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1. Introduction
Recent advances in graph neural network (GNN)

models offer promising alternatives to crystal struc-
ture prediction (CSP) problems. Universal machine
learning interatomic potentials (uMLIPs) trained on
millions of DFT calculations demonstrate remark-
able generalizability in materials discovery. On
the other hand, deep generative models (e.g., diffu-
sion models) learn the data manifold or probabilis-
tic distribution and generate new configurations via
stochastic or variational approaches [1, 2], e.g., Xie
et al. [3] introduced CDVAE as the first GNN-based
diffusion model for crystal structure generations.
We found that GNN-based models suffer from

locality bias when generating structures at large
scales. Although GNN can successfully learn short
and medium-range atomic correlations, the gener-
ated structures often exhibit amorphous configura-
tions rather than proper crystalline order. This bias
stems from GNNs’ finite receptive field limitation
and the stochastic nature of reverse diffusion pro-
cesses, which sample from broad distributions re-
sulting in "mosaics" of disconnected local structure
motifs.

2. Substantial section
We present Crystal Host-Guided Generation

(CHGGen) as a practical approach for crystal struc-
ture prediction based on diffusion models. Our
research reveals that unconditional generation
with GNN-based diffusion models demonstrates
limited efficacy in identifying symmetrized crystals
as unit cell size increases. CHGGen addresses
this limitation through conditional generation
using the inpainting method, which optimizes a
fraction of atomic positions within a predefined
and symmetrized host structure. We used CHGNet
as a uMLIP for structure optimization and virtual
screening of thermodynamic stability of generated
structures, which are subsequently validated using
density functional theory calculations.

2.1 Related work
• Universal machine learning interatomic po-
tentials: M3GNet [4], CHGNet [5], MACE [6],
GNoME [7], MatterSim [8], DPA-2 [9].

• GNN-based diffusion models: CDVAE [3],
DiffCSP [10], MatterGen [11], symmetry-
constrained diffusion [12].

• Materials database: Materials Project [13] and
Alexandria [14], OMAT24 [15].

• Generative models for materials beyond
GNN: U-net-based diffusion models [16], large-
language models [17, 18], and Wyckoff-based
generators [19, 20, 21].

2.2 Inpainting generation

Inpainting Generation. Inputs: Atomic positions
of unperturbed host structure with randomly ini-
tialized intercalants xhost

0 ; Atomic positions of all
atoms sampled randomly in the unit cellxT ; Mask
for intercalantsm; Signal-to-noise ratio δ; Number
of predictor steps T ; Number of corrector steps
M ; Number of resampling steps r.
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end for

2.3 Crystal host-guided generation
The CHGGen computational workflow begins

with sampling different Bravais lattices at a fixed vol-
ume by conducting a random search across lattice
constants and angles. The unconditional diffusion
proceeds by solving the reverse stochastic differen-
tial equations to generate structures. These struc-
tures undergo relaxation using CHGNet to optimize
both unit cells and atomic coordinates.
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Fig. 1: The computationalworkflowof CHGGen. The process begins with a random search for Bravais lattices
containing a specified number of atoms, followed by an unconditional generationwith reverse diffusion and
structure relaxation. Structure refinement is applied after removing intercalants to obtain a symmetrized
framework. Inpainting generation is then performed based on this refined framework to guide the creation
of complete crystal structures. Finally, the generated structures undergo relaxation to determine decompo-
sition energy (Ed). The structureswith lowEd are selected forDFT verification. The dashed circles represent
crystallographically equivalent atomic positions in a crystal structure.

The next phase begins by removing atoms that
exhibit broad local environment distributions. The
remaining structure (framework) undergoes sym-
metry refinement using spglib through incremen-
tal structural matching tolerance to obtain a space
group with higher symmetry. After that, fractional
coordinates of the removed intercalants are then
reinitialized from N (0, I) within the symmetrized
framework, and inpainting generation is performed
using masksm and (1 −m) for the intercalants and
framework respectively. The inpainting-generated
structures are further relaxed using CHGNet and
structure refinement is performed with a small tol-
erance to obtain the spacegroup. The CHGNet-
calculated energy is used to determine the decom-
position energyEd relative to theMPphase diagram.
Finally, structures withEd within a specified thresh-
old are submitted to DFT calculations to getmore ac-
curate thermodynamic stability.
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