
A Proofs and Derivation

A.1 Proof for Theorem 1

The following sequence of equations show that proof, relying on the fact that π′(a|s) =
πθ(a|s)∑

ai∈C(s) πθ(ai|s)
. We start with the standard policy gradient for any policy π′, shown in the first

line below, and then replace π′(a|s) = πθ(a|s)∑
ai∈C(s) πθ(ai|s)

in the second line, followed by standard

manipulation of the log function.

∇θJ(θ) = Eπ′

[
Qπ

′
(s, a)∇θ log π′(a|s)

]
(8)

= Eπ′

[
Qπ

′
(s, a)∇θ log

πθ(a|s)∑
ai∈C(s) πθ(ai|s)

]
(9)

= Eπ′

[
Qπ

′
(s, a)∇θ log πθ(a|s)−Qπ

′
(s, a)∇θ log

∑
ai∈C(s)

πθ(ai|s)
]

(10)

= Eπ′

[
Qπ

′
(s, a)∇θ log πθ(a|s)−Qπ

′
(s, a)

∑
ai∈C(s)∇θπθ(ai|s)∑
ai∈C(s) πθ(ai|s)

]
(11)

A.2 Proof for Lemma 1

Fix state s and consider a function F (a) =

{
∇θπθ(a|s)
πθ(a|s) for a ∈ C(s)

0 otherwise
. Then,

Eπ[F (a)] =
∑
a∈C(s)

∇θπθ(a|s)

Thus, if we obtain a sample average estimate for Eπ[F (a)] then it is an unbiased estimate for∑
a∈C(s)∇θπθ(a|s). For S samples from π with l being valid samples, the sample average estimate

for Eπ[F (a)] is 1
l

∑
j∈[l]∇θ log πθ(aj |s).

Similarly, for the next estimate, consider a function G(a) =

{
1 for a ∈ C(s)
0 otherwise

. Clearly, then

Eπ[G(a)] =
∑
a∈C(s) πθ(a|s) and a sample avergae estimate of Eπ[G(a)] is l

S .

A.3 Soft Threshold Function

In Argmax Flow [16], a threshold function was introduced to enforce the argmax constraints, i.e.
the variational distribution q(v|x) should have support limited to S(x) = {v ∈ RD×K : x =
argmaxv}. The thresholding-based q(v|x) was defined by Alg. 3 in Argmax Flow. However, the
formula to evaluate det dv/du is not given, which is essential when estimating ELBO l̂π and CUBO
l̂uπ . We derive it here.

Let’s follow the notations in Alg. 3 of Argmax Flow. Suppose index i is the one that we want to be
largest (i is a fixed index). The soft threshold function is given by

vj = ui − log(1 + eui−uj)

Note that the threshold T = vx = ux (we cannot use vx to define v itself, so T is ux). Then,

• if j = i then vj = ui,
∂vj
∂uk

= 1

• if k ̸= j or k ̸= i then ∂vj
∂uk

= 0

• if k = i then ∂vj
∂uk

= 1− 1
1+eui−uj

× eui−uj

• if k = j then ∂vj
∂uk

= 1
1+eui−uj

× eui−uj

14

Table A.1: Various Types of Alpha α
Types of α Remark

Static α α is fixed to be 0.5
Trainable α α is a trainable parameter, updated by the policy gradient
Adaptive α(l̂π, l̂uπ) α is conditioned on the ELBO and the CUBO

det dv/du is a K ×K determinant, where only the elements on the diagonal and on the column i is
non-zero, other elements are zero. We can unfold the determinant by the i-th row. Finally, we have

det dv/du =

K∏
j=1,j ̸=i

∂vj
∂uj

=

K∏
j=1,j ̸=i

sigmoid(ui − uj)

B Experimental Details

B.1 Effect of the Sandwich Estimator’s Weight α

Figure A.1: Performance with
adaptive α and static α in ERA-
v4.

The value of α plays a crucial role in estimating the log prob-
ability, which in turn impacts the performance of the model.
Various types of α are presented in Table A.1. Through our
experiments, we have observed that an adaptive α yields greater
stability and, in certain environments, leads to improved perfor-
mance. This is illustrated in Figure A.1, where the adaptive α
exhibits superior performance compared to the static value of
α = 0.5.

B.2 Effect of Invertible Functions Fw

We have explored different types of invertible function Fw
(called latent flow model) in our study, including affine coupling
bijections 2, as well as more advanced models such as AR Flow
and Coupling Flow, as described in section B.1 of Argmax
Flow [16]. The AR Flow and Coupling Flow methods offer
enhanced capabilities for modeling complex distributions, and
they have been successfully applied to language modeling tasks within the Argmax Flow framework.
However, through our experiments, we have observed that even a simple latent flow model is sufficient
for achieving good performance and exhibits faster convergence. We attribute this finding to the fact
that the increased parameterization in AR Flow requires a larger amount of training data to effectively
learn.

Table A.2: Optimization details
Environment n_envs lr Optimizer batch size

CartPole 8 3e-4 RMSprop 256
Acrobot 8 3e-4 RMSprop 256
ERA-v5 w/o cstr 64 3e-4 RMSprop 512
Pistonball-v[1-3] w/o cstr 64 3e-4 RMSprop 512
ERA-v[1-5] w/ cstr 64 3e-4 RMSprop 256
Pistonball-v[1-2] w/ cstr 64 3e-4 RMSprop 512

B.3 Optimization Details

The total timesteps of training for each environment are determined based on the convergence of
our model and benchmarks. Typically, we train each setting using 5 different random seeds, unless

2We exploit the implementation from: https://github.com/didriknielsen/survae_flows

15

https://github.com/didriknielsen/survae_flows

(a) (b)

Figure A.2: (a) Learning curves in CartPole and ERA-v5 (without constraints); (b) Learning curves
in ERA-v1 (with constraints).

Figure A.3: Learning curves in Toy-Partial.

otherwise specified. When evaluating the model’s performance at a specific timestep with a specific
seed, we employ a separate set of 10 testing environments and report the mean return over these
environments. Further details can be found in Tables A.2. Note that n_envs denotes the number of
environments running in parallel, lr denotes the learning rate, and batch size refers to the batch
size when we execute ELBO updating (Algorithm 1 in the main paper). Furthermore, we will make
the code used to reproduce these results publicly available.

B.4 Range of Considered hyperparameters

We conducted experiments varying the number of samples used for estimating log π(a|s), specifically
considering the values {1, 2, 4, 8}, as well as the inclusion of reward normalization. We find that
using 2 or 4 samples generally leads to good performance across most of our experiments.

B.5 Network structure

Our implementation is built on Stable-Baseline3 [25]. In different environments, different state
encoders were exploited. We used MLP encoder for discrete control tasks and CNN encoder for
Pistonball task. In ERA environment, a customized state encoder was applied to handle the graph
state based on the implementation from [19].

B.6 Computational resources

Experiments were run on NVIDIA Quadro RTX 6000 GPUs, CUDA 11.0 with Python version 3.8.13
in Pytorch 1.11.

C Additional Experiment

In this section, we present additional experimental results obtained from our study.

16

Figure A.4: Learning curves for wall clock time.

Figure A.5: Top: Learning curves in Pistonball-v1 and v2 (with constraints); Bottom: Best-till-now
returns in Pistonball-v1 and v2.

Figure A.6: Valid action ratio of Wol-DDPG during training.

17

In the non-constrained setting, we conduct experiments on CartPole, ERA-v5, and a toy environment
with partial observability - Toy-Partial. For ERA-v5, we remove all constraints, allowing for the
allocation of resources in any nodes. Figure A.2a illustrates that our approach achieves comparable
performance to the best benchmark when the action space is not excessively large. Toy-Partial is
built exactly on the example described in Section 3.1 of [28], in which the optimal stochastic policy
can be arbitrarily better than any deterministic policy. We only modify the setting by augmenting
the dimensionality of actions. There are two actions A and B in their example, while we use a
2-dimensional representation ((0, 1) representing action A, (1, 0) representing action B, (1, 1) and (0,
1) staying at the current state.) to simulate the case in multi-dimensional action space. Figure A.3
shows that our approach can perform significantly better than Factored approach in Toy-Partial.

In the constrained setting, we perform additional experiments on ERA-v1, Pistonball-v1, and
Pistonball-v2. In the Pistonball environment, we introduce a constraint that restricts the upward
movement of pistons on the left side to ensure the ball continues rolling to the left. Our experiments
demonstrate that this constraint presents significant difficulty when the action space is large.

Regarding ERA-v1, our model outperforms the benchmark, as depicted in Figure A.2b. Additionally,
we analyze the average return over wall clock time for ERA-v1, v2, v3, and v5, and our model
exhibits an order of magnitude faster convergence, as illustrated in Figure A.4.

For Pistonball, our model demonstrates comparable performance in the smaller environment
(Pistonball-v1) and superior performance in the larger environment (Pistonball-v2) where the bench-
marks struggle to effectively learn. These findings are presented in Figure A.5, which includes the
average return over timesteps in the top plot and the best-till-now returns in the bottom plot. By
best-till-now we mean the best evaluated return till the current timestamp, which is a commonly used
metric particularly when the return done not increase monotonically over time steps and hence the
best model might be an intermediate one.

We also observed that our approach can learn a stochastic optimal policy in ERA environment,
which corresponds to our motivation that a stochastic policy is preferred in many resource allocation
problems. For example, we have observed that in ERA-v4, a stochastic optimal allocation was learned
by our approach in a given state (shown as a distribution of 200 sampled actions (Table A.3).

Finally, we investigate the constraint violation of Wol-DDPG across ERA-v1 to v5 in Figure A.6.
Our observations reveal that the constraint violation of Wol-DDPG can be significant, with a valid
action ratio reaching only 15% in the worst-case scenario. Note that the valid action ratio mentioned
here specifically pertains to the ratio of valid actions generated by the agent (the action output by
the policy at each timestep) to all the actions output in a single episode, which differs from the
valid action rate discussed in the ablation study in the main paper. In the ablation study shown in
Figure 8a, the valid action rate refers to the fraction (l/S) of valid actions l within the S samples at a
particular timestep in IAR framework shown in Figure 1. Thus, valid action rate is metric specific
to our framework; note that valid action ratio for our framework is always 1 as IAR always outputs
valid actions.

D AR in Constrained Scenario

We have observed that AR approach does not perform well in the constrained scenario. We give our
analysis and experimental evidence here.

First, we describe our specific ERA set-up. We are aiming to allocate 3 resources to 9 areas with the
9 areas lying on a graph (we do not show the graph here). The constraints are that in any allocation,
R2 and R3 must be within 2 hops (inclusive) of each other.

Each allocation of resource R1, R2, R3 is given as a vector, e.g., (4, 0, 3) is the allocation of R1 to
area 4, R2 to area 0, R3 to area 3. In a AR approach there is a dimension dependency in the policy
network. Here allocation of R2 (output by a neural network, which we call R2 network) depends on
allocation of R1 and allocation of R3 (output of R3 network) depends on allocation of R2 and R1.
The R1 network, which outputs location of R1, is conditionally independent (note that R1, R2, R3
networks use the shared weights).

Shown below is an optimal allocation learned by our approach in state 1 (current allocation (8, 2,
8)), shown as a distribution of 200 sampled actions (Table A.3).

18

Table A.3: Optimal policy (ours) in state 1. Showing actions with top-3 probability.
Action Number Distribution
(4, 0, 3) 100 0.5
(4, 0, 6) 100 0.5
(0, 0, 0) 0 0.0
...

Shown below is the best allocation learned by the AR approach in state 1, shown as a distribution of
200 sampled actions (Table A.4).

Table A.4: AR policy in state 1.
Action Number Distribution
(3, 6, 6) 173 0.865
(3, 3, 6) 17 0.085
(6, 3, 6) 5 0.025
...

However, the above is not optimal in state 1. But, if we fix R1 to be in area 4 and R2 to be in area 0
and provide that as forced input to the R3 network, then we get the Table A.5 from the AR network.

Table A.5: AR policy in state 1 after fixing R1 in area 4 and R2 in area 0.
Action Number Distribution
(4, 0, 6) 164 0.82
(4, 0, 3) 36 0.18
(0, 0, 0) 0 0.00
...

This shows that R3 network has learned a good policy, but the R1 network is unable to independently
produce the area 4 that could trigger the optimal output. We conjecture this could be due to fact that
R1 is not aware of constraints since the constraint can be solely enforced by R2 network and R3
network. Hence, R1 might be outputting areas that can be optimal if there were no constraints. We
have further evidence of the same happening in another state:

Shown below is an optimal allocation learned by our approach in state 2 (current allocation (1, 7,
5)), shown as a distribution of 200 sampled actions (Table A.6).

Table A.6: Optimal policy (ours) in state 2.
Action Number Distribution
(4, 0, 3) 200 1.0
(4, 0, 6) 0 0.0
(0, 0, 0) 0 0.0
...

Shown in Table A.7 is the best allocation learned by the AR approach in state 2, shown as a
distribution of 200 sampled actions. Again, if we fix R1 to be in area 4 and R2 to be in area 0 and
provide that as forced input to the R3 network, then we get the Table A.8 from the AR network. This
supports our claim that the R1 network finds it difficult to reason about constraints.

While this is not a complex example and may be resolved through another ordering, we wish to
highlight that constraints can also be complex and they will always introduce issues with ordering
dependent approaches. To handle such issues, one may need knowledge on the dimension dependency,
or make efforts on trying different orders of generating the allocations.

19

Table A.7: AR policy in state 2.
Action Number Distribution
(3, 6, 3) 81 0.405
(3, 6, 6) 81 0.405
(6, 6, 3) 16 0.008
...

Table A.8: AR policy in state 2.
Action Number Distribution
(4, 0, 3) 197 0.985
(4, 0, 1) 2 0.010
(4, 0, 2) 1 0.005
...

E Details of Emergency Resource Allocation Environment

We describe the details of our custom environment ERA in this section. This environment simulates a
city that is divided into different districts, represented by a graph where nodes denote districts and
edges signify connectivity between them. An action is to allocate a limited number of resources to
the nodes of the graph. A tuple including graph, current allocation, and the emergency events is
the state of the underlying MDP. The allocations change every time step but an allocation action is
subject to constraints, namely that a resource can only move to a neighboring node and resources
must be located in proximity (e.g. within 2 hops on the graph) as they collaborate to perform tasks.
Emergency events arise at random on the nodes and the decision maker aims to minimize the costs
associated with such events by attending to them as quickly as possible. Finally, the optimal allocation
is randomized, thus, the next node for a resource is sampled from the probability distribution over
neighboring nodes that the stochastic policy represents.

Each version of the ERA environment is characterized by an adjacency matrix that defines the
connectivity of districts within the simulated city and a cost matrix that quantifies the expenses
associated with traversing from one node to another. The agent’s performance is evaluated based
on the successful resolution of emergency events, leading to rewards, while penalties are incurred
for failure to address the emergency. The agent’s utility at each timestep encompasses the reward
(or penalty) and the negative moving costs. To increase the complexity of the task, we introduce
different types of emergency events. Each event type follows a fixed distribution over the nodes, and
the event type itself is determined by a categorical distribution. For example, a distribution of [0.3,
0.7] means that 30% of the events are of type 1 and 70% are of type 2. The specifics of each version
are presented in Table A.9, where the columns # rsc, # nodes, and hops represent the number
of resources, the number of nodes in the graph, and the maximal allocation distance between two
resources, respectively.

ERA-Partial is one setting with partial observability, which has three states but one possible observa-
tion. The RL agent is encouraged to change its (unobserved) state by obtaining a reward, otherwise
it obtains a penalty. To perform well, the RL agent needs to perform stochastically. The ERA
implementation, including configuration file that consists of the adjacency matrix, cost matrix and
other relevant parameters, will be made available for reproducibility purposes.

20

Table A.9: Specifics for ERA
Version # rsc # nodes hops

partial 2 3 1
v1 3 6 1
v2 3 7 1
v3 3 8 2
v4 3 9 2
v5 3 10 3

21

	Introduction
	Background
	Flow-based Policy Gradient Algorithm with Invalid Action Rejection
	Flow-based Policy Network
	Policy Gradient with Invalid Action Rejection

	Related Work
	Experiments
	Learning in Categorical Action Space without Constraints
	Learning in Categorical Action Space with State-Dependent Constraints
	Ablation Study

	Conclusion and Limitations
	Proofs and Derivation
	Proof for Theorem 1
	Proof for Lemma 1
	Soft Threshold Function

	Experimental Details
	Effect of the Sandwich Estimator's Weight
	Effect of Invertible Functions
	Optimization Details
	Range of Considered hyperparameters
	Network structure
	Computational resources

	Additional Experiment
	AR in Constrained Scenario
	Details of Emergency Resource Allocation Environment

