions the outputs of F,G stabilize around the von Neumann solution of L.

Convergence. Mirroring convex concave games, we require strict convexity or concavity of L to
provide convergence guarantees to von Neumann solutions (Theorem 6). Barring initializations where
von Neumann solutions are not reachable due to the limitations imposed by F and G, the set of von
Neumann solutions are globally asymptotically stable (Corollary 1). Even in non-strict HCC games,
we can add regularization terms to make L strictly convex concave. Small amounts of regularization
allows for convergence without significantly perturbing the von Neumann solution (Theorem 7) while
increasing regularization enables exponentially faster convergence rates (Theorem 8). Similar to the
aforementioned theoretical work, our model of HCC games provides a formal and theoretical tractable
testbed for evaluating the performance of different training methods in GAN inspired architectures. As
a concrete example, [36] recently proved the success of WGAN training for learning the parameters
of non-linearly transformed Gaussian distributions, where for simplicity they replaced the typical
Lipschitz constraint of the discriminator function with a quadratic regularizer. Interestingly, we can
elucidate on why regularized learning is actually necessary by establishing a formal connection to
HCC games. On top of other such ML applications, our game theoretic framework can furthermore
capture and generalize evolutionary game theoretic models. [57] analyze a model of evolutionary
competition between two species (host-parasite). The outcome of this competition depends on their
respective phenotypes (informally their properties, e.g., agility, camouflage, etc.). These phenotypes
are encoded via functions that map input vectors (here genotype/DNA sequences) to phenotypes.
While [57] proved that learning in these games does not converge to equilibria and typically cycles
for almost all initial conditions, we can explicitly construct initial conditions that do not satisfy our
definition of safety and end up converging to artificial fixed points. Safety conditions aside, we show
that a slight variation of the evolutionary/learning algorithm suffices to resolve the cycling issues and
for the dynamics to equilibrate to the von Neumann solution. Hence, we provide the first instance of
team zero-sum games [62], a notoriously hard generalization of zero-sum games with a large duality
gap, that is solvable by decentralized dynamics.

Organization. In Section 2 we provide some preliminary notation, the definition of our model and
some useful technical lemmas. Section 3 is devoted to the presentation of our the main results.
Section 4 discusses applications of our framework to specific GAN formulations. Section 5 concludes
our work with a discussion of future directions and challenges. We defer the full proofs of our results
as well as further discussion on applications to the Appendix.

2 Preliminaries

2.1 Notation

Vectors are denoted in boldface x,y unless otherwise indicated are considered as column vectors.
We use ‖·‖ to denote the `2−norm. For a function f : Rd → R we use ∇f to denote its gradient.
For functions of two vector arguments, f(x,y) : Rd1 × Rd2 → R , we use ∇xf,∇yf to denote its
partial gradient. For the time derivative we will use the dot accent abbreviation, i.e., ẋ = d

dt [x(t)]. A
function f will belong to Cr if it is r times continuously differentiable. Additionally, f ◦ g = f(g(·))
denotes the composition of f, g. Finally, the term “sigmoid” function refers to σ : R→ R such that
σ(x) = (1 + e−x)−1.

2.2 Hidden Convex Concave Games

θ11 θ12 · · · θ1n1
θθθ1

f1(θθθ1)

...

θN1 θN2 · · · θNnN
θθθN

fN (θθθN )

F(θθθ) L(F(θθθ),G(φφφ))

φ11 φ12 · · · φ1n1
φφφ1

g1(φφφ1)

...

φM1 φM2 · · · φMnM
φφφM

gM (φφφM )

G(φφφ)

θ̇i = −∇θiL(F(θθθ),G(φφφ)) φ̇j = ∇φjL(F(θθθ),G(φφφ))Figure:Hidden Seperable Zero-Sum Game
Model & Optimization Dynamics
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We will begin our discussion by defining the notion of convex concave functions as well as strictly
convex concave functions. Note that our definition of strictly convex concave functions is a superset
of strictly convex strictly concave functions that are usually studied in the literature.
Definition 1. L : Rn × Rm → R is convex concave if for every y ∈ Rn L(·,y) is convex and for
every x ∈ Rm L(x, ·) is concave. Function L will be called strictly convex concave if it is convex
concave and for every x×y ∈ Rn×Rm either L(·,y) is strictly convex or L(x, ·) is strictly concave.

At the center of our definition of HCC games is a convex concave utility function L. Additionally,
each player of the game is equipped with a set of operator functions. The minimization player is
equipped with n functions fi : Rni → R while the maximization player is equipped with m functions
gj : Rmj → R. We will assume in the rest of our discussion that fi, gj , L are all C2 functions. The
inputs θθθi ∈ Rni and φφφj ∈ Rmj are grouped in two vectors

θθθ =
[
θθθ1 · · · θθθn

]>
F(θθθ) =

[
f1(θθθ1) · · · fn(θθθn)

]>
φφφ =

[
φφφ1 · · · φφφm

]>
G(φφφ) =

[
g1(φφφ1) · · · gm(φφφm)

]>
We are ready to define the hidden convex concave game

(θθθ∗,φφφ∗) = arg min
θθθ∈RN

arg max
φφφ∈RM

L(F(θθθ),G(φφφ)).

where N =
∑n
i=1 ni and M =

∑m
j=1mj . Given a convex concave function L, all stationary points

of L are (global) Nash equilibria of the min-max game. We will call the set of all equilibria of L,
von Neumann solutions of L and denote them by Solution(L). Unfortunately, Solution(L) can be
empty for games defined over the entire Rn × Rm. For games defined over convex compact sets, the
existence of at least one solution is guaranteed by von Neumann’s minimax theorem. Our definition
of HCC games can capture games on restricted domains by choosing appropriately bounded functions
fi and gj . In the following sections, we will just assume that Solution(L) is not empty. We note that
our results hold for both bounded and unbounded fi and gj . We are now ready to write down the
equations of the GDA dynamics for a HCC game:

θ̇θθi = −∇θθθiL(F(θθθ),G(φφφ)) =−∇θθθifi(θθθi)
∂L

∂fi
(F(θθθ),G(φφφ))

φ̇φφj = ∇φφφj
L(F(θθθ),G(φφφ)) =∇φφφj

gj(φφφj)
∂L

∂gj
(F(θθθ),G(φφφ))

(1)

2.3 Reparametrization

The following lemma is useful in studying the dynamics of hidden games.
Lemma 1. Let k : Rd → R be a C2 function. Let h : R→ R be a C1 function and x(t) denote the
unique solution of the dynamical system Σ1. Then the unique solution for dynamical system Σ2 is
z(t) = x(

∫ t
0
h(s)ds){

ẋ = ∇k(x)
x(0) = xinit

}
: Σ1

{
ż = h(t)∇k(z)

z(0) = xinit

}
: Σ2 (2)

θi

Equilibrium-value f∗i

fi(θi)

(a)

(b) (c) (d)

(e)

(f) (g)
-3 -2 -1 0 1.5 4

Figure 1: Neither Gradient Descent nor Ascent
can traverse stationary points. An immediate con-
sequence of Lemma 1 is that if we initialize in
the above example θi(0) at (a), fi(θi(t)) can not
escape the purple section. This extends to cases
where θθθi is vector of variables.

By choosing h(t) = −∂L(F(t),G(t))/∂fi and
h(t) = ∂L(F(t),G(t))/∂gj respectively, we can
connect the dynamics of each θθθi and φφφj under
Equation (1) to gradient ascent on fi and gj . Ap-
plying Lemma 1, we get that trajectories of θθθi and
φφφj under Equation (1) are restricted to be subsets
of the corresponding gradient ascent trajectories
with the same initializations. For example, in Fig-
ure 1 θi(t) can not escape the purple section if it
is initialized at (a) neither the orange section if
it is initialiazed at (f). This limits the attainable
values that fi(t) and gj(t) can take for a specific
initialization. Let us thus define the following:
Definition 2. For each initialization x(0) of Σ1,
Imk(x(0)) is the image of k ◦ x : R→ R.
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Applying Definition 2 in the above example, Imfi(θi(0)) = (fi(−2), fi(−1)) if θi is initialized at (c).
Additionally, observe that in each colored section fi(θi(t)) uniquely identifies θi(t). Generally, even
in the case that θθθi are vectors, Lemma 1 implies that for a given θθθi(0), fi(θθθi(t)) uniquely identifies
θθθi(t). As a result we get that a new dynamical system involving only fi and gj
Theorem 1. For each initialization (θθθ(0),φφφ(0)) of Equation (1), there are C1 functions
Xθθθi(0) , Xφφφj(0) such that θθθi(t) = Xθθθi(0)(fi(t)) and φφφj(t) = Xφφφj(0)(gj(t)). If (θθθ(t),φφφ(t)) sat-
isfy Equation (1) then fi(t) = fi(θθθi(t)) and gj(t) = gj(φφφj(t)) satisfy

ḟi = −‖∇θθθifi(Xθθθi(0)(fi))‖
2 ∂L

∂fi
(F,G)

ġj = ‖∇φφφj
gj(Xφφφj(0)(gj))‖

2 ∂L

∂gj
(F,G)

(3)

By determining the ranges of fi and gj , an initialization clearly dictates if a von Neumann solution is
attainable. In Figure 1 for example, any point of the pink, orange or blue colored section like (e), (f)
or (g) can not converge to a von Neumann solution with fi(θi) = f∗i . The notion of safety captures
which initializations can converge to a given element of Solution(L).

Definition 3. . We will call the initialization (θθθ(0),φφφ(0)) safe for a (p,q) ∈ Solution(L) ifφφφi(0) and
θθθj(0) are not stationary points of fi and gj respectively and pi ∈ Imfi(θθθi(0)) and qj ∈ Imgj (φφφj(0)).

Leveraging the Center-Stable Manifold Theorem [55], the following observation shows that under
mild assumptions almost all initializations are safe:

Theorem 2. If fi and gj have isolated stationary points, only strict saddle points, com-
pact sublevel-sets, both equilibria pi ∈ (max LocalMin(fi),min LocalMax(fi)) and qj ∈
(max LocalMin(gj),min LocalMax(gj)), then almost all initializations are safe for a (p,q) ∈
Solution(L).

Finally, in the following sections we use some fundamental notions of stability. We call an equilibrium
x∗ of an autonomous dynamical system ẋ = D(x(t)) stable if for every neighborhood U of x∗ there
is a neighborhood V of x∗ such that if x(0) ∈ V then x(t) ∈ U for all t ≥ 0. We call a set S
asymptotically stable if there exists a neighborhoodR such that for any initialization x(0) ∈ R, x(t)
approaches S as t→ +∞. IfR is the whole space the set globally asymptotically stable.

3 Learning in Hidden Convex Concave Games

3.1 General Case

Our main results are based on designing a Lyapunov function for the dynamics of Equation (3):

Lemma 2. If L is convex concave and (φφφ(0), θθθ(0)) is a safe for (p,q) ∈ Solution(L), then the
following quantity is non-increasing under the dynamics of Equation (3):

H(F,G) =

N∑
i=1

∫ fi

pi

z − pi
‖∇fi(Xθθθi(0)(z))‖2

dz +

M∑
j=1

∫ gj

qj

z − qj
‖∇gj(Xφφφj(0)(z))‖2

dz (4)

F(θ)

G
(φ

)

(p,q)

Figure 2: Level sets of Lyapunov function of Equa-
tion (4) for both F and G being one dimensional
sigmoid functions.

Observe that our Lyapunov function here is not the
distance to (p,q) as in a classical convex concave
game. The gradient terms account for the non con-
stant multiplicative terms in Equation (3). Indeed
if the game was not hidden and fi and gj were
the identity functions then H would coincide with
the Euclidean distance to (p,q). Our first theorem
employs the above Lyapunov function to show that
(p,q) is stable for Equation (3).

Theorem 3. If L is convex concave and
(φφφ(0), θθθ(0)) is a safe for (p,q) ∈ Solution(L),
then (p,q) is stable for Equation (3).
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Clearly, for the special case of globally invertible
functions F,G we could come up with an equivalent Lyapunov function in the θθθ,φφφ-space. In this
case it is straightforward to transfer the stability results from the induced dynamical system of F,G
(Equation (3)) to the initial dynamical system of θθθ,φφφ (Equation (1)). For example we can prove the
following result:
Theorem 4. If fi and gj are sigmoid functions and L is convex concave and there is a (φφφ(0), θθθ(0))
that is safe for (p,q) ∈ Solution(L), then (F−1(p),G−1(q)) is stable for Equation (1).

In the general case though, stability may not be guaranteed in the parameter space of Equation (1).
We will instead prove a weaker notion of stability, which we call hidden stability. Hidden stability
captures that if (F(θθθ(0)),G(φφφ(0))) is close to a von Neumann solution, then (F(θθθ(t)),G(φφφ(t)))
will remain close to that solution. Even though hidden stability is weaker, it is essentially what we
are interested in, as the output space determines the utility that each player gets. Here we provide
sufficient conditions for hidden stability.
Theorem 5 (Hidden Stability). Let (p,q) ∈ Solution(L). Let Rfi and Rgj be the set of regular
values1 of fi and gj respectively. Assume that there is a ξ > 0 such that [pi − ξ, pi + ξ] ⊆ Rfi and
[qj − ξ, qj + ξ] ⊆ Rgj . Define

r(t) = ‖F(θθθ(t))− p‖2 + ‖G(φφφ(t))− q‖2.
If fi and gj are proper functions2, then for every ε > 0, there is an δ > 0 such that

r(0) < δ =⇒ ∀t ≥ 0 : r(t) < ε.

Unfortunately hidden stability still does not imply convergence to von Neumann solutions. [65]
studied hidden bilinear games and proved that Ḣ = 0 for this special class of HCC games. Hence, a
trajectory is restricted to be a subset of a level set of H which is bounded away from the equilibrium
as shown in Figure 2. To sidestep this, we will require in the next subsection the hidden game to be
strictly convex concave.

3.2 Hidden strictly convex concave games

In this subsection we focus on the case where L is a strictly convex concave function. Based on
Definition 1, a strictly convex concave game is not necessarily strictly convex strictly concave and
thus it may have a continum of von Neumann solutions. Despite this, LaSalle’s invariance principle,
combined with the strict convexity concavity, allows us to prove that if (θθθ(0),φφφ(0)) is safe for
Z ⊆ Solution(L) then Z is locally asymptotically stable for Equation (3).
Lemma 3. Let L be strictly convex concave and Z ⊂ Solution(L) is the non empty set of equilbria
of L for which (θθθ(0),φφφ(0)) is safe. Then Z is locally asymptotically stable for Equation (3).

The above lemma however does not suffice to prove that for an arbitrary initialization (θθθ(0),φφφ(0)),
(F(t),G(t)) approaches Z as t→ +∞. In other words, a-priori it is unclear if (F(θθθ(0)),G(φφφ(0)))
is necessarily inside the region of attraction (ROA) of Z. To get a refined estimate of the ROA of Z,
we analyze the behavior of H as fi and gj approach the boundaries of Imfi(θθθi(0)) and Imgj (φφφj(0))
and more precisely we show that the level sets of H are bounded. Once again the corresponding
analysis is trivial for convex concave games, since the level sets are spheres around the equilibria.
Theorem 6. Let L be strictly convex concave and Z ⊂ Solution(L) is the non empty set of equilbria
of L for which (θθθ(0),φφφ(0)) is safe. Under the dynamics of Equation (1) (F(θθθ(t)),G(θθθ(t))) converges
to a point in Z as t→∞.

The theorem above guarantees convergence to a von Neumann solution for all initializations that
are safe for at least one element of Solution(L). However, this is not the same as global asymptotic
stability. To get even stronger guarantees, we can assume that all initializations are safe. In this case
it is straightforward to get a global asymptotic stability result:
Corollary 1. Let L be strictly convex concave and assume that all intitializations are safe for at least
one element of Solution(L). The following set is globally asymptotically stable for continuous GDA
dynamics.

{(θθθ∗,φφφ∗) ∈ Rn × Rm : (F (θθθ∗), G(φφφ∗)) ∈ Solution(L)}
1A value a ∈ Im f is called a regular value of f if ∀q ∈ dom f : f(q) = a, it holds∇f(q) 6= 0.
2A function is proper if inverse images of compact subsets are compact.
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Notice that the above approach on global asymptotic convergence using Lyapunov arguments can
be extended to other popular alternative gradient-based heuristics like variations of Hamiltonian
Gradient Descent. For concision, we defer the exact statements, proofs in the supplement.

3.3 Convergence via regularization

Regularization is a key technique that works both in the practice of GANs [47, 33] and in the theory of
convex concave games [56, 59, 60]. Our settings of hidden convex concave games allows for provable
guarantees for regularization in a wide class of settings, bringing closer practical and theoretical
guarantees. Let us have a utility L(x,y) that is convex concave but not strictly. Here we will propose
a modified utility L′ that is strictly convex strictly concave. Specifically we will choose

L′(x,y) = L(x,y) +
λ

2
‖x‖2 − λ

2
‖y‖2

The choice of the parameter λ captures the trade-off between convergence to the original equilibrium
of L and convergence speed. On the one hand, invoking the implicit function theorem, we get that for
small λ the equilibria of L are not significantly perturbed.
Theorem 7. If L is a convex concave function with invertible Hessians at all its equilibria, then for
each ε > 0 there is a λ > 0 such that L′ has equilibria that are ε-close to the ones of L.

Note that invertibility of the Hessian means that L must have a unique equilibrium. On the other hand
increasing λ increases the rate of convergence of safe initializations to the perturbed equilibrium.
Theorem 8. Let (θθθ(0),φφφ(0)) be a safe initialization for the unique equilibrium of L′ (p,q). If

r(t) = ‖F(θθθ(t))− p‖2 + ‖G(φφφ(t))− q‖2

then there are initialization dependent constants c0, c1 > 0 such that r(t) ≤ c0 exp(−λc1t).

4 Applications

In this section, we discuss how HCC framework can be used to give new insights in a variety of
application areas including min-max training for GANs and Evolutionary Game Theory. We also
describe applications of regularization to normal form zero sum games in Appendix D.3.

0 50 100 150 200 250 300

time

0

1

2

3

4

5

6

7

r(t) = ‖(F(t)− p)‖2 + ‖(G(t)− q)‖2 + |λ− λ∗|2

0 50 100 150 200 250 300

time

0

1

2

3

4

5

H(t)

Figure 3: Both the `2 distance from the equilibrium and H(t) converge to zero but only the latter
does so monotonically For pdata we choose a fully mixed distribution of dimension d = 4. Given
the sigmoid activations all the initializations are safe. We defer the detailed proof of convergence in
Appendix D.2.

Hidden strictly convex-concave games. We will start our discussion with the fundamental gener-
ative architecture of [26]’s GAN. In the vanilla GAN architecture, as it is commonly referred, our
goal is to find a generator distribution pG that is close to an input data distribution pdata. To find such
a generator function, we can use a discriminator D that “criticizes” the deviations of the generator
from the input data distribution. For the case of a discrete pdata over a set N , the minimax problem of
[26] is the following:

min
pG(x)≥0,∑

x∈N pG(x)=1

max
D∈(0,1)|N|

V (G,D)

where V (G,D) =
∑
x∈N pdata(x) log(D(x)) +

∑
x∈N pG(x) log(1 −D(x)). The problem above

can be formulated as a constrained strictly convex-concave hidden game. On the one hand, for a fixed
discriminator D∗, the V (G,D∗) is linear over the pG(x). On the other hand, for a fixed generator G∗,
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V (G∗, D) is strongly-concave. We can implement the inequality constraints on both the generator
probabilities and discriminator using sigmoid activations. For the equality constraint

∑
x∈N pG(x) =

1 we can introduce a Langrange multiplier. Having effectively removed the constraints, we can see in
Figure 3, the dynamics of Equation (1) converge to the unique equilibrium of the game, an outcome
consistent with our results in Corollary 1. While the Euclidean distance to the equilibrium is not
monotonically decreasing, H(t) is.

Hidden convex-concave games & Regularizaiton. An even more interesting case is Wassertein
GANs–WGANs [4]. One of the contributions of [36] is to show that WGANs trained with Stochastic
GDA can learn the parameters of Gaussian distributions whose samples are transformed by non-linear
activation functions. It is worth mentioning that the original WGAN formulation has a Lipschitz
constraint in the discriminator function. For simplicity, [36] replaced this constraint with a quadratic
regularizer. The min-max problem for the case of one-dimensional Gaussian N (0, α2

∗) and linear
discriminator Dv(x) = v>x with x2 activation is:

min
α∈R

max
v∈R

VWGAN(Gα, Dv) = EX∼pdata [D(X)]− EX∼pG [D(X)]− v2/2

= Ex∼N (0,α2
∗)

2 [vx]− Ex∼N (0,α2)2 [vx]− v2/2

= (α2
∗ − α2)v − v2/2

Observe that VWGAN is not convex-concave but it can posed as a hidden strictly convex-concave game
with G(α) = (α2

∗−α2) and F(v) = v. When computing expectations analytically without sampling,
Theorem 6 guarantees convergence. In contrast, without the regularizer VWGAN can be modeled as a
hidden bilinear game and thus GDA dynamics cycle. Empirically, these results are robust to discrete
and stochastic updates using sampling as shown in Figure 4. Therefore regularization in the work of
[36] was a vital ingredient in their proof strategy and not just an implementation detail.
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Figure 4: On the left, we show the trajectories of regularized GDA for α2
∗ = 1 as well as the level

sets of Equation (4). All trajectories (green curves-initialized at the red points) converge to one
of the two equilibria (0, 1) and (0,−1) whereas without regularization, GDA would cycle on the
level sets. In the right figure, we replace the exact expectations in VWGAN with approximations via
sampling and continuous time updates on α and v with discrete ones. For small learning rates and
large sample sizes, unregularized GDA continues to cycle. In contrast, the regularization approach of
[36] converges to the (0, 1) equilibrium.
The two applications of HCC games in GANs are not isolated findings but instances of a broader
pattern that connects HCC games and standard GAN formulations. As noted by [27], if updates
in GAN applications were directly performed in the “functional space”, i.e. the generator and
discriminator outputs, then standard arguments from convex concave optimization would imply
convergence to global Nash equilibria. Indeed, standard GAN formulations like the vanilla GAN
[26], f-GAN [50] and WGAN [4] can all be thought of as convex concave games in the space of
generator and discriminator outputs. Given that the connections between convex concave games and
standard GAN objectives in the output space is missing from recent literature, in Appendix D.1 we
show how one can apply Von Neumann’s minimax theorem to derive the optimal generators and
discriminators even in the non-realizable case. In practice, the updates happen in the parameter space
and thus convexity arguments no longer apply. Our study of HCC games is a stepping stone towards
bridging the gap in convergence guarantees between the case of direct updates in the output space
and the parameter space.
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Figure 5: The above figures describes the evolution of the expected phenotype for two species A,B.
The left one corresponds to a safe initialization leading to periodic trajectories. The middle one
corresponds to an unsafe initialization where θ1(0) = θ2(0). The dynamics converge albeit to a
spurious equilibrium, that is different from the hidden game equilibrium (dash lines). Finally, the
right one corresponds to a safe initialization of the regularized game, which converges to a slightly
perturbed equilibrium (Theorem 7).

Evolutionary Game Theory & Biology. The study of learning dynamics in games has always been
strongly and inherently connected with mathematical models of biology and evolution. Typically, this
line of research is studied under the name of Evolutionary Game Theory [28, 67]. Zero-sum games
and variants thereof are of particular interest for this line of work as they encode settings of direct
competition between species (e.g., prey-predator or host-parasite/virus). Even in the simplest such
setting of matrix zero-sum games, used to capture competition between asexually reproducing species,
it is well known that the emerging dynamics can be non-equilibrating and even chaotic [61, 58].

Studying the effects of evolutionary competition between sexually evolving species results in sig-
nificantly more intricate models, as it does not suffice to merely keep track of the fractions of the
different types of individuals that self-replicate. Instead it is necessary to keep a much more detailed
accounting of the evolution of the frequencies of different genes that get reshuffled and recombined
to create new individuals, whilst giving evolutionary preference to the most fit individuals given the
current environment. Recent work on intersection of learning theory and game theory has provided
concrete such game theoretic models [37, 14, 44, 42]. Due to the intricate nature of their dynamics,
deciding even the simplest questions in regards to them (e.g. does genetic diversity survive or not?)
is typically computationally hard [43].

A notable exception, where the dynamics of sexual evolution and, in fact, sexual competition have
been relatively thoroughly understood, is the work of [57], on two species (host-parasite) antagonism.
The outcome of this competition depends on their respective phenotypes (informally their properties,
e.g., large wings versus small wings.) of the two species. The crucial assumption that makes this
model theoretically tractable is that the phenotype for each species is a Boolean attribute (this
assumption is also used [38]). Despite these simplifications, the dynamics are still not equilibrating
and are, in fact, cyclic for almost all initial conditions. Two natural questions emerge: 1) Is the almost
everywhere condition necessary? I.e. Do there exist initial conditions which are not cyclic? 2) More
importantly, can a slightly perturbed dynamic stabilize these systems and converge to a meaningful
equilibrium? Next, we will see how our framework addresses both of these questions.

To understand the connection these we will examine the model of [57] in more detail. Concretely,
the phenotype of species A,B can be described as a Boolean function over the species genome
which is encoded by a binary string (this acts as a simplified version of a DNA string). While the
phenotype plays the dominant role for the survival of the species, sexual reproduction modifies only
the genotype of an organism. As a result the species are actually involved in a hidden zero-sum game.
More formally, each species is game-theoritically represented as a team of agents where each agent
controls one bit of the genotype:

GA = (gA1 , · · · , gAn ),GB = (gB1 , · · · , gBm)

uA = L[PhenotypeA(GA),PhenotypeB(GB)]

uB = −uA

Where gAi , g
B
j ∈ {0, 1}, PhenotypeA,PhenotypeB is a Boolean function (e.g., AND,XOR) and

L is a 2× 2 matrix encoding a zero-sum game (e.g., Matching Pennies). Naturally, one can allow
agents to use randomized/mixed strategies in which case the expected utilities of all agents/genes
are defined using the standard multi-linear extension of utilities. Thus, these models of evolutionary
sexual competition share the same basic structure as hidden linear-linear games, which explains their
recurrent, non-equilibrating nature [65].

9



In Figure 5, each gene/agent gAi tunes one real variable θi such that Pr[gAi = 1] = σ(θi) and
gene/agent gBj tunes one real variable φj correspondingly. Choosing as Boolean phenotype to
be the XOR of two genes, almost all initializations are safe for any bilinear game with a mixed
equilibrium. Actually, only the case θ1(0) = θ2(0) or φ1(0) = φ2(0) can be problematic, since for
XOR the expected phenotype is bounded in [0, 0.5] and a mixed equilibrium out of this range would
be infeasible. Finally, leveraging Theorem 7, we can design a regularized version of the game such
that the dynamics converge arbitrarily close to the true von Neumann solution of these games, which
is encoded by the min-max strategies of the hidden bi-linear zero-sum game.

5 Discussion & Future Work

While this work is a promising first step towards understanding GAN training, significant challenges
remain. Neural network architectures do not use disjoint set of parameters for each of the outputs.
Additionally, the hidden competition of GANs can take place in an output space of probability
distributions and classifiers whose vector space dimension is typically infinite. On the bright side, we
establish point-wise (day to day) convergence results which are, to the best of our knowledge, the first
result of their kind for a wide class of non-convex non-concave games that do not necessarily satisfy
the Polyak-Łojasiewicz conditions studied in [68]. Such conditions imply that the notions of saddle
points, global min-max and stationary points coincide. Instead our work showcases how to make
progress without leveraging such strong assumptions in zero-sum games. Beyond ML applications,
we believe that our framework could provide even further insights for evolutionary game theory,
mathematical biology as well as team-zero-sum games. For example an interesting hybrid class of
games could be network generalizations of team-zero-sums games, e.g. by combining [12] and [57].
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A Background

A.1 Background in dynamical systems

Our analysis combines tools from dynamical systems, stability analysis and invariance princi-
ples theory. We start with the definitions of the different stability notions. We remind the well
known Lyapunov’s Lyapunov stability criterion (Theorem 9) Stability analysis in convex
concave games is further complicated due to the possibility of non-isolated fixed points. To
tackle this issue, we recall Krasovskii-LaSalle’s Invariance Principle (Theorem 10), a power-
ful result that has several implications for the asymptotic stability of a set in an autonomous
(possibly nonlinear) dynamical system. In the special case where the goal set contains only
stable fixed points a pointwise convergence theorem can be derived (Theorem 11). The
Center-Stable Manifold Theorem (Theorem 12) is going to be a key ingredient of the proof
of Theorem 2. Finally, we remind the notions of diffeomorphism and topological conjugacy
of two dynamical systems, which are useful to transfer behavioral claims between equivalent
dynamics.

Let f : D → Rn be a locally Lipschitz map from a domain D ⊂ Rn to Rn. We consider dynamical
systems of the form

ẋ = f(x) (?)
A point x̄ for which f(x̄) = 0 is called a fixed point. We will be interested in the following notions
of stability for the fixed point points of Equation (?).
Definition 4 (Stability properties, [32, Definition 4.1]). The fixed point x = 0 of Equation (?) is

• stable if, for each ε > 0, there is a δ = δ(ε) > 0 such that

‖x(0)‖ < δ =⇒ ‖x(t)‖ < ε ∀t ≥ 0

• unstable if it is not stable

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ =⇒ lim
t→∞

x(t) = 0

The Lyapunov Theorem will be a useful tool to prove (asymptotic) stability of a fixed point.
Theorem 9 (Lyapunov Theorem, [32, Theorem 4.1]). Let x = 0 be a fixed point for Equation (?)
and D ⊂ Rn be a domain containing x = 0. Let V : D → R be a continuously differentiable
function such that

V (0) = 0 and V (x) > 0 in D − {0}
V̇ (x) ≤ 0 in D

then x = 0 is stable. Moreover if

V̇ (x) < 0 in D − {0}
then x = 0 is asymptotically stable.

Unfortunately, the Lyapunov theorem is not very helpful when it comes to proving convergence in
dynamical systems with non isolated fixed points. By definition, non-isolated fixed points cannot
be asymptotically stable. Non isolated fixed points may give rise to more complex behavior than
point-wise convergence.
Definition 5. We say that a trajectory x(t) approaches a setM as t→∞ if for each ε > 0 there is
a T > 0 such that

dist(x(t),M) < ε, ∀t > T

where the operator “dist” is the minimum distance from a point to a setM
dist(p,M) = inf

x∈M
‖p− x‖
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Definition 6. We say that a setM is invariant for Equation (?) if

x(0) ∈M =⇒ x(t) ∈M, ∀t ∈ R

We will sayM is positively invariant if the above holds for t ≥ 0.

We are ready to state LaSalle’s Invariance Principle, a general theorem that can help us study the
stability of non isolated fixed points.
Theorem 10 ( LaSalle’s Invariance Principle, [32, Theorem 4.4]). Let Ω ⊂ D be a compact set that
is positively invariant with respect to Equation (?). Let V : D → R be a continuously differentiable
function such that V̇ (x) ≤ 0 in Ω. Let E be the set of all points where V̇ (x) = 0. LetM be the
largest invariant set in E. Then every solution starting in Ω approachesM as t→∞.

LaSalle’s theorem does not give us pointwise convergence directly. But in the special case thatM
contains only stable fixed points we can apply the following theorem
Theorem 11 (Pointwise Convergence Theorem, [10, Proposition 5.4]). Let x(t) be a trajectory of
Equation (?). If the positive limit sets of x(t) contain a stable fixed point then x(t) converges to it as
t→∞.

Definition 7 (Differomorphism, [55]). Let U, V be manifolds. A map f : U → V is called a
diffeomorphism if f carries U onto V and also both f and f−1 are smooth.

Definition 8 (Topological conjugacy, [55]). Two flows Φt : A→ A and Ψt : B → B are conjugate
if there exists a homeomorphism g : A→ B such that

∀xxx ∈ A, t ∈ R : g(Φt(xxx)) = Ψt(g(xxx))

Furthermore, two flows Φt : A→ A and Ψt : B → B are diffeomorphic if there exists a diffeomor-
phism g : A→ B such that

∀xxx ∈ A, t ∈ R : g(Φt(xxx)) = Ψt(g(xxx)).

If two flows are diffeomorphic, then their vector fields are related by the derivative of the conjugacy.
That is, we get precisely the same result that we would have obtained if we simply transformed the
coordinates in their differential equations.

Theorem 12 (Stable Manifold Theorem for Continuous Time Dynamical Systems p.120 [55]). Let E
be an open subset of Rn containing the origin, let f ∈ C1(E), and let φt be the flow of the nonlinear
system ẋxx = f(xxx). Suppose that f(0) = 0 and that Df(0) has k eigenvalues with negative real
part and n− k eigenvalues with positive real part. Then there exists a k-dimensional differentiable
manifold S tangent to the stable subspace Es of the linear system ẋxx = Df(0)xxx at 0 such that for all
t ≥ 0, φt(S) ⊆ S and for all xxx0 ∈ S:

lim
t→∞

φt(xxx0) = 0

and there exists an n− k dimensional differentiable manifold U tangent to the unstable subspace Eu
of the linear system ẋxx = Df(0)xxx at 0 such that for all t ≤ 0, φt(U) ⊆ U and for all xxx0 ∈ U :

lim
t→−∞

φt(xxx0) = 0

Remark 1. While the focus of our work relies on results in continuous dynamics, for the interested
reader the broader possible implications of our results in discrete time algorithms should be high-
lighted. Indeed, under some technical conditions described in work of Benaim [9] , whose verification
for HCC games lies beyond the scope of the current work, one could argue that discretized dynamics,
even the stochastic ones, have the same convergence behaviour as their continuous counterparts.
Nevertheless, we believe that our continuous-time results will serve as a fundamental building block
of any argument in that direction. Indeed, our diverse set of simulations, which are discrete-time im-
plementations, are in perfect agreement with our theoretical predictions showcasing the applicability
of our results.
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A.2 Background in convex optimization

For the sake of completeness, we recall here the definition of (strict) convex/concave function
and its first order necessary and sufficient criterion. We will also discuss strong convexity
and its second order characterizations.

We will be interested in notions from convex optimization throughout this work
Definition 9 ([11, p. 67]). Let f : Rn → R be a function then

• f is convex if

∀x,y ∈ Rn, t ∈ [0, 1] : f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)

• f is strictly convex if

∀x,y ∈ Rn, t ∈ (0, 1) : f(tx + (1− t)y) < tf(x) + (1− t)f(y)

• f is (strictly) concave if −f is (strictly) convex.

We will also use the first order characterizations of convex and concave functions
Theorem 13 ([11, p. 69-70]). Let f : Rn → R be a differentiable function.

• f is convex if and only if ∀x,y ∈ Rn : f(y) ≥ f(x) +∇f(x)T (y − x)

• f is concave if and only if ∀x,y ∈ Rn : f(y) ≤ f(x) +∇f(x)T (y − x)

To establish convergence rates, we will use the notion of strong convexity
Definition 10 ([49, p. 63]). A continuously differentiable function f of Rn will be called µ strongly
convex for a positive constant µ if for all x,y ∈ Rn we have

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
µ

2
‖x− y‖2

We will also use second order characterizations of strong convexity
Theorem 14 ([49, p. 65]). A twice continuously differentiable function f is µ strongly convex for a
positive constant µ if and only if for all x ∈ Rn we have

∇2f(x) ≥ µI

Symmetrically, a function will be called µ strongly concave if −f is µ strongly convex.

A.3 Background in Game Theory

In this short section, we remind to the reader a generalization of Von-Neumann’s Minimax
theorem, which we will exploit to analyze the equilibrium solution of the different GANs’
architectures. A special case of Fan’s minimax theorem is the following

Corollary 2 (Fan’s minimax theorem, [22]). Let X ⊂ Rn and Y ⊂ Rm be convex non-empty
sets. Suppose that X is compact and f : X × Y → R is a function such that f(·, y) is lower
semicontinuous on X for each y ∈ Y and that f is convex concave. Then we have that

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y).
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B Preliminaries

The below time-reparametrization lemma shows that the solution for a non-autonomous
system, multiplicative to a gradient flow can be derived by just time-rescaling of the solution
of the simplified gradient ascent dynamics. Indeed, since the multiplicative term is common
across all terms of the vector field then over the time it dictates only the magnitude of the
vector field (the speed of the motion), but does not affect the directionality other than moving
backwards or forwards along the same trajectory.

Lemma 1. Let k : Rd → R be a C2 function. Let h : R→ R be a C1 function and x(t) denote the
unique solution of the dynamical system Σ1. Then the unique solution for dynamical system Σ2 is
z(t) = x(

∫ t
0
h(s)ds){

ẋ = ∇k(x)
x(0) = xinit

}
: Σ1

{
ż = h(t)∇k(z)

z(0) = xinit

}
: Σ2 (5)

Proof. Firstly, notice that it holds x(0) = xinit and ẋ = ∇k(x), since x is the unique solution of Σ1 .
It is easy to check that:

z(0) = x(

∫ 0

0

h(s)ds) = x(0) = xinit

ż = ẋ

(∫ t

0

h(s)ds

)
× d[

∫ t
0
h(s)ds]

dt

= ∇k
(
x

(∫ t

0

h(s)ds

))
h(t) = ∇k(z)h(t)

Remark 2. Notice that Lemma 1 applies a-fortiori in the class of HCCs games. Indeed, it is
important to observe that allowing h(t) to be any smooth function of time already covers already the
cases where h(t) depends also on z(t). The key intuition is that for the needs of our existential result,
we can always assume that the exact solution of Σ2 is known. Thus we can always substitute the
z(t)-dependent h(t) with an expression that depends only directly on t.

Example 1. Let’s consider the simplest example where n = 1 and k(x) = x2/2 with for a state-
dependent multiplicative factor h(t) = z(t) . Then,

• Σ1 ≡ { ˙x(t) = x(t), x(0) = 1}, whose the unique solution is x(t) = et.

• Σ2 ≡ { ˙z(t) = h(t)z(t) = z(t)2, z(0) = 1} whose unique solution is z(t) = 1/(1− t).

We can still apply the aforementioned reparametrization lemma by substituting h(t) = z(t) with
h(t) = 1/(1− t). In other words, any h(x, t) can always be written given any initial condition as
hx(t).

Remark 3. It is worth mentioning that due to the multiplicative factor h(t) in Σ2 and as a result the
time reparamatrization factor

∫ t
0
h(s)ds can take both positive or negative values based on the GDA

dynamics. By Lemma 1, this allows the GDA dynamics to visit states that are visited by the simple
GD dynamics for t < 0.
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In order to leverage the convex-concave properties of the operators in our hidden structure
under the Gradient Descent Ascent dynamics we need to recover the equivalent system (T )

in the operator space
(
Ḟ
Ġ

)
= T

[(
F
G

)]
.

(Σ) :=

{
θ̇θθ = − ∇L(F(θθθ),G(φφφ))

φ̇φφ = ∇L(F(θθθ),G(φφφ))

}
≡
{
θ̇θθi = − ∇θθθifi(θθθi)∂L(F(t),G(t))/∂fi
φ̇φφj = ∇φφφj

gj(φφφj)∂L(F(t),G(t))/∂gj

}
From this point, applying the aforementioned lemma, under GDA each fi and gj follows
a time dependent rescaling of the corresponding gradient ascent solution. Exploiting the
monotonicity of fi(t) and gj(t) under gradient ascent, we can construct an invertible map
between the parameter space {(θθθi,φφφj)} and the operator space {(fi, gj)} which allows us to
construct the equivalent system T in the operator space. Notice that the properties of gradient
ascent are crucial since the operator space can be arbitrarily smaller in dimension. In this
case a smooth invertible map that is common for all initializations cannot exist.

Theorem 1. For each initialization (θθθ(0),φφφ(0)) of Equation (1), there are C1 functions
Xθθθi(0) , Xφφφj(0) such that θθθi(t) = Xθθθi(0)(fi(t)) and φφφj(t) = Xφφφj(0)(gj(t)). If (θθθ(t),φφφ(t)) sat-
isfy Equation (1) then fi(t) = fi(θθθi(t)) and gj(t) = gj(φφφj(t)) satisfy

ḟi = −‖∇θθθifi(Xθθθi(0)(fi))‖
2 ∂L

∂fi
(F,G)

ġj = ‖∇φφφj
gj(Xφφφj(0)(gj))‖

2 ∂L

∂gj
(F,G)

(3)

Proof. Let us first study a simpler dynamical system (Σ∗) with unique solution of γθθθi(0)(t).

(Σ∗) ≡
{

ż = ∇fi(z)
z(0) = θθθi(0)

}
It is easy to observe that:

ḟi = ∇f(z)ż = ‖∇f(z)‖2

If θθθi(0) is a stationary point of fi then the trajectory of z is a single point. But the trajectory of θθθi
under the dynamics of Equation (1) is also a single point so we can pick the following function

Xθθθi(0)(fi) = θθθi(0).

On the other hand if θθθi(0) is not a stationary point of fi, fi continuously increases along the trajectory
of (Σ∗). Therefore Aθθθi(0)(t) = fi(γθθθi(0)(t)) is an increasing function and therefore invertible. Let
us call A−1

θθθi(0)(fi) the inverse.

Let’s recall now the θθθi part of the dynamical system of interest Equation (1)

θ̇θθi = −∇θθθifi(θθθi)
∂L

∂fi
(F(θθθ),G(φφφ))

initialized at θθθi(0). Applying Lemma 1 for the first equation with

h(t) = − ∂L
∂fi

(F(θθθ(t)),G(φφφ(t)))

we have that under the dynamics of Equation (1)

θθθi(t) = γθθθi(0)

(∫ t

0

h(s)ds

)
(P)

Thus it holds

fi(θθθi(t)) = f

(
γθθθi(0)

(∫ t

0

h(s)ds

))
= Aθθθi(0)

(∫ t

0

h(s)ds

)
or equivalently ∫ t

0

h(s)ds = A−1
θθθi(0)(fi(θθθi(t)))

19



Plugging in back to Equation (P)

θθθi(t) = γθθθi(0)(A
−1
θθθi(0)(fi(θθθi(t))))

Therefore we can pick
Xθθθi(0)(fi) = γθθθi(0)(A

−1
θθθi(0)(fi))

which is C1 as composition of C1 functions. We can perform an equivalent analysis for φφφj(0) and gj
to pick C1 function Xφφφj(0). Let us now track the time derivative of fi(θθθi) and gj(φφφj)

ḟi = ∇θθθifi(θθθi)θ̇θθi = ‖∇θθθifi(θθθi)‖2
∂L

∂fi
(F,G)

ġj = ∇φφφj
gj(φφφj)φ̇φφj = ‖∇φφφj

gj(φφφj)‖2
∂L

∂gj
(F,G)

We can now replace θθθi = Xθθθi(0)(fi) and φφφj = Xφφφj(0)(gj) to get the equations required.

The XOR-functions in biological applications of Section 4 exemplify a set of cases where
safety analysis is tractable. Much more generally, the separability assumption between the
variables of fi and gj allows for a much more general positive result. Indeed, below we show
that under standard assumptions on fi and gj and a target equilibrium (p,q) with

pi ∈ (max LocalMin(fi),min LocalMax(fi))

qj ∈ (max LocalMin(gj),min LocalMax(gj))

almost all initializations are safe by the Center-Stable Manifold-Theorem.

Theorem 2. If fi and gj have isolated stationary points, only strict saddle points, com-
pact sublevel-sets, both equilibria pi ∈ (max LocalMin(fi),min LocalMax(fi)) and qj ∈
(max LocalMin(gj),min LocalMax(gj)), then almost all initializations are safe for a (p,q) ∈
Solution(L).

Proof. Our proof structure goes as follows: Initially, we will prove that for each i and for all but a
measure zero sets of θθθi(0) it holds that pi ∈ Imfi(θθθi(0)) and θθθi(0) is not a stationary point of fi.
Correspondingly, for each j and for all but a measure zero sets ofφφφj(0), it holds that qj ∈ Imgj (φφφj(0))
and φφφj(0) is not a stationary points of gj . Thus, since (n,m) are finite, for all but a measure zero set
of initializations (θθθ(0),φφφ(0)) are safe for (p,q).

What remains to prove is that for almost all θθθi(0) it holds that pi ∈ Imfi(θθθi(0)) and θθθi(0) is not a
stationary point of fi. The proof for gj is completely symmetrical. Observe that the stationary points
of fi are isolated. So we clearly have that almost all θθθi(0) ∈ Rni are not stationary points of fi. We
will then break the proof for pi ∈ Imfi(θθθi(0)) in two pieces.

For the first piece we will prove that for almost all θθθi(0) we have that pi < sup Imfi(θθθi(0)). To
do this we need to study the dynamics of Σ1 as t → ∞. Let θθθi(t) be the solution of Σ1. As
t → ∞, either ‖θθθi(t)‖ is bounded or it goes to ∞. For the case of ‖θθθi(t)‖ → ∞ we know that
fi(θθθi(t)) → ∞ since fi has compact sublevel sets and thus pi < sup Imfi(θθθi(0)) follows directly.
For the remaining cases, we know that θθθi(t) is bounded and thus it has a connected ω limit set. But
since only stationary points of fi can be limit sets of θθθi(t) and they are isolated, this means that
θθθi(t) has exactly one limit point and as a result it converges to this limit point as t→∞. Let us call
this point r. Since fi(θθθi(t)) is increasing because of the gradient ascent dynamics of Σ1, we have
that sup Imfi(θθθi(0)) = fi(r). Since r is a stationary point of fi, it is either either a local minimum,
a local maximum or a saddle point of fi. Clearly r cannot be a local minimum since fi(θθθi(t)) is
increasing so it cannot converge to a local minimum of fi. Regarding saddle points, by assumption
they are all strict and thus by the Stable Manifold Theorem (Theorem 12) only a zero measure set can
converge to any of the isolated and thus countable saddle points. This leaves us with the case of r
being a local maximum in which case we have that f(r) ≥ min LocalMax(fi)). But by assumption
pi < min LocalMax(fi)) ≤ fi(r) = sup Imfi(θθθi(0)).
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For the second piece we will prove that for almost all θθθi(0) we have that pi > inf Imfi(θθθi(0)). To do
this we need to study the dynamics of Σ1 as t→ −∞. Let θθθi(t) be the solution of Σ1. As t→ −∞,
either ‖θθθi(t)‖ is bounded or it goes to∞. For the case of ‖θθθi(t)‖ → ∞ we know that fi(θθθi(t))→∞
since fi has compact sublevel sets. But this is a contradiction since fi(θθθi(t)) is increasing so it cannot
approach∞ as t→ −∞. For the remaining cases, just like above we have that θθθi(t) converges to
a point r and because of the gradient ascent dynamics of Σ1, we have that inf Imfi(θθθi(0)) = fi(r).
Since r is a stationary point of fi, it is either either a local minimum, a local maximum or a saddle
point of fi. Clearly r cannot be a local maximum since fi(θθθi(t)) is increasing so it cannot converge to
a local maximum of fi as t→ −∞. Once again for saddle points, we know from (Theorem 12) only
a zero measure set can converge to any of the isolated and thus countable saddle points. This leaves
us with the case of r being a local minimum in which case we have that f(r) ≤ max LocalMin(fi)).
But by assumption pi > max LocalMin(fi)) ≥ fi(r) = inf Imfi(θθθi(0)).

Remark 4. The key message of the above theorem is that the safety condition is a reasonable
and relatively minimal assumption. Going beyond this type of result remains difficult as even in
non-convex optimization, understanding which initializations lead to which local minimum of a loss
function under gradient descent is a rather hard problem in its full generality, so no meaningful
progress is possible without constraining ourselves in special cases with additional structure. Thus,
instead of reiterating negative results based on unfortunate initializations that are not in agreement
with the empirical success of GANs, we choose to study the dynamics of HCC games under safety.

C Hidden Convex Concave Games

In this section, we analyze the derived stability properties of the hidden convex concave
games. It is worth mentioning that without strict/strong convexity/concavity from at least
one of the operators, the quality of the results are limited to “Lyapunov Stability”. Firstly,
we present a construction of a Lyapunov function for the operators’ dynamics Theorem 3.
Then, in Theorem 4 and Theorem 5 we explore the stability of the initial conditions in the
parameter space.

C.1 General case

The following theorem presents the construction of a Lyapunov potential function for the
induced operator dynamics. To motivate its construction, we can study a fundamental
convex-concave function L(x, y) = (x− p)2 − (y − q)2 with saddle point (p, q). Under the
gradient-descent-ascent dynamics

(T ) :=

{
ẋ = − ∇xL(x, y) (minimization of convex part)
ẏ = ∇yL(x, y) (maximization of concave part)

}
.

it is easy to check that H(x, y) = (x− p)2 + (y − q)2 meets all the criteria of a Lyapunov
function. The construction below extends this argument to any convex-concave function
L(F,G) and bypasses the more complex multiplicative terms for the gradient induced
dynamics of Theorem 1. Notice that

H(F,G) =

N∑
i=1

∫ fi

pi

z − pi
‖∇fi(Xθθθi(0)(z))‖2

dz +

M∑
j=1

∫ gj

qj

z − qj
‖∇gj(Xφφφj(0)(z))‖2

dz

coincides with the `22 distance from (p,q) in the case of gradient norms equal to one, i.e.

‖∇fi‖2 = ‖∇gj‖2 = 1
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Lemma 2. If L is convex concave and (φφφ(0), θθθ(0)) is a safe for (p,q) ∈ Solution(L), then the
following quantity is non-increasing under the dynamics of Equation (3):

H(F,G) =

N∑
i=1

∫ fi

pi

z − pi
‖∇fi(Xθθθi(0)(z))‖2

dz +

M∑
j=1

∫ gj

qj

z − qj
‖∇gj(Xφφφj(0)(z))‖2

dz (4)

Proof. Simple substitution gets us the following

Ḣ = −
N∑
i=1

(fi − pi)
∂L

∂fi
(F,G) +

M∑
j=1

(gj − qj)
∂L

∂gj
(F,G)

= −〈F− p,∇FL(F,G)〉+ 〈G− q,∇GL(F,G)〉
By Theorem 13 for the convex L(·,G) and concave L(F, ·).

−〈F− p,∇FL(F,G)〉 ≤ L(p,G)− L(F,G)

〈G− q,∇GL(F,G) ≤ L(F,G)− L(F,q)

Thus we can end up writing

Ḣ ≤ L(p,G)− L(F,G) + L(F,G)− L(F,q)

≤ L(p,G)− L(p,q) + L(p,q)− L(F,q) ≤ 0

The last inequality holds since (p,q) ∈ Solution(L). Indeed, if (p,q) is a saddle point of L then
L(p,G) ≤ L(p,q) ≤ L(F,q).

Theorem 3. If L is convex concave and (φφφ(0), θθθ(0)) is a safe for (p,q) ∈ Solution(L), then (p,q)
is stable for Equation (3).

Proof. Leveraging Lemma 2, there is a functionH which is well defined inD = {Imfi(θθθi(0))}Ni=1×
{Imgj (φφφj(0))}Mj=1 and in this domain Ḣ ≤ 0. Given the safety conditions we know that (p,q) ∈ D.
Observe that for the proposed function, it holds that H(p,q) = 0. Also for each fi and gj term in H
we know that it has its minimum of value 0 at the corresponding pi and qj . We can deduce this by
taking the derivative of each term to study its monotonicity. For example, the fi terms are strictly
increasing in fi > pi and strictly decreasing in fi < pi. Thus for all D−{(p,q)}, H > 0. Applying
Theorem 9 for the continuously differentiable H we have that (p,q) is stable for Equation (3).

In the following example, we examine how it is possible to transfer the stability properties
between two (topological conjugate) dynamical systems.

Theorem 4. If fi and gj are sigmoid functions and L is convex concave and there is a (φφφ(0), θθθ(0))
that is safe for (p,q) ∈ Solution(L), then (F−1(p),G−1(q)) is stable for Equation (1).

Proof. Firstly, we recall the property of sigmoid’s gradient:

dσ(x)

dx
= σ(x)(1− σ(x)).

Thus the transformed dynamical system in the operator space can be written as:

(T ) :=

{
ḟi = − f2

i (1− fi)2 ∂L
∂fi

(F,G)

ġj = g2
j (1− gj)2 ∂L

∂gj
(F,G)

}
Notice that

1. The dynamical system (T ) in the operator space is independent of the initial conditions. In
fact, the dynamical system of (T ) and the one of Equation (1), called (Σ) for short, are
diffeomorphic for all initializations, not just a specific trajectory.

2. Since (θθθ(0),φφφ(0)) is safe, using Theorem 3 we get that (p,q) is stable for (T ).
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We would like to prove that for every open neighborhood V of (F−1(p),G−1(q)) there exists an
open neighborhood U of (F−1(p),G−1(q)) such that

(θθθinit,φφφinit) ∈ U =⇒ ∀t ≥ 0 : (θθθ(t),φφφ(t)) ∈ V.

Using the diffeomorphism γ = γΣ→T between GDA dynamics of (Σ) and (T ) , γ(V ) is an open
neighborhood of (p,q) since V is open and γ((F−1(p),G−1(q))) ≡ (p,q) ∈ γ(V ). By Item 2,
since (p,q) is stable for (T ) there is an open neighborhood Ũ of (p,q) such that:

(Finit,Ginit) ∈ Ũ =⇒ ∀t ≥ 0 : (F(t),G(t)) ∈ γ(V )

or equivalently
γ(θθθinit,φφφinit) ∈ Ũ =⇒ ∀t ≥ 0 : γ(θθθ(t),φφφ(t)) ∈ γ(V )

Indeed, using the inverse diffeomorphism γ−1, we can establish that for U = γ−1(Ũ) it holds that

(θθθinit,φφφinit) ∈ U =⇒ ∀t ≥ 0 : (θθθ(t),φφφ(t)) ∈ V

Until now, we have established the stability of a pair (p,q) for the induced dynamics (T ).
By the construction of the induced dynamics, (T ) is coupled only with a very specific initial
condition (θθθinit,φφφinit). In order to tackle the challenge of a stability result for a whole region of
initial conditions, in the following lemma we prove that r(θθθ,φφφ) = ‖F(θθθ)−p‖2+‖G(φφφ)−q‖2
can work like an intrinsic measure of closeness for the {θθθ,φφφ}-parameter space around a hidden
fixed point of the {F,G}-operator space. Under this “hidden” neighborhood notion, stability
property can be taken by assuming the properness of the hidden operators.

Theorem 5. Let (p,q) ∈ Solution(L). Let Rfi and Rgj be the set of regular values3 of fi and gj
respectively. Assume that there is a ξ > 0 such that [pi− ξ, pi + ξ] ⊆ Rfi and [qj − ξ, qj + ξ] ⊆ Rgj .
Define

r(t) = ‖F(θθθ(t))− p‖2 + ‖G(φφφ(t))− q‖2.
If fi and gj are proper functions4, then for every ε > 0, there is an δ > 0 such that

r(0) < δ =⇒ ∀t ≥ 0 : r(t) < ε.

Proof. Let us define the following sets

∀i ∈ [n] : Ai = { θθθi ∈ Rni | fi(θθθi) ∈ [pi − ξ, pi + ξ]}
∀j ∈ [m] : Bj = { φφφj ∈ Rmj | gj(φφφj) ∈ [qj − ξ, qj + ξ]}

Since fi and gj are proper Ai and Bj are compact sets. Thus, the continuous functions ‖∇fi(θθθi)‖2
and ‖∇gj(φφφj)‖2 have a minimum and maximum value on Ai and Bj respectively. Let us call Kfi
and Kgj the maxima and κfi and κgj the minima. Observe that the minima and maxima must be all
greater than zero since [pi − ξ, pi + ξ] and [qj − ξ, qj + ξ] are regular values. Let us define

κ = min{ min
1≤i≤n

κfi , min
1≤j≤m

κgj}

K = max{ max
1≤i≤n

Kfi , max
1≤j≤m

Kgj}

where K ≥ κ > 0 as we discussed. Let us create the following set

S = {(θθθ,φφφ) ∈ RN × RM | ∀i ∈ [n] : θθθi ∈ Ai, ∀j ∈ [m] : φφφj ∈ Bj}
We can prove that every (θθθ,φφφ) ∈ S is a safe initialization for (p,q). Of course, every θθθi and φφφj are
not stationary points of fi and gj respectively. We also need to prove that the equilibrium (p,q)
is feasible. We will prove this by contradiction. Let there be a (θθθ,φφφ) ∈ S such that (p,q) is not
feasible. Without loss of generality we can assume that there is an i ∈ [n] such that pi /∈ Imfi(θθθi).

3A value a ∈ Im f is called a regular value of f if ∀q ∈ dom f : f(q) = a, it holds∇f(q) 6= 0.
4A function is proper if inverse images of compact subsets are compact.
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The case for the gj is symmetrical. Along the gradient ascent trajectory of fi with initialization at
θθθi, observe that fi(t) cannot attain an infimum or a supremum in [pi − ξ, pi + ξ] because there are
no stationary points of fi in Ai. Observe also that at initialization fi(θθθi) ∈ [pi − ξ, pi + ξ]. Thus
[pi − ξ, pi + ξ] ⊆ Imfi(θθθi), a contradiction.

Let us pick an initialization (θθθ(0),φφφ(0)) such that r(0) ≤ ξ2. It is clear that (θθθ(0),φφφ(0)) ∈ S and so
it is safe for (p,q). We can do the same steps as in Theorem 3 to prove that the function H(F,G)
below does not increase under the dynamics of Equation (1):

H(F,G) =

N∑
i=1

∫ fi

pi

z − pi
‖∇fi(Xθθθi(0)(z))‖2

dz +

M∑
j=1

∫ gj

qj

z − qj
‖∇gj(Xφφφj(0)(z))‖2

dz

Observe that since (θθθ(0),φφφ(0)) ∈ S we have that the interval between pi and fi(θθθi(0)) belongs in
[pi − ξ, pi + ξ] and ‖∇fi(·)‖2 ≥ κ in this interval. Thus we can write

(fi(θθθi(0))− pi)2

2κ
≥
∫ fi(θθθi(0))

pi

z − pi
‖∇fi(Xθθθi(0)(z))‖2

dz

Repeating the same argument for all fi and gj we have that
r(0)

2κ
≥ H(F(θθθ(0)),G(φφφ(0))) ≥ H(F(θθθ(t)),G(φφφ(t)))

Let us pick r(0) < min{ξ2, ξ2 κ
K } = ξ2 κ

K . We already know that trajectories start in S. We will
prove that they also remain in S. We will do this by contradiction. If a trajectory escaped S, then
without loss of generality this means that there is at least an i ∈ [n] such that at some t > 0,
fi(θθθi(t)) /∈ [pi − ξ, pi + ξ]. The case of gj is similar. Clearly we have that∫ fi(θθθi(t))

pi

z − pi
‖∇fi(Xθθθi(0)(z))‖2

dz ≥ min

{∫ pi−ξ

pi

z − pi
‖∇fi(Xθθθi(0)(z))‖2

dz,

∫ pi+ξ

pi

z − pi
‖∇fi(Xθθθi(0)(z))‖2

dz

}
As above, we have that the gradients in the integrals of the right hand side are less or equal than K so

∫ fi(θθθi(t))

pi

z − pi
‖∇fi(Xθθθi(0)(z))‖2

dz ≥ ξ2

2K
.

The terms of H are all non-negative so we have that

r(0)

2κ
≥ H(F(θθθ(t)),G(φφφ(t))) ≥

∫ fi(θθθi(t))

pi

z − pi
‖∇fi(Xθθθi(0)(z))‖2

dz ≥ ξ2

2K
.

But r(0) < ξ2 κ
K , a contradiction. So the trajectories will stay in S. We can then write∫ fi(θθθi(t))

pi

z − pi
‖∇fi(Xθθθi(0)(z))‖2

dz ≥ (fi(θθθi(t))− pi)2

2K
.

Repeating the same argument for all fi and gj we have that
r(0)

2κ
≥ H(F(θθθ(t)),G(φφφ(t))) ≥ r(t)

2K
.

For every ε > 0, there is a positive δ = min{ξ2,ε}κ
K such that

r(0) < δ =⇒ r(t) < ε.

A special case of the above result is the standard convex-concave games:
Corollary 3. Let L(x,y) be strictly convex concave and Solution(L) is the non empty set of equilbria
of L. Then Solution(L) is locally asymptotically stable for continuous GDA dynamics.

Proof. The proof of the above classical result can be derived by the straightforward application of
Lemma 3 for the case of F(x) = x and G(y) = y. Notice that i) if F,G are the identity maps all
the initial configurations are safe and ii) if ‖∇F‖2 = ‖∇G‖2 = 1, then the initialization-dependent
Lyapunov functions coincide to a single Lyapunov function, which is actually the squared Euclidean
distance r(θθθ,φφφ) = ‖F(θθθ)− p‖2 + ‖G(φφφ)− q‖2 = ‖θθθ − p‖2 + ‖φφφ− q‖2.

24



C.2 Hidden strictly convex concave games

C.2.1 Gradient Descent-Ascent Dynamics

In the following preliminary result, we show that strict convexity or concavity in L(·, ·), for
at least one of its arguments, suffices to yield locally asymptotic stability starting from a safe
initial condition. Our argumentation leverages the power of Theorem 10 and combines the
previous section stability results. Here, we will firstly outline the basic steps below:

1. We start by showing that there exists a compact set Ω ⊂ D.

2. Therefore, since Ḣ ≤ 0 (Lyapunov property), any configuration (F(0),G(0))
starting from a bounded sub-level set Ω of H , will remain inside Ω over all time.

3. The second crucial observation is that thanks to the strictness on convexity or
concavity of L, the largest invariant set of Ḣ = 0 contains only points belonging to
Von Neumann’s Solution(L).

Then Theorem 10 implies the local asymptotic stability of set Z for Equation (3).

Lemma 3. Let L be strictly convex concave and Z ⊂ Solution(L) is the non empty set of equilbria
of L for which (θθθ(0),φφφ(0)) is safe. Then Z is locally asymptotically stable for Equation (3).

Proof. Pick a point (p,q) ∈ Z. Since our initialization is safe for this saddle point, we can construct
the H function as in Theorem 3 and prove that it has the following property

Ḣ ≤ 0 in D = {Imfi(θθθi(0))}Ni=1 × {Imgj (φφφj(0))}Mj=1

If (F(θθθ(0)),G(φφφ(0))) = (p,q) then the theorem holds trivially. Otherwise, take a ball B centered
at the equilibirum with a small enough radius such that it is contained in the interior of D.

H0 = min
(F,G)∈∂B

H(F,G)

Ω = {(F,G) ∈ B|H(F,G) ≤ H0/2}

We know that in both of the cases H0 > 0 from Theorem 3.

Since Ḣ ≤ 0, starting in Ω, it implies that H(F(t),G(t)) ≤ H0 for t ≥ 0, so Ω is forward invariant.
Since Ω ⊂ D we know that it is bounded. Ω is closed since it is a sublevel set of a continuous
function. Notice that the restriction of Ω on B does not affect the above properties since Ω is in the
interior of B. Thus Ω is a compact forward invariant set, satisfying the requirement of Theorem 10

Let E = {(F,G) ∈ B|Ḣ(F,G) = 0}. Without loss of generality we can assume that L(·,q) is
strictly convex as the case of L(p, ·) being strictly concave is similar. In the following inequality

Ḣ ≤ L(p,G)− L(p,q) + L(p,q)− L(F,q) ≤ 0

we know that L(p,G)− L(p,q) ≤ 0 and L(p,q)− L(F,q) ≤ 0.

So Ḣ = 0 implies L(p,G) = L(p,q) = L(F,q). By the strict convexity of L(·,q) we know that
this means that F = p. LetM be the largest invariant set inside E. By the properties ofM being
invariant subset of E we have

(F(0),G(0)) ∈M =⇒ ∀t : F(t) = p and L(p,G(t)) = L(p,q)

Taking the time derivatives on each of the constant quantities, they should be zero.

ḟi = 0⇒ ∀i ∈ [N ] : ‖∇θθθifi(Xθθθi(0)(pi))‖2
∂L

∂fi
(p,G) = 0

˙L(p,G(t)) = 0⇒
M∑
j=1

‖∇φφφj
gj(Xφφφj(0)(gj))‖2

[
∂L

∂gj
(p,G)

]2

= 0
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We know that ‖∇θθθifi(Xθθθi(0)(pi))‖ 6= 0 by the safety conditions and that ‖∇φφφj
gj(Xφφφj(0)(gj))‖2 6= 0

inside D again by safety conditions. This implies

∀i ∈ [N ] :
∂L

∂fi
(p,G) = 0

∀j ∈ [M ] :
∂L

∂gj
(p,G) = 0

Thus M contains only stationary points of L so M ⊆ Solution(L). In addition M ⊆ D so
only stationary points of L for which the initialization is safe are allowed soM ⊆ Z. Applying
Theorem 10 we have that for any initialization of Equation (3) inside Ω, as t → ∞ (F(t),G(t))
approachesM and thus Z is locally asymptotically stable for Equation (3).

A special case of the above result is the standard convex-concave games:

Corollary 4. Let L(x,y) be strictly convex concave and Solution(L) is the non empty set of equilbria
of L. Then Solution(L) is locally asymptotically stable for continuous GDA dynamics.

In the following main result of our work, we show that strict convexity or concavity in L(·, ·),
for at least one of its arguments, suffices to yield a convergence result to a Von Neumann’s
Solution(L) starting from a safe initial condition. In order to get convergence results for
any safe initialization, we need to study the region of attraction of the set Z ⊂ Solution(L).
We refine the estimation of the region of attraction as proposed in Lemma 3 by analyzing
the behavior of the level sets of H . More precisely, we show that the proposed Lyapunov
function

H(F,G) =

N∑
i=1

∫ fi

pi

z − pi
‖∇fi(Xθθθi(0)(z))‖2

dz +

M∑
j=1

∫ gj

qj

z − qj
‖∇gj(Xφφφj(0)(z))‖2

dz

is radially unbounded. In other words, while the operators converges to their limit values
(supremum/infimum of their domain) H → +∞. In order to show that we analyze the
asymptotic behavior of

∫ F
c

1
‖∇fi‖2 , while F → sup fi. Hence,

A) Theorem 10 implies that the trajectory will approach the set of stationary points of
H or equivalently a set of Von Neumann’s Solution(L).

B) The stability of Solution(L) and Theorem 11, leads to the conclusion that the
trajectory will converges to a specific point of Solution(L).

Theorem 6. Let L be strictly convex concave and Z ⊂ Solution(L) is the non empty set of equilbria
of L for which (θθθ(0),φφφ(0)) is safe. Under the dynamics of Equation (1) (F(θθθ(t)),G(θθθ(t))) converges
to a point in Z as t→∞.

Proof. Again let’s pick a point (p,q) ∈ Z. Since our initialization is safe for this saddle point, we
can construct the H function as in Theorem 3 and prove that it has the following property

Ḣ ≤ 0 in D = {Imfi(θθθi(0))}Ni=1 × {Imgj (φφφj(0))}Mj=1

If (F(θθθ(0)),G(φφφ(0))) = (p,q) then the theorem holds trivially. Otherwise define

H0 = H(F(θθθ(0)),G(φφφ(0)))

Ω = {(F,G) ∈ D|H(F,G) ≤ H0}
where we know that H0 > 0 from Theorem 3. Let us assume that indeed Ω is in the interior of D.
Then, applying the same argumentation as in Lemma 3 combined with Theorem 3, all fixed points inZ
are stable. So applying Theorem 11 we get that the trajectory initialized at (F(θθθ(0)),G(φφφ(0))) ∈ Ω
converges to a point in Z. It remains to prove our assertion about the set Ω:

Claim 1. Ω is in the interior of D.
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Proof. We will argue that as (F,G) approaches the boundary of D, the value of H should become
unbounded. If this is true then for the finite upper bound of H0, Ω should have no points close to the
boundary of H and thus it should be in the interior.

As (F,G) approach the boundary ofD, at least one of the variables fi or gj approaches the endpoints
points of Imfi(θθθi(0)) or Imgj (φφφj(0)) respectively. We will study the case of fi since the case of gj
is symmetrical. The endpoint fis can be either the supremum or the infimum of the gradient ascent
trajectory on fi or±∞ if they do not exist. Let fis be the supremum or∞ depending on if the former
exists. We can take the gradient ascent dynamics and apply Lemma 1 to get

ḟi = ‖∇θθθifi(Xθθθi(0)(fi))‖2

We know that fi(θθθi(t)) goes to fis when initialized at fi(θθθi(0)). Let us define the following function

a(fi) =

∫ fi

pi

1

‖∇fi(Xθθθi(0)(z))‖2
dz

Observe that ȧ = 1, thus limt→∞ a(fi(t)) =∞. In other words

lim
t→∞

∫ fi(t)

pi

1

‖∇fi(Xθθθi(0)(z))‖2
dz =

∫ fis

pi

1

‖∇fi(Xθθθi(0)(z))‖2
dz =∞

Symmetrically if fis is the infimum or −∞, then the limit above would be −∞. In either case

fi → fis =⇒
∫ fi

pi

z − pi
‖∇fi(Xθθθi(0)(z))‖2

dz →∞

For the last step it is important to note that pi is not at the boundary of D based on the safety
conditions. Therefore as (F,G) approach the boundary of D in the dynamics of Equation (3), at least
one of the terms of H goes to infinity. Also note that all the terms of H are individually non-negative
so no matter what the other variables in (F,G) are doing they cannot stop H →∞.

Again, a special case of the above result is the standard convex-concave games:
Corollary 5. Let L(xxx,yyy) be strictly convex concave and Solution(L) is the non empty set of equilbria
of L. Under the continuous GDA dynamics (xxx(t), yyy(t)) converges to a point in Solution(L) as t→∞.

C.2.2 Connections to Hamiltonian Descent

In GANs numerous learning heuristics are being tested and explored. One technique that has particular
interesting theoretical justification as well as practical performance is Hamiltonian Gradient Descent
(HGD). Understanding the convergence guarantees for HGD is an open research question [39, 8, 51].
We provide some new justification about its success in GANs by provably establishing convergence
of a modified version of HGD in a relatively simple but illustrative subclass of hidden convex concave
games, namely 2x2 hidden bi-linear games. This class of games is fairly expressive. Despite the
restriction of planar bi-linear competition in the output space, the hidden game can have an arbitrary
number of variables in the parameter space. It’s important to note that given the bi-linear nature of
competition, the classical GDA dynamics cycles instead of converging to the equilibrium as shown in
[65]

More precisely, in the hidden 2x2 bi-linear game presented in [65], we have two functions f :
RN → [0, 1] and g : RM → [0, 1] and two constants (p, q) ∈ (0, 1)2 where (p, q) is the fully
mixed equilibrium of the bi-linear game. Without loss of generality, we are interested in solving the
following problem

min
θθθ∈RM

max
φφφ∈RN

(f(θθθ)− p)(g(φφφ)− q)

Defining L(θθθ,φφφ) = (f(θθθ)− p)(g(φφφ)− q), the dynamics of HGD are:

θ̇θθ = −1

2
∇θθθ‖∇φφφL(θθθ,φφφ)‖2 − 1

2
∇θθθ‖∇θθθL(θθθ,φφφ)‖2

φ̇φφ = −1

2
∇φφφ‖∇θθθL(θθθ,φφφ)‖2 − 1

2
∇φφφ‖∇φφφL(θθθ,φφφ)‖2

(6)
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Observe that the second term of each right hand side would be zero in a classical bi-linear game but
involves second order derivatives of f and g in the case of hidden bi-linear games. To circumvent the
complexities of the second order derivatives and mimic the classical bi-linear game we will study a
modified version of Equation (6), namely:

θ̇θθ = −1

2
∇θθθ‖∇φφφL(θθθ,φφφ)‖2 φ̇φφ = −1

2
∇φφφ‖∇θθθL(θθθ,φφφ)‖2 (7)

Employing an analysis similar to the one in Section 3.2, we get the following convergence result:
Theorem 15. Let (θθθ(0),φφφ(0)) be safe for (p, q). Then (f(θθθ(t)), g(φφφ(t))) converges to (p, q) under
the dynamics of Equation (7).

Proof. Simple substitution gives us

θ̇θθ = −∇θθθf(θθθ)‖∇φφφg(φφφ)‖2(f(θθθ)− p)
φ̇φφ = −∇φφφg(φφφ)‖∇θθθf(θθθ)‖2(g(φφφ)− q)

Applying Lemma 1 and following the same steps as before

ḟ = −‖∇θθθf(Xθθθ(0)(f))‖2‖∇φφφg(Xφφφ(0)(g))‖2(f − p)
ġ = −‖∇φφφg(Xφφφ(0)(g))‖2‖∇θθθf(Xφφφ(0)(f))‖2(g − q)

Once again we consider the function

H(f, g) =

∫ f

p

z − p
‖∇f(Xθθθ(0)(z))‖2

dz +

∫ g

q

z − q
‖∇g(Xφφφ(0)(z))‖2

dz

Simple substitution gives

Ḣ = −(f − p)
(
‖∇φφφg(Xφφφ(0)(g))‖2(f − p)

)
− (g − q)

(
‖∇θθθf(Xφφφ(0)(f))‖2(g − q)

)
A little bit of reorganization gives

Ḣ = −(f − p)2‖∇φφφg(Xφφφ(0)(g))‖2 − (g − q)2‖∇θθθf(Xθθθ(0)(f))‖2 ≤ 0

Thus, we get

Ḣ ≤ 0 in D = Imf (θθθ(0))× Img(φφφ(0))

Similarly with the strict convex analysis of the previous section, if (f(θθθ(0)), g(φφφ(0))) = (p, q) then
the theorem holds trivially. Otherwise define

H0 = H(f(θθθ(0)), g(φφφ(0)))

Ω = {(f, g) ∈ D|H(f, g) ≤ H0}
where we know that H0 > 0 from Theorem 3. Additionally, we can apply Claim 1 even in the new
dynamics, so Ω is in the interior ofD. Since Ḣ ≤ 0, starting in Ω, it implies thatH(f(t), g(t)) ≤ H0

for t ≥ 0, so f(t), g(t) stays in Ω. Additionally, Ω is closed since it is a sublevel set of a continuous
function. Notice that the restriction of Ω on D does not affect the above properties since Ω is in the
interior of D. Thus Ω is a compact forward invariant set.

For a safe initialization (θθθ(0),φφφ(0), both ‖∇φφφg(Xφφφ(0)(g(t)))‖, ‖∇θθθf(Xθθθ(0)(f(t)))‖ cannot go to 0
as this happens only at the boundaries of D which are outside Ω. So Ḣ = 0 only at (p, q) in Ω.

Therefore, applying Theorem 10, we get that (f(θθθ(t)), g(φφφ(t))) converges to (p, q)
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C.3 Regularization and convergence

In this section, we show that even in the absence of strict convexity/concavity for both of the
operators, it is possible to achieve a positive convergence result by sacrificing the exactness
of a targeted equilibrium. In other words, we prove that by adding a small regularization
term, the new utility function becomes strictly convex strictly concave. Beside the guaranteed
convergence of the “perturbed" L′, we can always choose sufficiently small magnitude of
regularization such that the new equilibria are arbitrarily close to the initial ones.

Theorem 7. If L is a convex concave function with invertible Hessians at all its equilibria, then for
each ε > 0 there is a λ > 0 such that L′ has equilibria that are ε-close to the ones of L.

Proof. For any choice of λ > 0 we have that L′ is strictly convex strictly concave so the KKT
conditions are sufficient to determine its equilibria.

∂L(x,y)

∂xi
+ λxi = 0

∂L(x,y)

∂yj
− λyj = 0

We can view the above set of constraints as a single vector constraint r(λ,x,y) = 0. Note that by
assumption of the Hessians being invertible at all equilibria, L has a unique equilibrium (x∗,y∗).
Clearly we have that r(0,x∗,y∗) = 0. Observe that for the Jacobian of r at (0,x∗,y∗) with respect
to (x, y) we have that

D(x,y)r(0,x
∗,y∗) = ∇2L(x∗,y∗)

and thus it is invertible. Invoking the Implicit function Theorem, there is a differentiable function g,
defined in a small enough neighborhood of 0, that takes a λ and returns g(λ) = (x(λ),y(λ)) such
that r(λ, g(λ)) = 0. Thus for a small enough λ, we have that g returns the corresponding equilibria
of L′. By continuity of g, for all ε there is a δ > 0

∀0 < λ < δ : ‖x(λ)− x(0)‖2 + ‖y(λ)− y(0)‖2 ≤ ε2

But (x(0),y(0)) = (x∗,y∗) so the equilbrium of L′ has an ε-close equilibrium of L for λ < δ. By
strict convexity strict concavity of L′, it has a unique equilibrium as well. So the equilibria of L′ and
L are ε-close to each other.

The previous theorem highlights that small values of λ induce only small changes to the
equilibria of the hidden game. As is the case for classical convex concave games, larger
values of λ lead to (exponentially) faster convergence. To prove this for HCC games, we
provide a detailed upper and lower bound analysis of the gradients of fi and gj .

Theorem 8. Let (θθθ(0),φφφ(0)) be a safe initialization for the unique equilibrium of L′ (p,q). If

r(t) = ‖F(θθθ(t))− p‖2 + ‖G(φφφ(t))− q‖2

then there are initialization dependent constants c0, c1 > 0 such that r(t) ≤ c0 exp(−λc1t).

Proof. Following the same analysis with the strict convex concave analysis of the previous section, if
(F(θθθ(0)),G(φφφ(0))) = (p,q) then the theorem holds trivially. Otherwise, since our initialization is
safe for (p,q), we can construct the H function as in Theorem 3 and prove that it has the following
property in D = {Imfi(θθθi(0))}Ni=1 × {Imgj (φφφj(0))}Mj=1

Ḣ ≤ L′(p,G)− L′(p,q) + L′(p,q)− L′(F,q)

≤ −λ
2

(
‖F(θθθ(t))− p‖2 + ‖G(φφφ(t))− q‖2

)
≤ −λ

2
r(t)
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Where the second step follows from L′(p, ·) being λ strongly concave and L′(·,q) being λ strongly
convex and q, p being the corresponding optima of these functions since (p,q) is an equilibrium.
Let us define

H0 = H(F(θθθ(0)),G(φφφ(0)))

Ω = {(F,G) ∈ D|H(F,G) ≤ H0}
where we know that H0 > 0 from Theorem 3. Additionally, we can apply Claim 1 even in
the new dynamics, so Ω is in the interior of D. Since Ḣ ≤ 0, starting in Ω, it implies that
H(F(θθθ(t)),G(φφφ(t))) ≤ H0 for t ≥ 0, so (F(t),G(t)) stays in Ω. Additionally, Ω is closed since it
is a sublevel set of a continuous function. Notice that the restriction of Ω on D does not affect the
above properties since Ω is in the interior of D. Thus Ω is a compact forward invariant set.

For a safe initialization (θθθ(0),φφφ(0)), the following continuous functions must have a minimum and
maximum value on Ω respectively.

Kfi ≥ ‖∇fi(Xθθθi(0)(·))‖2 ≥ κfi
Kgj ≥ ‖∇gj(Xφφφj(0)(·))‖2 ≥ κgj

Observe that the minima and maxima must be all greater than zero , since both
‖∇φφφj

gj(Xφφφj(0)(g(t)))‖, ‖∇θθθifi(Xθθθi(0)(f(t)))‖ cannot go to 0 as this happens only at the bound-
aries of D which are outside Ω.

Let us define

κ = min{ min
1≤i≤n

κfi , min
1≤j≤m

κgj}

K = max{ max
1≤i≤n

Kfi , max
1≤j≤m

Kgj}

Observe that K ≥ ‖∇fi(Xθθθi(0)(·))‖2 ≥ κ in this interval. Thus we can write

(fi(θθθi(t))− pi)2

2κ
≥
∫ fi(θθθi(t))

pi

z − pi
‖∇fi(Xθθθi(0)(z))‖2

dz ≥ (fi(θθθi(t))− pi)2

2K

Repeating the same argument for all fi and gj we have that

r(t)

2κ
≥ H(F(θθθ(t)),G(φφφ(t))) ≥ r(t)

2K

Thus we can extend our analysis

Ḣ ≤ −λr(t) ≤ −2κλ

2
H(t)⇒ H(t) ≤ H0e

−λκt ⇒ r(t) ≤ 2×K ×H0e
−λκt
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D Applications

D.1 Connecting GANs and Hidden Convex-Concave Games

At the heart of many GAN formulations like the standard GAN [26], f-GAN [50] and Wassertein
GAN (WGAN) [4] lies a classical convex concave game in the operator output space. Indeed for the
realizeable case [26] used the underlying convexity properties to find the Nash equilibria of standard
GAN and [23] did the same thing for the f-GAN and WGAN. Perhaps surprisingly, neither work
references explicitly the convex concave nature of the operator output space game or von Neumann’s
minimax theorem. To highlight the significance of von Neumann equilibria as a solution concept for
GANs, we show how the optimal G∗ and D∗ can be derived separately from each other by solving
the corresponding min-max (max-min) problems. This allows one to independently verify the validity
of von Neumann’s minimax theorem and its generalizations for GANs. We also extend our analysis
to a wide class of non-realizeable cases as well.

In practice however, as noted explicitly by [27], the updates in GAN training happen in the parameter
space giving rise to a HCC game. This has exactly motivated studying the learning dynamics of HCC
games in Section 3.

Thus, in this section, we present these connections between Hidden Convex-Concave games and the
different architectures of Generative Adversarial Networks. More specifically, we start by exploring
the structure of GANs and we verify their hidden convex-concave intrinsic form.

1. Under this scope of hidden games, the strong (or even strict) convexity/concavity of at
least one of the players (Discriminator/Generator) in combination with the convergence
results of the following sections provide some theoretical explanation about the convergence
properties of those architectures even under the vanilla Gradient Descent-Ascent Dynamics.

2. To indicate the relation of Von-Neumann solution with this hidden model, we leverage this
hidden convex-concave structure in order to compute the well-known both min max and
max min optima of GANs under the realizability or not assumption. The results of this
section are summarized in the following table:

Type of GAN G∗ D∗ Hidden Structure

GAN pdata
1
2 Linear VS Strongly-Concave

GAN arg minG∈G JSD(pdata||pG) pdata
pdata+pG∗

Linear VS Strongly-Concave

f-GAN pdata f ′(1) Linear VS Concave

f-GAN arg minG∈G Df (pdata||pG) f ′
(
pdata
pG∗

)
Linear VS Concave

WGAN pdata c Linear VS Linear

WGAN arg minG∈G EMD(pdata||pG) – Linear VS Linear

Table 1: pdata represents the target data distribution. G∗ is the min-max generator and D∗ is the
max-min discriminator. JSD denotes the Jensen–Shannon divergence, Df the f -divergence for the
convex function f and EMD the earth mover distance and c the constant discriminator. xGAN,
xGAN correspond to the realizable and the non-realizable case accordingly. – indicates the lack of a
closed form solution for D∗ of WGAN.
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In the following three subsections, we analyze both the derivation of arg min max and
arg max min for the “vanilla-GANs”, f-GANs, W-GANs using min-max optimization ar-
guments based on the Minimax Theorem for convex-concave functions. More precisely,

1. In the Lemmas 4, 9 and 14, we present the optimal discriminators which consist the
best-response for the case of a fixed generator. In all these maximization problems,
typically each D(x) is decoupled and D∗G(x) is derived by the hidden concavity of
the discriminator architecture.

2. In the Lemmas 5, 10 and 15, we present the optimal generators which consist the
best-response for the case of a fixed discriminator. In all these minimization prob-
lems, typically the generator can cheat the fixed discriminator by producing greedily
a distribution only over the restricted subset of the points for which the discriminator
has the highest confidence about their originality.

3. In the Lemmas 6, 11 and 16, we leverage lemmas of (Item 1) to understand the
form GAN’s utility function which corresponds typically to JSD, f -divergence and
Wasserstein distance which donate their name to their GAN architecture as well.
Thus, it is then trivial to show that pdata is the optimal choice in the realizable case.

4. In the Lemmas 7, 12 and 17, on the other side of the coin, we emphasize to derive
the minmax solutions too. Our proof strategy invokes the partition to two basic sets,
SG∗D and ScG∗D ,the “preferable” or not data points by the generator. Leveraging the
concavity part of the objective, we show that the best strategy for the discriminator
is to label all the points uniformly with the same confidence in order to incentivize
the generator to expands its support to the maximum possible.

5. In the Lemmas 8 and 13, we analyze the non-realizable case. One the one hand us-
ing Item 3 we are able to compute the arg max min generatorG∗. To conclude about
the arg min max discriminators we apply the Von Neumann’s Minimax theorem to
prove D∗ = Best-Response(G∗).

D.1.1 GAN

The utility of the zero-sum game V (G,D) for the distribution pdata over the discrete set N is

V (G,D) =
∑
x∈N

pdata(x) log(D(x)) +
∑
x∈N

pG(x) log(1−D(x))

On the one hand, it is easy to check that for a fixed discriminator D, the utility function is linear
over the pG operator. On the other hand, for a fixed generator G, the utility function is of the form
a log(D) + b log(1−D) which is strongly-concave.

We start our work with the following lemmas
Lemma 4 ([26]). For a fixed generator G the optimal discriminator is

D∗G(x) =
pdata(x)

pdata(x) + pG(x)

Proof. Observe that the optimization problem for each D(x) is decoupled. Thus

D∗G(x) = arg max
D∈[0,1]

pdata(x) log(D) + pG(x) log(1−D)

By concavity the unique maximum of the above is given by

D∗G(x) =
pdata(x)

pdata(x) + pG(x)

Lemma 5. For a fixed discriminator D, any distribution supported only on

SG∗D = {x ∈ N : ∀x′ ∈ N D(x) ≥ D(x′)}
is an optimal generator when it is allowed to choose any distribution over N .
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Proof. Observe that for a fixed discriminator, the optimal generator optimizes∑
x∈N

pG(x) log(1−D(x))

since the other term is independent of the generator. Let us define the following

Dmax = max
x∈N

D(x)

Then we have that ∑
x∈N

pG(x) log(1−D(x)) ≥ log(1−Dmax)

with the equality being true only for distributions supported only on SG∗D .

Lemma 6 ([26]). The min-max generator is the following distribution

G∗ = arg min
G∈G

JSD(pdata||pG).

Proof. We can substitute in V (G,D) the optimal discriminator from Lemma 4. Thus we get

V (G,D∗G) =
∑
x∈N

pdata(x) log

(
pdata(x)

pdata(x) + pG(x)

)
+
∑
x∈N

pG(x) log

(
pG(x)

pdata(x) + pG(x)

)
We can now prove that

V (G,D∗G) =− log(4) + KL

(
pdata||

pG + pdata

2

)
+ KL

(
pG||

pG + pdata

2

)
=− log(4) + 2JSD(pdata||pG)

By minimizing V (G,D∗G), the result follows trivially.

Lemma 7. The max-min discriminator is

∀x ∈ N : D∗(x) =
1

2

when the generator is allowed choose any distribution over N ,

Proof. We can substitute in V (G,D) the optimal generator from Lemma 5

V (G∗D, D) = log(Dmax)
∑

x∈SG∗
D

pdata(x) + log(1−Dmax)
∑

x∈SG∗
D

pG(x)

+
∑

x/∈SG∗
D

pdata(x) log(D(x)) +
∑

x/∈SG∗
D

pG(x)︸ ︷︷ ︸
0

log(1−D(x))

Let us define Dsmall = {D(x)|x /∈ SG∗D}. Observe that if |Dsmall| > 1 then setting D(x) =
max(Dsmall) for each x /∈ SG∗D improves utility. Thus for the optimal discriminator we have
|Dsmall| = 1. Let us call Dmin the unique element of Dsmall. Then we have that

x /∈ SG∗D =⇒ D∗(x) = Dmin

x ∈ SG∗D =⇒ D∗(x) = Dmax

Observe that for any combination of Dmax and Dmin with Dmax > Dmin, the constant discrimi-
nator Dmax has higher utility. Therefore we can focus our attention on the constant discriminator
Dconst(x) = D

V (G∗Dconst
, Dconst) = log(D) + log(1−D)

The optimal value for D is 1
2 and as a result

D∗(x) =
1

2
.
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Lemma 8 (Non-realizable case). If we assume that choice of generator G is restricted in G, a convex
compact subset of the |N | dimensional simplex, such that pdata /∈ G. Then

(G∗, D∗) =

(
arg min
G∈G

JSD(pdata||pG),
pdata

pdata + pG∗

)
5

Proof. We cannot readily apply von Neumann’s minimax theorem since the V (G,D) may be infinite
at the boundary points of D = (0, 1)|N | for the discriminator. We can still apply Fan’s Minimax
Theorem

min
G∈G

sup
D∈D

V (G,D) = sup
D∈D

min
G∈G

V (G,D).

It is easy to check that Lemma 6 holds even in the non-realizable case. As a result, the generator is
minimizing JSD(pdata||pG) whose value is finite. Clearly the quantities above are finite. Thus there
exists a real number v, the value of the game, such that:{

∀D ∈ D : V (G∗, D) ≤ v = V (G∗, D∗) (A)
∀G ∈ G : V (G,D∗) ≥ v = V (G∗, D∗) (B)

}
for G∗ the minimizer of JSD(pdata||pG) and a D∗ ∈ [0, 1]|N |. Now applying Lemma 4, we have that

D̃ = Best-Response(G∗) =
pdata

pdata + pG∗
.

Additionally, by the optimality of the response and the consequence (A) of Minimax Theorem it holds
that V (G∗, D̃) = v. Finally, since V (G∗, ·) is strongly concave, all other discriminators receive
value less than v and are not optimal. Thus

D∗ = D̃ = pdata
pdata+pG∗

D.1.2 f-GAN

The utility of the zero-sum game V (G,D) for the distribution pdata over the discrete set N is

V (G,D) =
∑
x∈N

pdata(x)D(x)−
∑
x∈N

pG(x)f∗(D(x))

We will assume that f is a strictly convex function with f(1) = 0. On the one hand, it is easy to check
that for a fixed discriminator D, the utility function is linear over the pG operator. On the other hand,
for a fixed generator G, the utility function is of the form aD − bf∗(D) which is strictly-concave.

We start our work with the following lemmas

Lemma 9 ([50]). For a fixed generator G the optimal discriminator is

D∗G(x) = f ′
(
pdata(x)

pG(x)

)
Proof. Observe that the optimization problem for each D(x) is decoupled. Thus

D∗G(x) = arg max
D

pdata(x)D − pG(x)f∗(D)

By concavity the unique maximum of the above is given by Fermat criterion

D∗G(x) = ((f∗)′)−1

(
pdata(x)

pG(x)

)
= f ′

(
pdata(x)

pG(x)

)

5We note that D∗, may take the value 1 for some x ∈ N if the generator G∗ does not have full support.
Assigning D(x) = 1 for some x may lead to infinite utilities in general. We prove however for that the pair
(G∗, D∗) this is not the case. We thus consider that pair an equilibrium.
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Lemma 10. For a fixed discriminator D, any distribution supported only on

SG∗D = {x ∈ N : ∀x′ ∈ N f∗(D(x)) ≥ f∗(D(x′))}
is an optimal generator when it is allowed to choose any distribution over N .

Proof. Observe that for a fixed discriminator, the optimal generator optimizes

−
∑
x∈N

pG(x)f∗(D(x))

since the other term is independent of the generator. Let us define the following

Fmax = max
x∈N

f∗(D(x))

Then we have that
−
∑
x∈N

pG(x)f∗(D(x)) ≥ −Fmax

with the equality being true only for distributions supported only on SG∗D .

Lemma 11 ([50]). The min-max generator is the following distribution

G∗ = arg min
G∈G

Df (pdata||pG).

Proof. We can substitute in V (G,D) the optimal discriminator from Lemma 9. Thus we get

V (G,D∗G) =
∑
x∈N

pdata(x)f ′
(
pdata(x)

pG(x)

)
−
∑
x∈N

pG(x)f∗
(
f ′
(
pdata(x)

pG(x)

))

We will first prove that:

V (G,D∗G) = Df (pdata||pG)

Let’s recall firstly the definition of f-divergence:

Df (pdata||pG) =
∑
x∈N

pG(x)f

(
pdata(x)

pG(x)

)
Since f is convex and lower semi-continuous, Frenchel convex duality guarantees that we can write
f in terms of its conjugate dual as f(u) = supv∈R

{
uv − f∗(v)

}
. Equivalently we get:

Df (pdata||pG) =
∑
x∈N

pG(x) sup
v∈R

{(
pdata(x)

pG(x)

)
v − f∗(v)

}
=
∑
x∈N

sup
v∈R
{pdata(x)v − f∗(v)pG(x)}

=
∑
x∈N

pdata(x)f ′
(
pdata(x)

pG(x)

)
−
∑
x∈N

pG(x)f∗
(
f ′
(
pdata(x)

pG(x)

))
The last line follows arguments similar to Lemma 9 applied for each term. By minimizing V (G,D∗G),
the result follows trivially.

Lemma 12. The max-min discriminator is

∀x ∈ N : D∗(x) = f ′(1)

when the generator is allowed choose any distribution over N .
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Proof. We want to substitute in V (G,D) the optimal generator from Lemma 5. Observe that for all
x ∈ SG∗D , we may not have all D(x) to be equal. Only the values of f∗ are guaranteed to be equal,
f∗(D(x)) = Fmax. However, if there are two distinct D values then we can always pick the higher
one and improve utility. Thus we can focus on discriminators that are constant over SG∗D . Let DFmax

be the corresponding value

V (G∗D, D) = DFmax

∑
x∈Si

pdata(x)− f∗(DFmax)
∑
x∈Si

pG(x)

+
∑

x/∈SG∗
D

pdata(x)D(x)−
∑

x/∈SG∗
D

pG(x)︸ ︷︷ ︸
0

f∗(D(x))

Let us define Dsmall = {D(x)|x /∈ SG∗D}. Observe that if |Dsmall| > 1 then setting D(x) =
max(Dsmall) improves utility. Thus for the optimal discriminator we have |Dsmall| = 1. Let us call
DFmin the unique element of Dsmall. So for an optimal discriminator we would have a single value
DFmin with f∗(DFmin) < f∗(DFmax). As a result

x /∈ SG∗D =⇒ D∗(x) = DFmin

x ∈ SG∗D =⇒ D∗(x) = DFmax

We now have two cases. For any combination with DFmin
> DFmax

, the constant discriminator
D(x) = DFmin has higher utility. Symmetrically, for any combination with DFmax > DFmin , the
constant discriminator D(x) = DFmax has higher utility. Thus the optimal discriminator is constant.
Plugging in the constant discriminator Dconst(x) = D we get

V (G∗Dconst
, Dconst) = D + f∗(D)

The optimal value for D follwoing the approach of Lemma 9 is f ′(1) and as a result
D∗(x) = f ′(1)

Lemma 13 (Non-realizable case). Assume that f ∈ C1 is strictly convex and limx→0+ xf( 1
x ) exists

and is finite6. If the choice of generator G is restricted in G, a convex compact subset of the |N |
dimensional simplex, such that pdata /∈ G then

(G∗, D∗) =

(
arg min
G∈G

Df (pdata||pG), f ′
(
pdata

pG∗

))
Proof. We cannot readily apply von Neumann’s minimax theorem since the V (G,D) sinceD = R|N |
is not compact for the discriminator. We can still apply Fan’s Minimax Theorem

min
G∈G

sup
D∈D

V (G,D) = sup
D∈D

min
G∈G

V (G,D).

It is easy to check that Lemma 12 holds even in the non-realizable case. As a result, the generator is
minimizing Df (pdata||pG) whose value is finite under the assumptions we made on f . Clearly the
quantities above are finite. Thus there exists a real number v, the value of the game, such that:{

∀D ∈ D : V (G∗, D) ≤ v = V (G∗, D∗) (A)
∀G ∈ G : V (G,D∗) ≥ v = V (G∗, D∗) (B)

}
for G∗ the minimizer of Df (pdata||pG) and a D∗ ∈ R̄|N |. Now applying Lemma 9 we have that

D̃ = Best-Response(G∗) = f ′
(
pdata(x)

pG∗(x)

)
.

Additionally, by the optimality of the response and the consequence (A) of Minimax Theorem it
holds that V (G∗, D̃) = v. Finally, assuming that f is strictly convex we get that V (G, ·) is strictly
concave, Best-Response(G∗) is unique and thus

D∗ = D̃ = f ′
(
pdata(x)

pG∗(x)

)
6This assumption guarantees that the Df is always finite even if the distribution chosen by the generator is

not fully supported onN . This in turn guarantees that D∗ is also finite resulting in a meaningful equilibrium.
Unbounded divergences like KL are known to be problematic for GANs even in practice [4].
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D.1.3 WGAN

The utility of the zero-sum game V (G,D) for the distribution pdata over the discrete metric space
(N ,dist)

V (G,D) = EX∼pdata [D(X)]− EX∼pG [D(X)]

=
∑
x∈N

(pdata(x)− pG(x))D(x) where ‖D‖Lip ≤ 1

On the one hand, it is easy to check that for a fixed discriminator D, the utility function is linear over
the pG operator. On the other hand, for a fixed generator G, the utility function is linear over D.

We start our work with the following lemmas

Lemma 14 ([4]). For a fixed generator G the optimal discriminator is a solution of the following
linear program

maximize over D(·)
∑
x∈N

(pdata(x)− pG(x))D(x)

subject to |D(x)−D(x′)| ≤ dist(x, x′),∀x, x′ ∈ N
where the optimal value of the LP is the Earth mover’s distance between pdata and pG.

Proof. Indeed, by definition any solution of the above LP is an optimal discriminator over a fixed
generator G. To complete the proof of the statement, we recall that Earth Mover’s distance of
(pdata, pG) is equal to

min
∆∈Coupling(pdata,pG)

E(X,X′)∼∆[dist(X,X ′)].

Now if we consider the dual formulation of the Wasserstein distance, then the Kantorovich duality
[21, 64] implies that the above linear program consists exactly the dual linear program which
computes the Earth Mover’s distance.

Lemma 15. For a fixed discriminator D, any distribution supported only on

SG∗D = {x ∈ N : ∀x′ ∈ N D(x) ≥ D(x′)}
is an optimal generator when it is allowed to choose any distribution over N .

Proof. Observe that for a fixed discriminator, the optimal generator optimizes

−
∑
x∈N

pG(x)D(x)

since the other term is independent of the generator. Let us define the following

Dmax = max
x∈N

D(x)

Then we have that
−
∑
x∈N

pG(x)D(x) ≥ −Dmax

with the equality being true only for distributions supported only on SG∗D .

Lemma 16 ([4]). The min-max generator is the following distribution

G∗ = arg min
G∈G

EMD(pdata, pG).

Proof. We can substitute in V (G,D) the optimal discriminator from Lemma 14. Thus we get

V (G,D∗G) = EMD(pdata, pG)

By minimizing V (G,D∗G), the result follows trivially.
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Lemma 17. The max-min discriminator is

∀x ∈ N : D∗(x) = c, Constant function

when the generator is allowed choose any distribution over N ,

Proof. We can substitute in V (G,D) the optimal generator from Lemma 5

V (G∗D, D) =Dmax

∑
x∈SG∗

D

pdata(x)−Dmax

∑
x∈SG∗

D

pG(x)

+
∑

x/∈SG∗
D

pdata(x)D(x)−
∑

x/∈SG∗
D

pG(x)︸ ︷︷ ︸
0

D(x)

Observe that for x /∈ SG∗D , if D takes more than two values then setting D equal to the highest of the
them for all x /∈ SG∗D improves utility. So for an optimal discriminator we would have a single value
Dmax > Dmin. In the end we have that

x /∈ SG∗D =⇒ D∗(x) = Dmin

x ∈ SG∗D =⇒ D∗(x) = Dmax

Observe that for any combination of Dmax and Dmin with Dmax > Dmin, the constant discrimi-
nator Dmax has higher utility. Therefore we can focus our attention on the constant discriminator
Dconst(x) = D, where the optimal value is exactly zero.

V (G∗Dconst
, Dconst) = 0

Finally, it is easy to check that the choice of constant discriminator satisfies trivially the Lipschitz
constraints, i.e |Dconst(x)−Dconst(x

′)| = 0 ≤ dist(x, x′) for any metric function dist.

D.2 GANs and Hidden Constrained Optimization

In the following section, we will generalize the results of Section 3.2 and Section 3.3 for the
case of vanilla GAN of [26] whose objective is linear-strong-concave where the maximization
part is constrained in the distributional simplex. More precisely,

min
pG(x)≥0,∑

x∈N pG(x)=1

max
D∈(0,1)|N|

V (G,D) =
∑
x∈N

pdata(x) log(D(x)) +
∑
x∈N

pG(x) log(1−D(x))

At a first glance, by rewriting the equivalent Langrangian formulation of the aforementioned
constrained min-max problem we can see that strong-concavity property does not hold any
more. However our following theorem shows that by exploiting further the structure of [26]’s
architecture a convergence result is possible.

Theorem 16. Let V (Genθθθ, Discφφφ) be Goodfellow GAN as described in Section 4, where G,D use
sigmoid activations. Then for a fully mixed distribution pdata, (F(t) = Genθθθ(t),G(t) = Discφφφ(t))

converges to (pdata,
1
21|N |) as t→∞ under the dynamics of Equation (1).

Proof. Let us write down our original objective

min
pG(x)≥0,∑

x∈N pG(x)=1

max
D∈(0,1)|N|

V (G,D) =
∑
x∈N

pdata(x) log(D(x)) +
∑
x∈N

pG(x) log(1−D(x))

In order to remove the constraints from the objective above, we plan to make use of a Lagrange
multiplier. We remind the reader that since both the discriminator and the generator use the sig-
moid activations, we only have to capture the

∑
x∈N pG(x) = 1 constraint. Thus, our equivalent

Langragian is:

min
θθθ∈R|N|

max
φφφ∈R|N|,λ∈R

L(F,G, λ) = pdata
> log(G(φφφ)) + F(θθθ)> log(1−G(φφφ)) + λ(F(θθθ)>1|N | − 1)
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where
F(θθθ) =

[
f1(θ1) f2(θ2) · · · f|N |(θ|N |)

]
G(φφφ) =

[
g1(φ1) g2(φ2) · · · g|N |(φ|N |)

]
and fi and gj are sigmoid functions and θi and φj are their one dimensional inputs. Let’s write again
the equivalent dynamics of Equation (3) for the sigmoid activations and the Langrage multiplier.
Applying the same steps with Theorem 4 for sigmoids:

ḟi = − f2
i (1− fi)2 ∂L

∂fi
(F,G) ∀i ∈ [|N |]

ġj = g2
j (1− gj)2 ∂L

∂gj
(F,G) ∀j ∈ [|N |]

λ̇ =
∑|N |
i=0 fi − 1


Since all initializations are safe in this game, our “generalized” Lyapunov function:

H(F,G, λ) =

|N |∑
i=0

∫ fi

pdata(xi)

z − pdata(xi)

z2(1− z)2
dz +

|N |∑
j=0

∫ gj

1/2

z − 1/2

z2(1− z)2
dz +

(λ− λ∗)2

2

where λ∗ is the Langrange multiplier at the equilibrium of the non-hidden game and xi is the i-th
element of N . Applying the same steps as in Lemma 3 we get that GDA approaches the largest
invariant set E of points (F,G, λ) that have the following properties

L(pdata,G, λ) = L

(
pdata,

1

2
1|N |, λ

∗
)

L

(
F,

1

2
1|N |, λ

∗
)

= L

(
pdata,

1

2
1|N |, λ

∗
)

For the first equality, we have that the value of λ does not affect L when the generator respects the
sum to one constraint. Thus

L(pdata,G, λ) = L(pdata,G, λ
∗)

Then we can observe that L(pdata,G, λ
∗) is strictly concave in G and given that 1

21|N | is its unique
minimum we have that

L(pdata,G, λ
∗) = L

(
pdata,

1

2
1|N |, λ

∗
)

=⇒ G =
1

2
1|N |

Given that E is an invariant set and G is constant in E, we have that Ġ = 0. In other words,

0 =
1

22

(
1− 1

2

)2
∂L

∂gj

(
F,

1

2
1|N |, λ

)
∀j ∈ [|N |]

As a consequence we have that

∂L

∂gj

(
F,

1

2
1|N |, λ

)
= 0 =⇒ fj = pdata(xj) ∀j ∈ [|N |]

Once again, given that E is an invariant set and F is constant in E, we have that Ḟ = 0

0 = pdata(xi)
2 (1− pdata(xi))

2 ∂L

∂fi

(
pdata,

1

2
1|N |, λ

)
∀i ∈ [|N |]

This leads to
∂L

∂fi

(
pdata,

1

2
1|N |, λ

)
= 0 =⇒ λ = log

(
1

2

)
∀i ∈ [|N |]

Observe that by the optimality conditions of the non-hidden game, λ∗ needs to satisfy the same
equation and thus λ = λ∗. Clearly we have that

(F,G, λ) ∈ E =⇒ (F,G, λ) =

(
pdata,

1

2
1|N |, λ

∗
)

Thus the dynamics converge to the unique equilibrium of the hidden game.
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D.3 Zero-Sum Games

We close this section with an application of our regularization machinery in hidden bilinear games.
Hidden bilinear zero-sum games were introduced by [65] and they are formally defined as:
Definition 11 (Hidden Bilinear Zero-Sum Game). In a hidden bilinear zero-sum game there are two
players, each one equipped with a smooth function FFF : Rn → RN andGGG : Rm → RM and a payoff
matrix UN×M such that each player inputs its own decision vector θθθ ∈ Rn and φφφ ∈ Rm and is trying
to maximize or minimize r(θθθ,φφφ) = FFF (θθθ)>UGGG(φφφ) respectively.

For the special case of hidden bilinear games, [65] proved that if the dimension of the game is
greater or equal than two like (e.g. akin to Rock-Paper-Scissors) then GDA dynamics tend to “cycle”
through their parameter space with an even more complex behavior than a typical periodic trajectory.
Specifically, the system is formally analogous to Poincaré recurrent systems (e.g. many body problem
in physics). In contrast, leveraging Theorem 7, we know that by adding a small regularization term
we can “break” the cycling behavior and converge to an approximate Nash Equilibrium. We close
this section by presenting a comparison between the optimization portraits of GDA dynamics with
the absence or not of a regularization for the archetypical game of Rock-Paper-Scissors:

Figure 6: Trajectories of a single player using gradient-descent-ascent dynamics for a hidden bilinear
game L(F(θθθ),G(φφφ)) = F>(θθθ)AG(φφφ) where A is the classical Rock-Paper-Scissors table and F,G
have the sigmoid activations. The two left figures present the Poincaré recurrence for different
initializations of the dynamics, a behavior consistent with the Lyapunov stability of Theorem 3.
On the other hand, the two figures on the right illustrate convergent to the mixed Nash equilibrium
executions which exploit the regularization tools as described in Section 3.3. The regularization terms
added are centered at the mixed equilbrium of the game, leading to convergence to the unmodified
equilibrium of the Rock-Paper-Scissors game.

Remark 5. Closing this appendix, it would be usefule to clarify some details between this work
and [65]. While we use tools regarding reparametrization and safety from their work, the rest of
our analysis and the technical ideas behind them are qualitatively different. [65] uses the Poincaré
recurrence theorem to argue that hidden bi-linear games exhibit recurrent behavior even under
safety. In contrast we show that these games are merely edge cases and that for strictly convex
concave HCC convergence to the underlying Von Neumann solution is guaranteed for safe initial
conditions. To the best of our knowledge, our work is the first one to provide sufficient conditions for
non-local convergence to a game theoretically meaningful solution for a wide family of non-convex
non-concave min-max problems. In addition, [65] require F,G to be invertible operators in order
to prove recurrence in the input space. In contrast, in our work we do not rely on invertibility
to transfer convergence from the output space dynamics of Equation (3) to the input dynamics of
Equation (1).
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