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ABSTRACT

We present an approximate attention mechanism named “HyperAttention” to ad-
dress the computational challenges posed by the growing complexity of long con-
texts used in Large Language Models (LLMs). Recent work suggests that in the
worst-case scenario, quadratic time is necessary unless the entries of the atten-
tion matrix are bounded or the matrix has low stable rank. We introduce two
parameters which measure: (1) the max column norm in the normalized attention
matrix, and (2) the ratio of row norms in the unnormalized attention matrix af-
ter detecting and removing large entries. We use these fine-grained parameters to
capture the hardness of the problem. Despite previous lower bounds, we are able
to achieve a linear time sampling algorithm even when the matrix has unbounded
entries or a large stable rank, provided the above parameters are small. HyperAt-
tention features a modular design that easily accommodates integration of other
fast low-level implementations, particularly FlashAttention. Empirically, employ-
ing Locality Sensitive Hashing (LSH) to identify large entries, HyperAttention
outperforms existing methods, giving significant speed improvements compared
to state-of-the-art solutions like FlashAttention. We validate the empirical perfor-
mance of HyperAttention on a variety of different long-context length datasets.
For example, HyperAttention makes the inference time of ChatGLM3 50% faster
on 32k context length while perplexity increases from 5.6 to 6.3. On larger context
length, e.g., 131k, with causal masking, HyperAttention offers 22-fold speedup on
a single attention layer.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have been successfully applied to a wide variety of learning
tasks in areas such as natural language processing (Devlin et al., 2018; Yang et al., 2019; Brown
et al., 2020; Raffel et al., 2020), computer vision (Carion et al., 2020; Dosovitskiy et al., 2021),
and time series forecasting (Zhou et al., 2021). Despite their success, these models face serious
scalability limitations because naı̈ve exact computation of their attention layers incurs quadratic (in
the sequence length) runtime and memory complexities. This presents a fundamental challenge for
scaling transformer models to longer context lengths.

Various approaches have been explored to tackle the quadratic-time attention layer, with one no-
table direction focusing on approximating intermediate matrices in attention layers. Methods for
doing this include approximations by sparse matrices (Kitaev et al., 2020; Daras et al., 2020; Roy
et al., 2021; Sun et al., 2021; Ding et al., 2023; Han et al., 2023), low-rank matrices (Choromanski
et al., 2021; Katharopoulos et al., 2020; Kacham et al., 2023), or a combination of both (Chen et al.,
2021b; Zaheer et al., 2020; Chen et al., 2021a; Dass et al., 2022). These methods aim to provide
faster approximation to various components of attention, but none of them provide end-to-end ap-
proximations of the full dot-product attention. Moreover, none of these works support the use of
causal masking, which is a crucial part of modern transformer architecture. In an ongoing work,
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Kacham et al. (2023) bypass the hardness of softmax by switching to polynomial functions and ap-
plying fast polynomial sketching methods (Ahle et al., 2020; Woodruff & Zandieh, 2020; 2022). On
the negative side, recent theoretical bounds suggest that entry-wise approximations to the attention
matrix are impossible in sub-quadratic time in general (Alman & Song, 2023).

Nevertheless, recently, KDEFormer (Zandieh et al., 2023) has provided provable approximation in
subquadratic time, under the assumption that the entries of the attention matrix are bounded. Theo-
retically, KDEFormer runs in roughly Õ(n1.173) time; it employs kernel density estimation (KDE) to
approximate column norms, allowing one to compute probabilities with which to sample columns
of the attention matrix. However, the current algorithms for KDE are lacking practical efficiency
(Charikar et al., 2020), and even in theory, there is a gap between the runtime of KDEFormer and the
theoretically feasible O(n) time algorithms. In (Alman & Song, 2023), the authors demonstrated
that under the same assumption of bounded entries, a nearly linear time O(n1+o(1)) algorithm is
possible. However, their algorithm also involves using the polynomial method to approximate the
softmax and is likely impractical (e.g., it was not empirically evaluated by the authors). In this work,
we provide an algorithm which achieves the best of both worlds, being both a (1) practically efficient
algorithm that (2) achieves the best possible near-linear time guarantee. Additionally, our approach
supports casual masking, which was not possible via previous works.

1.1 PROBLEM STATEMENT

The dot-product attention (Vaswani et al., 2017) involves processing three input matrices: Q
(queries), K (keys), V (values), all of size n × d, where n is the number of tokens in the input
sequence and d is the dimension of latent representations. This process outputs the following:

Att = D−1AV

Here, matrix A := exp
(
QK⊤) is defined as the element-wise exponential of QK⊤. Additionally,

D is an n × n diagonal matrix derived from the sum of rows of A, Di,i = ∥Ai,:∥1 for i ∈ [n].
In this context, matrix A is referred to as the “attention matrix”, and D−1A is called the “softmax
matrix”. It is important to note that calculating the attention matrix A directly requires Θ(n2d)
operations, and storing it consumes Θ(n2) memory. Consequently, a straightforward computation
of Att demands a runtime of Ω(n2d) and Ω(n2) memory.

Our objective is to efficiently approximate the output matrix Att while retaining its spectral prop-
erties. Our strategy involves designing an efficient estimator for the diagonal scaling matrix D in
near-linear time. Additionally, we aim to quickly approximate the matrix product of the softmax
matrix D−1A and value matrix V through subsampling. To be more specific, our objective is to
find a sampling matrix S ∈ Rm×n with a limited number m = no(1) of rows, along with a diagonal
matrix D̃ ∈ Rn×n, such that the following bound on the operator norm of the error is met:

∥∥∥Att− D̃−1AS⊤ · SV
∥∥∥
op
≤ ε ·

∥∥D−1A
∥∥
op
∥V ∥op . (1)

1.2 OUR CONTRIBUTIONS

We show that efficiently solving the matrix multiplication component of the attention approximation
problem in Eq. (1) can be achieved by defining the sampling matrix S based on the row norms of
V . The more challenging aspect lies in obtaining a reliable spectral approximation for the diagonal
matrix D. In a recent result, Zandieh et al. (2023) effectively leverages fast KDE solvers to attain a
high-quality approximation of D. However, we streamline the KDEformer procedure and demon-
strate that uniform sampling is sufficient to achieve the desired spectral guarantee, eliminating the
need for importance sampling based on kernel densities. This significant simplification allows us to
develop a practical and provably linear time algorithm.

In contrast to prior work (Alman & Song, 2023; Zandieh et al., 2023), our approach does not necessi-
tate bounded entries or bounded stable rank. Furthermore, the fine-grained parameters we introduce
to analyze the time complexity may remain small even when the entries in the attention matrix or
the stable rank are large.
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Our work is inspired by the hard instance of Alman & Song (2023) for showing quadratic time
lower bounds. Such instances have one randomly placed large entry in each row of the attention
matrix. Our algorithm has an initial phase where we find large entries of the attention matrix in a
black box manner, such as by using Locality Sensitive Hashing (Kitaev et al., 2020), or a possibly
learned CountSketch applied to the attention matrix (Charikar et al., 2002; Li et al., 2023a), or just a
known heavy entry pattern (Chen et al., 2021a). We assume these procedures are fast, and that after
removing the heavy entries, two parameters in the resulting attention matrix are small: (1) the max
column ℓ2-norm, and (2) the ratio of row norms in the un-normalized attention matrix.

Prior work of Zandieh et al. (2023) used KDE to identify columns in the attention matrix with large
norm and to perform approximate matrix product with the value matrix by sampling such columns.
As mentioned, finding such columns requires at least O(n1.173) time. Instead, we observe that
by doing a one-sided sampling from the squared row norms of V , we can avoid the use of KDEs
and achieve the same spectral norm guarantee in terms of the stable rank. Although our algorithm
is simple and just samples by the row norms of the value matrix (or even samples uniformly in
practice), the main technical challenge is that we do not know the row norms of the attention matrix
needed in order to normalize it and produce a proper factorization of it. This is reminiscent of the
quadratic time hard instance of (Alman & Song, 2023) where we may not be able to find a heavy
entry in a row easily, and thus cannot normalize by its norm in the attention matrix. Our parameters
(1) and (2) above allow us to argue that the heavy entries, if they exist, are not distributed in the
worst possible way.

Empirically, HyperAttention demonstrates significant speed improvements, achieving over a 50×
acceleration in forward and backward propagation for sequence lengths of n = 131k. When deal-
ing with causal masking, the method still delivers a substantial 5× speedup. Moreover, when our
approach is applied to pretrained LLMs, e.g., chatglm3-6b-32k (Du et al., 2022) and evaluated on
long-context benchmark datasets, so-called LongBench (Bai et al., 2023), it maintains performance
levels that closely match those of the original models, even without the need for fine-tuning. Fur-
thermore, we investigate task-specific evaluations and discover summarization and code completion
tasks are more robust to approximate attention layers than question answerings.

2 PRELIMINARIES

We make use of the Hamming sorted LSH, a variant of angular locality-sensitive hashing introduced
in the work by Zandieh et al. (2023). In this variant, the hash buckets are arranged in order of
their Hamming distances. This LSH variant is particularly well-suited for designing GPU-friendly
algorithms aimed at identifying dominant entries within the attention matrix A. In the context of
Hamming sorted LSH, if we let H : Rd → [B] be a hash function with B buckets drawn from
an LSH family, then the collision probability PrH[H(q) = H(k)] is “roughly” proportional to
⟨q, k⟩. A very useful property of this LSH variant is that its buckets are ordered in such a way that
geometrically adjacent buckets have consecutive buckets. We provide the following definition.

Definition 1 (Hamming sorted LSH, Definition 7.3 of (Zandieh et al., 2023)). For positive integer
r, there exists an LSH function H : Rd → [2r], such that for any x, y ∈ Rd its collision probability

is Pr[H(x) = H(y)] =
(
1− θ(x,y)

π

)r

where θ(x, y) := cos−1
(

x⊤y
∥x∥∥y∥

)
. Furthermore, this LSH

function hashes similar points to adjacent buckets. Specifically, the probability that two points end

up in adjacent buckets is given by Pr [H(x) = H(y)± 1 (mod 2r)] = 2θ(x,y)
π ·

(
1− θ(x,y)

π

)r−1

.

Using this LSH function, as demonstrated by Zandieh et al. (2023), we can sort keys and queries
within an attention layer in such a way that large entries get shifted towards the diagonal of the
attention matrix. Subsequently, these significant entries in the attention matrix can be captured by
computing equal-sized blocks along the diagonal. This approach aligns with the block-memory ac-
cess patterns of modern hardware and can be efficiently parallelized through batching across blocks.
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Figure 1: How sortLSH finds large entries of A: (Left) Keys and queries undergo hashing using
the Hamming ordered LSH H(·). (Middle) Keys and queries are rearranged based on their hash
buckets. Attention matrix after applying these row and column permutations is denoted as APQ,PK

.
Large entries of APQ,PK

are concentrated around the diagonal blocks. (Right) rows and columns
permutations are reversed on the attention matrix and MH ⊙A is highlighted.

Algorithm 1: sortLSH for locating large entries of A

1: input: matrices Q,K ∈ Rn×d, and block size b
2: LetH(·) be a Hamming sorted LSH as per Definition 1 and hash rows of Q,K
3: Let PK ,PQ ∈ Sym(n) be permutations satisfying PK(i) < PK(j) ifH(Ki,:) ≤ H(Kj,:)

and PQ(i) < PQ(j) ifH(Qi,:) ≤ H(Qj,:)
4: return Mask matrix MH ∈ {0, 1}n×n defined as MH

i,j = 1{⌊PQ(i)/b⌋=⌊PK(j)/b⌋}

3 ALGORITHM

To obtain a spectral guarantee when approximating Att, our initial step involves producing a 1± ε
approximation of the diagonal entries in the matrix D. Subsequently, we approximate the matrix
product between D−1A and V via sampling according to the squared row ℓ2-norms of V .

Estimating D. Our procedure for approximating D consists of two steps. Initially, we identify
the dominant entries within the attention matrix using an algorithm rooted in the Hamming sorted
LSH, as defined in Definition 1. The second step revolves around randomly selecting a small subset
of keys K. We will demonstrate that under certain mild assumptions about matrices A and D, this
simple approach allows us to establish spectral bounds on the estimated matrix. Our aim is to find a
sufficiently precise approximate matrix D̃ that satisfies:∥∥∥(D̃−1 −D−1

)
A
∥∥∥
op
≤ ε

2

∥∥D−1A
∥∥
op

(2)

Our assumption is that the column norms of the softmax matrix exhibit a relatively uniform distri-
bution. To be more precise, we assume that for any i ∈ [n] there exists some α = no(1) such that∥∥D−1A · e(i)

∥∥2
2
≤ α

n . It’s worth noting that our assumption is more general in comparison to the
bounded input entries assumption made in (Alman & Song, 2023). In fact, if their assumption holds,
it implies that

∥∥D−1A · e(i)
∥∥2
2
≤ no(1)

n for all i ∈ [n]. In Section 4.3, we empirically compute α

to be the maximum of the squared ℓ2-norms of the columns in D−1A and verify that it is indeed
sublinear in n.

The first step of our empirical algorithm involves identifying large entries of the attention matrix
A through hashing keys and queries into uniformly-sized buckets using the Hamming sorted LSH,
which we refer to as sortLSH. This process is detailed in Algorithm 1 and is visually illustrated in
Fig. 1. Note that we also mention other was of identifying large patterns, such as checking for a
known heavy hitter pattern, or using CountSketch which we describe more below.

Algorithm 1 returns a sparse mask designed to isolate the dominant entries of the attention matrix.
Given this mask, we compute an approximation of the matrix D in Algorithm 2 that satisfies the
spectral guarantee in Eq. (2). This algorithm accomplishes this by combining the attention values
corresponding to the mask with a randomly chosen subset of columns from the attention matrix.

4



Published as a conference paper at ICLR 2024

Algorithm 2: ApproxD for estimating diagonal matrix D

1: input: matrices Q,K ∈ Rn×d, large entries mask MH ∈ {0, 1}n×n, parameters κ > 0,
ε > 1

κ4 , α > ε2κ, and integer m
2: Randomly choose a subset T ⊆ [n] with cardinality |T| = m
3: τ ← maxj∈T

〈
1−MH

j,:, exp(KQ⊤
j,:)

〉
{estimate of maximum un-masked row sum}

4: Generate m i.i.d. sample ℓ1, ℓ2, . . . ℓm ∼ Unif([n])
5: for i ∈ [n] do
6: Ci ← Θ

(
ε2m

n logn ·
(
⟨MH

i,: , exp(KQ⊤
i,:)⟩+ τ/κ

))
{(capped) row-sum of masked entries}

{di below is the (capped) row-sum estimator for the un-masked entries}
7: di ← n

m

∑
j∈[m](1−MH

i,ℓj
) ·min

(
exp

(
⟨Qi,:,Kℓj ,:⟩

)
, Ci

)
8: d̃i ← ⟨MH

i,: , exp(KQ⊤
i,:)⟩+max (di, τ/κ) {full row-sum estimate}

9: return diagonal matrix D̃ = diag({d̃i}ni=1)

Algorithm 3: HyperAttention: attention mechanism in near-linear time

1: input: matrices Q,K,V ∈ Rn×d, mask matrix MH ∈ {0, 1}n×n, and parameter ε > 1
no(1)

2: Run Algorithm 2 and let D̃ ← APPROXD
(
Q,K,MH, no(1), ε, no(1), d · no(1)

)
3: Let S ∈ Rm×n be an i.i.d. sampling matrix based on squared row norms of V as in Lemma 2
4: return D̃ and S

The assumptions of Lemma 1 are used to ensure that the variance of the estimator is small, and the
same complexity of the algorithm increases as a function of the parameters α, κ. We remark that our
algorithm is versatile and can function effectively with a predefined mask that specifies the positions
of dominant entries within the attention matrix, mirroring the approach taken in (Chen et al., 2021a).
The main guarantee provided by this algorithm is given in Lemma 1.
Lemma 1 (Approximating D). For any Q,K ∈ Rn×d, let A = exp(QK⊤). Also let
D ∈ Rn×n be the diagonal matrix with Di,i = ∥Ai,:∥1. Additionally, suppose that α =

n · maxi∈[n]

∥∥D−1A · e(i)
∥∥2
2
. For any mask matrix MH ∈ {0, 1}n×n let us define the condition

number κ :=
maxi∈[n]⟨1−MH

i,:,Ai,:⟩
minj∈[n]⟨1−MH

j,:,Aj,:⟩ . If m = Ω
(

κ7·α2

ε6 log n
)

, the output D̃ of Algorithm 2 satisfies

Eq. (2) with probability at least 1− 1
poly(n) .

Approximating the product of softmax matrix D−1A and values matrix V . Given a D̃ that
meets the spectral approximation conditions as in Eq. (2), we can achieve the spectral constraint in
Eq. (1), by finding a sampling matrix that satisfies the following condition,∥∥∥D̃−1AS⊤ · SV − D̃−1AV

∥∥∥
op
≤ ε

2
·
∥∥D−1A

∥∥
op
∥V ∥op (3)

We can efficiently find a sampling matrix S ∈ Rm×n with a small number m of rows that satisfies
Eq. (3) by leveraging well-established techniques in Approximate Matrix Multiplication (AMM).

Lemma 2. For any matrices D̃,A ∈ Rn×n,V ∈ Rn×d consider a sampling matrix S ∈ Rm×n

constructed as follows: first generate m i.i.d. samples ℓ1, . . . ℓm ∈ [n] according to squared

row norms of matrix V , i.e., ∥Vi,:∥2
2

∥V ∥2
F

, then let the rth row of S be ∥V ∥F√
m·∥Vℓr,:∥2

· e(ℓr). If m =

Ω
(
ε−2d · srank(D̃−1A)

)
for some ε > 0, the following holds with probability at least 0.99:∥∥∥D̃−1AS⊤ · SV − D̃−1AV

∥∥∥
op
≤ ε ·

∥∥∥D̃−1A
∥∥∥
op
∥V ∥op .

The above result is standard and for proof refer to (Drineas & Kannan, 2001).

Main Theorem. Now, we can integrate the subroutines for approximating the diagonal D̃ and
approximating the matrix product between D̃−1A and values matrix V . With this, we introduce the
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HyperAttention, an efficient algorithm that can approximate the attention mechanism with spectral
guarantees as per Eq. (1) in near-linear time. Our Algorithm 3 takes as input a mask MH that
defines the positions of dominant entries within the attention matrix. This mask can be generated
using the sortLSH algorithm (Algorithm 1), or it can be a predefined mask similar to the approach
taken in (Chen et al., 2021a). The large entries mask MH is assumed to be sparse by design and its
number of nonzero entries is bounded nnz(MH) = n1+o(1). We now introduce our main theorem
which will be proved in Appendix A.
Theorem 1 (HyperAttention guarantee). For any matrices Q,K,V ∈ Rn×d, any mask matrix
MH ∈ {0, 1}n×n, and parameter ε > 1

no(1) , let A = exp(QK⊤) and let D ∈ Rn×n be the diag-

onal matrix with Di,i = ∥Ai,:∥1. If maxi∈[n]

∥∥D−1A · e(i)
∥∥2
2
≤ no(1)

n and
maxi∈[n]⟨1−MH

i,:,Ai,:⟩
minj∈[n]⟨1−MH

j,:,Aj,:⟩ ≤
no(1) then with probability at least 0.98 the outputs S, D̃ of Algorithm 3 satisfy the spectral condi-
tion as in Eq. (1). Moreover, this algorithm’s runtime is O(d · n1+o(1) + d · nnz(MH)).

Note that even if MH is not given to us, but MH can be found in d·n1+o(1) time, the theorem holds.
We also give examples when this is possible by using Hamming sorted LSH, which our experiments
are based on, or using the ExpanderSketch of (Larsen et al., 2016) which is based on CountSketch
(Charikar et al., 2002) but also gives a fast recovery time. In the supplementary we show:
Corollary 1 (HyperAttention with sortLSH). Suppose all preconditions of Theorem 1 hold. Further,
suppose the mask matrix MH ∈ {0, 1}n×n is generated as in Algorithm 1 with block size b = no(1)

and r = log2 n in Definition 1. We further assume there are at most n1+o(1) pairs (i, j) with
θ(Qi,∗,Kj,∗) ≤ π

2 (1− o(1)), where θ is as in Definition 1. Then with probability 1− 1/no(1), the
MH we find in Algorithm 1 has at most n1+o(1) non-zero entries and with probability at least .98,
the outputs S, D̃ of Algorithm 3 satisfy Eq. (1) and the overall runtime is O(d · n1+o(1)).

We note the assumption on the angles of the rows of Q and K in Corollary 1 is satisfied if most rows
are drawn uniformly at random from a d-dimensional sphere, since in this case they will be nearly
orthogonal, i.e., have angle at most π

2 (1− o(1)) with high probability. However, the corollarly also
allows n1+o(1) pairs of rows to have arbitrary angle, which may be more realistic.
Corollary 2 (HyperAttention with ExpanderSketch). Suppose all preconditions of Theorem 1 hold.
Further, suppose the mask matrix MH ∈ {0, 1}n×n is defined such that there is a threshold τ =

no(1) such that MH
i,j = 1 if and only if (QK⊤)2i,j ≥ ∥QK⊤ej∥2

2

τ . Then we can find MH exactly
with probability 1 − O(1/n2), and with probability at least .98, the outputs S, D̃ of Algorithm 3
satisfy Eq. (1). The runtime is O(d · n1+o(1)).

The key idea behind the proof of Corollary 2 is to first sketch Q by an ExpanderSketch T , which is
efficient since T has a small number of rows. Then compute (T ·Q) ·K⊤ which is again efficient
since (T ·Q) has a small number of rows. Thus, we never form the matrix Q ·K⊤.

3.1 CAUSAL MASKING

Language models commonly employ causal masking. The causal mask is a lower triangular binary
square matrix denoted as MC where MC

i,j = 1{i≥j}. The causal attention mechanism is defined as:

AttC = D−1
C (MC ⊙A)V ,

where A := exp
(
QK⊤) is defined as before and DC is an n× n diagonal matrix derived from the

sum of rows of the masked attention MC ⊙A, specifically [DC ]i,i = ⟨MC
i,:,Ai,:⟩ for i ∈ [n]. To

approximate causal attention with a spectral guarantee, we require two components. First, we need
a spectral approximation for the diagonal matrix DC . Second, we need to approximate the matrix
product between D−1

C (MC⊙A) and V , which can be achieved using the same sampling technique
as described in Algorithm 3 and Lemma 2. The first component is more intricate, and we employ a
recursive method to address it. So we focus on how to efficiently approximate the diagonal DC .

Our approach is based on a key observation, as depicted in Fig. 2. The masked attention MC⊙A can
be decomposed into three non-zero matrices, each of which has half the size of the original attention
matrix. The block A21, located entirely below the diagonal is unmasked attention. Consequently,
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MC ! A

⇒
ApproxD→

CausalApproxD→

A21

MC
1 ! A11 MC

2 ! A22

(recursive call)

Figure 2: Causal attention matrix can be divided into three equal-sized non-zero sections: MC
1 ⊙A11

and MC
2 ⊙A22 are both causal attention matrices, and A21 is an unmasked attention matrix.

Algorithm 4: CausalApproxD, recursive approximation of DC for causal masking

1: input: matrices Q,K ∈ Rn×d

2: Split Q and K into equal sized sub-matrices: Q = [Q⊤
1 ,Q

⊤
2 ]

⊤ and K = [K⊤
1 ,K⊤

2 ]⊤

3: D̃C11 ← CausalApproxD(Q1,K1) and D̃C22 ← CausalApproxD(Q2,K2)

4: Run the unmasked algorithm ApproxD (Algorithm 2) on Q2,K1 to get D̃21

5: return D̃C =

[
D̃C11, 0

0, D̃21 + D̃C22

]

we can approximate its row sums using Algorithm 2. The two diagonal blocks MC
1 ⊙ A11 and

MC
2 ⊙ A22 shown in Fig. 2 are causal attentions with half the original size. To handle these, we

apply a recursive approach and further partition them into smaller blocks, and repeat this procedure.
We present a pseudocode for this procedure in Algorithm 4.

4 EXPERIMENTS

In this section, we benchmark our algorithms by scaling up existing large language models to handle
long-range sequences. All experiments are performed on a single A100 GPU with 40 GB memory
and we use FlashAttention 2 (Dao, 2023) for the exact attention computation.

Implementation Detail. We implement HyperAttention based on sortLSH and uniform column
sampling. Specifically, we first apply sortLSH to all rows in Q,V ∈ Rn×d. Then, each set of rows is
partitioned into b groups where b is the block size as in Fig. 1. The i-th set of rows in Q is multiplied
by the corresponding set in K, resulting in a block-diagonal approximation of APQ,PK

. Next, we
optimize Algorithm 2 for approximating D by sharing random indices {ℓj}mj=1 with all rows in Q.
This corresponds to uniformly sampling m rows in V . To further simplify, we reuse indices {ℓj}mj=1
for the Approximate Matrix Multiplication (AMM) in Lemma 2. The required operations involve
permuting n rows, reshaping tensors, and small matrix multiplications. Since every batch, head and
block has the same configurations, the implementation can be parallelized using GPUs.

4.1 MONKEY PATCHING SELF-ATTENTION

We first evaluate HyperAttention on two pre-trained LLMs. We choose three models with different
architectures that are widely used in practical applications: chatglm3-6b-32k (Du et al., 2022), and
phi-1.5 (Li et al., 2023b). We patch their final ℓ attention layers by replacing with HyperAttentions
where ℓ can vary from 0 to the number of all attention layers in each LLM. Note that attentions in
both models requires causal masking and we make use of Algorithm 4 by recursively applying it
until the input sequence lengths n are less than 4,096. We set both bucket size b and the number of
sampled columns m to 256 for all sequence lengths. We evaluate the performance of such monkey
patched models in terms of perplexity and speedup.

We use LongBench (Bai et al., 2023), a collection of long context benchmark datasets, which con-
tains 6 different tasks ranging from single and multiple-document question answering, summariza-
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Figure 3: Perplexity and speedup of chatglm3-6b-32k (left) and phi-1.5 (right) monkey patched
with HyperAttention. We vary the number of replaced attention layers in the final order.

Number of
Replaced Layers

Task

single-qa multi-qa summarization few-shot synthetic code

0 (exact) 96.07 88.19 60.29 203.39 103.00 107.16
7 91.82 90.02 60.84 202.77 104.00 107.42

14 87.98 89.64 58.84 200.46 101.00 103.19
21 84.61 77.51 61.55 201.13 97.00 101.12
28 53.30 73.98 60.45 200.01 71.00 104.99

Table 1: Performance evaluation of chatglm3-6b-32k equipped with HyperAttentions on Long-
Bench datasets (Bai et al., 2023). They contain 6 different tasks and we evaluate each of them with
its own metric where higher value indicates better performance.

tion, few-shot learning, synthetic tasks, and code completion. We select a subset of dataset whose
encoded sequence lengths are larger than 32,768 and trim them if the length is over 32,768 so that
all data have sequence lengths of 32,768. Then, we compute the perplexity (i.e., loss on next tokens
prediction) of each model. To highlight the scalability on the long sequences, we calculate the total
speedup on all attention layers whether performed by HyperAttention or FlashAttention.

The results are summarized in Fig. 3. Observe that chatglm3-6b-32k shows a reasonable perplexity
even after monkey patched by HyperAttention, e.g., after replacing 20 layers the perplexity increases
approximately by 1 and it slowly goes up until 24 layers. But it improves runtimes in attention layers
about 50%. If all the layers are replaced then the perplexity goes to up 12 but it runs about 2.3×
faster. For phi-1.5, similar happens but the perplexities are linearly increasing as the number of
HyperAttention grows.

In addition, we evaluate the performances of monkey patched chatglm3-6b-32k on LongBench
datasets and compute task-specific evaluation scores on each task including single-document ques-
tion answering, multiple-document question answering, summarization, few-shot learning, synthetic
tasks and code completion. Results are provided in Table 1. While replacing HyperAttention gen-
erally leads to performance degradation, we observe that its role can vary depending on the task at
hand. For example, summarization and code completion are more robust to other tasks. Notably,
when half of all attention layers are patched (i.e., 14 layers), we verify that most of the tasks do
not degrade more than 13%. In particular, the performance of the summarization task remained
almost unchanged, suggesting that this task may be more robust to partial alterations in the attention
mechanism. We recall that computations in attention layers can be 1.5× faster when n = 32k.

4.2 SINGLE SELF ATTENTION LAYER

We further explore the speedup of HyperAttention with varying sequence lengths from 4,096 to
131,072. We measure wall-clock times of both forward and forward+backward operations when
they are computed with FlashAttention or are accelerated by HyperAttention. We measure the times
with and without causal masking. All inputs Q,K,V have the same length and their dimensions
are fixed to d = 64 and the number of attention heads is set by 12. We chose the same parameters in
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Figure 4: Speedup of the exact computation using FlashAttention (Dao, 2023) and HyperAttention
(this work) in single self-attention layer during forward and backward operations. For n =131k,
HyperAttention runs up to 54× faster without causal masking and 5.4× with causal masking.

HyperAttention as described in the previous section. In Fig. 4, we observe that HyperAttention runs
to up 54× faster without causal masking and 5.4× when the causal masking applies. Although time
complexities of both causal masking and non-masking are the same, a practical algorithm for causal
masking (Algorithm 1) requires additional operations such as partitioning Q,K,V , and merging
attention outputs which result in an increase of practical runtime. However, those speedups will
increase when the sequence length n grows. We believe this opens the door to scale self-attention not
only for inference but also for training or fine-tuning the LLMs to fit in significantly long sequences.

4.3 EMPIRICAL VERIFICATION OF ASSUMPTION

In addition, we empirically verify our assumption in Theorem 1, i.e., squared ℓ2-norm of columns in
D−1A is upper bounded by no(1)

n . We investigate pretrained transformers with and without causal
masking. For non-causal masking attention, we use the T2T-ViT model (Yuan et al., 2021) and take
Q,K,V from its first attention layer on the ImageNet test data set as it is the main computational
bottleneck. For each image, we compute α to be the largest of the squared ℓ2-norms of the columns
in

∥∥D−1A · ei
∥∥2
2

and collect the value over 50k images. The sequence length of the model is given
by n = 3,136 and the averaged values of α is observed to be 8.1801. This is much smaller than n
and can be possibly sublinear in n.

To further investigate the dependence on n, we utilize the chatglm3-6b-32k and LongBench
narrative-qa dataset, changing the sequence length n from 1k to 9k. We trim or pad the input context
so that its length is strictly n. Unlike the vision model, we notice that the first columns in D−1A
often contain heavy entries; hence we compute α as the largest squared norm excluding the first 32
columns. We collect these values for all heads and layers and compute their average. Fig. 5 plots the
value of α

n with various sequence length n. It is observed that the value of α
n decreases as n grows,

supporting the claim that our assumption α = no(1) holds in practice.
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sequence length n
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Figure 5: Empirical values of α (i.e., the largest squared ℓ2-norms of the columns in D−1A).
Theorem 1 assumes α = no(1) and the plot supports the claim that our assumption holds in practice.
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5 CONCLUSION

In this work, we propose a simple linear time attention approximation algorithm by simplifying
the existing algorithm based on kernel density estimation (KDE). We introduce a more general
parameterization for a spectral approximation guarantee based on the condition number, which does
not require assumptions used in prior work. Our algorithm makes use of sortLSH to find large
entries and we adopt fast matrix multiplication via row norm sampling. We additionally study how
our algorithm is used for causal masking by recursive partitioning. Empirically, we illustrate that
pre-trained LLMs using our algorithm can enhance both inference and training speeds with only
minimal performance degradation.
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A OMITTED PROOFS

Here we include the proofs that were omitted in the main body of the paper. First, we present the
proof of Lemma 1.

Proof of Lemma 1: First, we show that τ calculated in line 3 of Algorithm 2 is close to the maximum
row sum of the matrix (1n−MH)⊙A. It is easy to check that τ

κ ≤
〈
1−MH

i,: , exp(KQ⊤
i,:)

〉
≤ τκ

for all i ∈ [n] because of the definition of κ in the lemma statement. Furthermore, if we define the
set:

S0 :=
{
i ∈ [n] : ⟨1−MH

i,: , exp(KQ⊤
i,:)⟩ > τ

}
, (4)

then we can show that |S0| is small. Recall that τ is the maximum of the row sums of a random
subset of rows, denoted by T where |T| = m. Hence, Pr[|S0| ≥ t] ≤ (1 − t/n)m. Choosing
m = Ω(κ7α2ε−6 log n) and t = O(κ−7α−2ε6n) gives that with probability at least 1− 1

poly(n)

|S0| ≤ O
(
κ−7 · α−2 · ε6 · n

)
. (5)

Next, let us define the upper-capped version of matrix A where entries of i-th row on positions
where the mask MH value is equal to zero are capped at value Ci (line 6 of the algorithm) as:

Ã ∈ Rn×n : Ãi,j :=

{
min (Ai,j , Ci) if MH

i,j = 0

Ai,j otherwise
, for every i, j ∈ [n].
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We proceed by bounding the total mass of large entries of matrix D−1A lost through capping (i.e.,
entries of A that are larger than thresholds Ci). If we define constant Ĉ := ε2m

κ2n logn , we can write,∥∥∥D−1(A− Ã)
∥∥∥
1
=

∑
i,j∈[n]

(1−MH
i,j) · (Ai,j −min (Ai,j , Ci)) /Di,i

=

∞∑
t=0

∑
i,j∈[n]

(2t−1)ĈDi,i<Ai,j−Ci≤(2t+1−1)ĈDi,i

1{MH
i,j=0} ·

Ai,j −min (Ai,j , Ci)

Di,i

≤
log2

κ2

Ĉ∑
t=0

2t+1Ĉ ·
∣∣∣{i, j ∈ [n] : MH

i,j = 0 &Ai,j > Ci + (2t − 1)ĈDi,i

}∣∣∣
≤

log2
κ2

Ĉ∑
t=0

2t+1Ĉ · α

(2tĈ)2
= O

(
ε4

κ5 · α · n
)

(6)

The inequality in Eq. (6) follows because, for every i ∈ [n], the cardinality of the set{
i, j ∈ [n] : MH

i,j = 0 &Ai,j > Ci + (2t − 1)ĈDi,i

}
must be bounded by α

(2tĈ)2
. The proof of

this is by contradiction because otherwise, there must be an l ∈ [n] such that the cardinality of
the set Hl :=

{
i ∈ [n] : MH

i,l = 0
∧

Ai,l > Ci + (2t − 1)ĈDi,i

}
is at least |Hl| > α

n·(2tĈ)2
.

This implies that
∥∥D−1A · e(l)

∥∥2
2
≥ ∑

i∈Hl
(Ai,l/Dii)

2 =
∑

i∈Hl

(
Ci

Di,i
+ (2t − 1)Ĉ

)2

≥

|Hl| ·
(

ε2m
κ2n logn + (2t − 1)Ĉ

)2

> α
n , however, this contradicts with the precondition of the lemma

about α = n ·maxi∈[n]

∥∥D−1A · e(i)
∥∥2
2
. Now, if we defined the sets S1,S2 ⊆ [n] as

S1 =

{
i ∈ [n] :

εDii

3
< ∥Ai,: − Ãi,:∥1 ≤

Dii

3

}
, S2 =

{
i ∈ [n] : ∥Ai,: − Ãi,:∥1 >

Dii

3

}
(7)

then it follows from Eq. (6) that the cardinalities of S1 and S2 are bounded by

|S1| ≤ O
(
κ−4 · α−1 · ε3n

)
, |S2| ≤ O

(
κ−4 · α−1 · ε4n

)
. (8)

Next note that di computed in line 7 of the algorithm is an estimator for i-th row norm of the capped
and masked matrix (1n −MH) ⊙ Ã. Let us define an estimator for the unmasked capped matrix
Ã as d̂i := di + ⟨MH

i,: ,Ai,:⟩. By invoking Chernoff-Hoeffding inequality (see e.g., (McDiarmid,

1998)) along with union bound, because the lemma statement assumes that m = Ω
(

κ7·α2

ε6 log n
)

the following holds simultaneously for all i ∈ [n] \ S2 with probability 1− 1
poly(n) :∥∥∥Ãi,:

∥∥∥
1

1 + ε/6
≤ d̂i ≤

∥∥∥Ãi,:

∥∥∥
1

1− ε/6
. (9)

This inequality combined with definition of S1,S2 in Eq. (7) implies that for any i ∈ [n] \ (S1 ∪S2),
(1−ε/2) ·D−1

i,i ≤ d̂−1
i ≤ (1+ε/2) ·D−1

i,i . Now we bound the operator norm of the error as follows:∥∥∥(D̃−1 −D−1)A
∥∥∥
op
≤

∥∥∥∥(D̃−1 −D−1
)
S1∪S2

A

∥∥∥∥
op

+

∥∥∥∥(D̃−1 −D−1
)
[n]\(S1∪S2)

A

∥∥∥∥
op

≤ 3

2

∥∥D−1
S1 A

∥∥
op

+

∥∥∥∥(D̃−1 −D−1
)
S2
A

∥∥∥∥
op

+
ε

2

∥∥∥D−1
[n]\(S1∪S2)A

∥∥∥
op

≤ 3

2

∥∥D−1
S1 A

∥∥
op

+ κ2
∥∥D−1

S2∩S0A
∥∥
op

+ κ
∥∥∥D−1

S2\S0A
∥∥∥
op

+
ε

2

∥∥∥D−1
[n]\(S1∪S2)A

∥∥∥
op

≤ 3

2

∥∥D−1
S1 A

∥∥
op

+ κ2
∥∥D−1

S0 A
∥∥
op

+ κ
∥∥D−1

S2 A
∥∥
op

+
ε

2

∥∥∥D−1
[n]\(S1∪S2)A

∥∥∥
op

, (10)
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where the second inequality above follows from the inequality in Eq. (9) and also because the defi-
nition of S1 ensures that D̃i,i ≥ (1− 1/3) ·Di,i for any i ∈ S1. The third inequality above follows
because the lower capping in line 8 of the algorithm ensures that D̃j,j ≥ ⟨MH

j,:,Aj,:⟩ + τ/κ for
any j ∈ S2 while Dj,j ≤ ⟨MH

j,:,Aj,:⟩+ τ for any j /∈ S0 by definition of set S0 and we know that
Dj,j ≤ ⟨MH

j,:,Aj,:⟩+ τκ for j ∈ S0.

Finally we conclude the proof by bounding the terms
∥∥D−1

Sr A
∥∥
op

for r ∈ {0, 1, 2} in Eq. (10).

Fix some r ∈ {0, 1, 2}. Let v be the unit-normed vector that realizes the operator norm of D−1
Sr A.

Since D−1
Sr A is a non-negative matrix, w.l.o.g., we can assume that v is a non-negative vector. More

precisely v := argmax x∈Rn
+

∥x∥2=1

∥∥D−1
Sr A · x

∥∥
2
. One has that

∥∥D−1
Sr A · v

∥∥
2
=

∥∥D−1
Sr A

∥∥
op

. We

define the sequence of binary matrices B0, B1, B2 . . . which have same shape as D−1
Sr A as follows:

Bt
i,j := 1{

2−t−1
√

α/n<[D−1
Sr A]

i,j
≤2−t
√

α/n
} for every integers t ≥ 0. (11)

Note that because of the precondition of the lemma about α = n ·maxi∈[n]

∥∥D−1A · e(i)
∥∥2
2

which
implies [D−1A]i,j ≤

√
α/n, we have the following inequality on each entry of the matrix D−1

Sr A:

[
D−1

Sr A
]
i,j
≤

√
α/n ·

∞∑
t=0

2−t ·
[
Bt

]
i,j

.

Since D−1
Sr A and v both have non-negative entries, the above inequality implies the following:

∥∥D−1
Sr A · v

∥∥
2
≤

√
α/n ·

∥∥∥∥∥
∞∑
t=0

2−t ·Bt · v
∥∥∥∥∥
2

≤
√

α/n ·
∞∑
t=0

2−t ·
∥∥Bt · v

∥∥
2
. (12)

Now to bound ∥Bt · v∥2 we first find bounds on the number of 1’s in rows and columns of Bt. Using
the definition of Bt in Eq. (11) and the fact that row sums in matrix D−1A are equal to 1, we have:∥∥Bt

i,:

∥∥
0
≤ min(2t+1

√
n/α, n). (13)

Additionally, using the precondition of the lemma about α = n·maxi∈[n]

∥∥D−1A · e(i)
∥∥2
2
, we have:∥∥Bt

:,j

∥∥
0
≤ min(22t+2, |Sr|). (14)

Now we bound the norm ∥Bt · v∥2 for an arbitrary integer t ≥ 0 as follows:

∥∥Bt · v
∥∥2
2
≤

|Sr|∑
i=1

∥∥Bt
i,:

∥∥
0
·
∥∥Bt

i,: ⊙ v
∥∥2
2

(Cauchy–Schwarz inequality)

≤ 2t+1
√
n/α ·

|Sr|∑
i=1

∥∥Bt
i,: ⊙ v

∥∥2
2
= 2t+1

√
n/α ·

∑
j∈[n]

|Sr|∑
i=1

Bt
i,j · v2j

= 2t+1
√
n/α ·

∑
j∈[n]

∥∥Bt
:,j

∥∥
0
· v2j

≤ 2t+1
√
n/α ·min(22t+2, |Sr|) ·

∑
j∈[n]

v2j = 2t+1
√
n/α ·min(22t+2, |Sr|),

where the inequality in second line above follows from Eq. (13) and the inequality in the last line
follows from Eq. (14). The last equality follows from the assumption that ∥v∥2 = 1. Therefore,

∥∥Bt · v
∥∥
2
≤

{
2

3t+3
2 · (n/α)1/4 if 2t+1 ≤

√
|Sr|

2
t+1
2 · (n/α)1/4 ·

√
|Sr| otherwise

.
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Now by plugging the above inequalities into Eq. (12) we find that:

∥∥D−1
Sr A

∥∥
op
≤

√
α/n ·

log2

√
|Sr|−1∑

t=0

2−t ·
∥∥Bt · v

∥∥
2
+

∞∑
t=log2

√
|Sr|

2−t ·
∥∥Bt · v

∥∥
2


≤ 12

(
α · |Sr|

n

)1/4

≤


ε3/2

6κ7/4α1/4 if r = 0
ε3/4

9κ if r = 1
ε
6κ if r = 2

,

where the last line above follows from the upper bound on the size of sets Sr we obtained in Eq. (5)
and Eq. (8). Finally, by plugging the above inequality into Eq. (10) and using the fact that D−1A is
a row-stochastic matrix and thus

∥∥D−1A
∥∥
op
≥ 1 the lemma follows.

Next, we prove the main theorem.

Proof of Theorem 1: The diagonal matrix D̃ in line 2 is computed by invoking Algorithm 2.
By Lemma 1 with probability at least 1 − 1

poly(n) , it holds that
∥∥∥(D̃−1 −D−1

)
A
∥∥∥
op
≤ ε/2 ·∥∥D−1A

∥∥
op

. Furthermore, in line 3 of the algorithm S is defined as the sampling matrix according

to the row norms of V . To invoke Lemma 2, we need to have a bound on the stable rank of D̃−1A.

First, from Lemma 1 we know that
∥∥∥D̃−1A

∥∥∥
op
≥ (1−ε/2) ·

∥∥D−1A
∥∥
op
≥ 1/2, where the second

inequality follows because D−1A is a row-stochastic matrix. Therefore we have srank(D̃−1A) ≤
4
∥∥∥D̃−1A

∥∥∥2
F

. Second, the lower capping in line 8 of Algorithm 2 ensures that
∥∥∥D̃−1A

∥∥∥2
F
≤

κ2
∥∥D−1A

∥∥2
F
≤ no(1) ·

∥∥D−1A
∥∥2
F
≤ no(1), thus srank(D̃−1A) ≤ no(1).

With this bound on the stable rank and since m = d · no(1) = Ω
(
ε−2d · srank(D̃−1A)

)
,

Lemma 2 implies that
∥∥∥D̃−1AS⊤ · SV − D̃−1AV

∥∥∥
op
≤ ε/3 ·

∥∥∥D̃−1A
∥∥∥
op
∥V ∥op ≤ ε/2 ·∥∥D−1A

∥∥
op
∥V ∥op with probability 0.99.

By combining these two inequalities, we obtain the spectral approximation guarantee in Eq. (1). The
runtime of this algorithm is primarily determined by the time it takes to invoke Algorithm 2 in line 2,
which is dominated by the time to multiply two matrices of sizes n × d and d ×m and the time to
calculate attention matrix entries at the positions defined by MH. Using the matrix multiplication
result from (Le Gall, 2012), the first computation can be done in time O(dn1+o(1)) and the latter
can be done in nnz(MH).

Proof of Corollary 1: Because r = log2 n, we have Pr[H(Qi,∗) = H(Kj,∗)] ≤ 1/n1−o(1) when-
ever θ(Qi,∗,Kj,∗) ≥ π

2 (1− o(1)). As there are at most n2 total pairs, the expected number of such
pairs that collide under H is at most n1+o(1) and so by a Markov bound is at most n1+o(1) with
failure probability 1/no(1).

Since we also assume there are at most n1+o(1) pairs (i, j) with θ(Qi,∗,Kj,∗) < π
2 (1− o(1)), there

can be at most n1+o(1) additional pairs that collide.

Thus, in total we have n1+o(1) collisions, and consequently the number of non-zero entries in MH

is at most n1+o(1) with failure probability 1/no(1). The proof now follows by the assumptions of
the corollary statement as well as Theorem 1.

Proof of Corollary 2: Let T be an ExpanderSketch matrix with O(τ log n) rows. By the guarantees
(Larsen et al., 2016) of T , we have that with probability at least 1− 1

n3 , for any fixed vector x ∈ Rn,

that from T · x, one can recover a set S of indices i ∈ [n] such that if x2
i ≥ ∥x∥2

2

τ , then i ∈ S,

whereas if x2
i ≤ ∥x∥2

2

2τ , then i /∈ S. Further, S can be found from Tx in no(1) time.
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We compute T ·Q, followed by (T ·Q)·K⊤. Note that the time for this computation is O(τn log n).
Next, for each column j of QK⊤ this allows us to construct a set Sj with the property that if

(Q ·K⊤)i,j ≥ ∥Q·K⊤ej∥2
2

τ , then i ∈ Sj . This holds simultaneously for all columns with probability
at least 1− 1

n2 by a union bound. The time for constructing all the sets Sj is n1+o(1)d

Note that |Sj | ≤ 2τ for all j, and we can explicitly compute the exact value of (Q ·K⊤)i,j for all
i ∈ Sj and all j, in O(nτd) time. By the assumptions of the corollary, we have that Sj contains a
superset of the support of the j-th column of MH, and since we can compute the values exactly, we
can exactly construct the mask MH matrix that the corollary requires, and in n1+o(1)d time. The
proof now follows by the assumptions of the statement as well as Theorem 1.
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