My House, My Rules:
Learning Tidying Preferences
with Graph Neural Networks

Supplementary Material

Ivan Kapelyukh and Edward Johns

1 Result Visualisations

In our paper, we detailed a series of experiments to test the capabilities of our NeatNet
method. In this section, we visualise a selection of arrangements generated in these ex-
periments to complement the quantitative results and analysis provided in the paper.

1.1 Can NeatNet Tidy a Known Scene?

This experiment tests the tidiness of NeatNet’s reconstructed arrangements for known
scenes (Table 1 in the paper). The example arrangement provided by the user contains
noise and imperfect alignment of objects, as shown in Figure 1. NeatNet is able to reduce
the noise by leveraging prior knowledge from other users when it reconstructs the scene.

Figure 1: Tidying a known scene. Left: example arrangement supplied by a user. Right:
reconstructed arrangement generated by NeatNet.

1.2 Can NeatNet Generalise to Objects Unseen During Training?

Table 3 in the paper shows the results of an experiment to place an object never seen
before during training. Sample arrangements produced are visualised in Figures 2 and 3.

In the office scene, the network has never seen any examples of how a laptop should be
placed, but it does know how this test user placed a computer, monitor, keyboard and
mouse in their example arrangement of the office scene. Since these objects share linguistic
and semantic features with the laptop, NeatNet is able to predict a reasonable position.

Figure 2: Placing a new abstract object (the largest blue box). Its size is outside the
range seen by the network during training. The network is able to correctly place it on
the right-hand side, since the user prefers to group objects by shape. It also correctly
extrapolates the order-of-size pattern. This demonstrates an important spatial reasoning
capability: for example, stacking plates or books in order of size would be a common
scenario for a household robot.

A

Figure 3: Placing a new object (the laptop). Left: Nearest-Neighbour baseline method.
Right: NeatNet method, predicting a satisfactory position for the new laptop.

1.3 Can NeatNet Predict a Personalised Arrangement for a New Scene?

In this experiment (Table 4 in the paper) the network has not seen how this test user likes
this new scene to be arranged. It predicts this based on this user’s preferences, inferred
from another scene, and prior knowledge from how similar training users arranged this
new scene. Sample generated arrangements are shown in Figure 4.

[»
p> 2>
» P p

Figure 4: Arranging a new scene. Left: kNN-Scene-Projection correctly groups objects
by colour, but does not line them up neatly, with some objects clipping into each other.
Right: arrangement generated by NeatNet, using learned prior knowledge from how these
objects were arranged by training users to neatly arrange them into lines.

1.4 Can the User Latent Space be Interpreted?

The NeatNet encoder maps each user to a vector in the shared latent space of user prefer-
ences. We visualise a batch of users in this latent space to investigate its interpretability
in Figure 5. To aid visualisation, the user dimension hyperparameter was set to 2. A clear
separation can be seen in the user latent space for the abstract scenes, where a cluster of
users chose to group objects by colour, and another chose to do so by shape, showing that
preferences which generalise across scenes can be discovered by the network. The user
preference space for tidying the dining table can also be readily interpreted, with separate
clusters emerging for left-handed and right-handed users. This shows that NeatNet can
successfully learn high-level, interpretable preference characteristics such as handedness,
which influence the placement of several objects in a scene.

User preference space User preference space
-0.284 .

0.0125
-0.286
0.0100

-0.288 . !

0.0075
-0.290

0.0050 0292

L]
0.0025 0298

Latent dimension 2
L]
Latent dimension 2

0.0000 029
s]

-0.0025 -0.298

-0.0050 L] -0.300

-100 -0.75 -0.50 -0.25 000 025 050 075 00 01 02 03 04 05 06 07 08
Latent dimension 1 Latent dimension 1

Figure 5: User latent space visualisation. Each point represents one inferred user vector.
Left: abstract scene preferences. Right: dining scene preferences.

2 Implementation Details

In this section, we highlight several key points of implementation detail for the reader’s
convenience. Further low-level detail can be found in the code and inline documentation.

2.1 Libraries Used

The network architecture was implemented with the PyTorch machine learning library
[1]. Additionally, the PyTorch Geometric library [2] was used to implement Graph Neural
Network components.

2.2 Optimisation: Batching Scenes & Users

A user’s preference vector is inferred from all the example scenes provided by that user, as
described in Section 3.3 of the paper. Therefore, all the examples scenes for a user must
be passed through the encoder.

A naive implementation would iterate through the scenes and pass each one through the
encoder in sequence. However, this would perform O(n) forward passes for n example
scenes per user, which would significantly degrade the speed of training and inference.

Instead, we wish to pass all the example scenes for one user through the network in
one forward pass. Therefore, we batch these scenes together by stacking them into a
supergraph: a graph containing all the example scenes as subgraphs. The node matrices are
concatenated together, so that the new supergraph contains all the nodes of the individual
scene subgraphs. The edge structure is preserved so that each scene subgraph is fully
connected but there are no edges between scene subgraphs. This is because each scene is
arranged separately by the user, so remains separate in the supergraph structure.

This approach allows multiple scenes arranged by the same user to be processed by the net-
work in one forward pass. A similar technique is applied to combine the graphs of several
users into a single supergraph representing a batch of users, using the batch data loader
from PyTorch Geometric [2]. This allows us to control the batch size as a hyperparameter,
balancing regularisation with the stability of the training process.

2.3 Hyperparameter Settings

The optimiser used to update NeatNet’s parameters is the PyTorch Stochastic Gradient
Descent implementation with momentum (based on validation performance, this was cho-
sen over Adam [3] for this specific task). Additionally, we use a PyTorch learning rate
scheduler which reduces the learning rate when performance plateaus, to fine-tune the
model towards the end of the training process.

The network is trained for 2000 epochs, with an initial learning rate of 0.10 for abstract
scenes and 0.08 for real scenes. We use a batch size of 4, to introduce sufficient regular-
isation. The graph encoding dimension is set to 20 for abstract scenes and 24 for real
scenes. The encoder’s Graph Attention [4] layer with a hidden dimension of 24 is followed
by a fully-connected linear layer applied nodewise and 2 further fully-connected layers for
the user preference extractor. The position predictor also uses a Graph Attention layer
but with a hidden dimension of 32, followed by 2 fully-connected linear layers applied
nodewise to predict positions for each node. Experiments on abstract scenes use a VAE
B value [5] of 0.08, whereas 0.01 is used for real scenes to allow for further tailoring to
individual preferences. The semantic embeddings for abstract objects are vectors which
describe their size, RGB colour, and shape. Semantic embeddings for real objects are
inferred from the word embeddings of their name. A negative slope of 0.2 is used for
LeakyReLU activations [6]. The scheduler reduces the learning rate by a factor of 0.5,
with a patience of 100 epochs (monitoring whether the loss is stagnating), and a cooldown

period of an additional 80 epochs after the last halving. However, these vary slightly based
on the specific task: further details can be found in the code.

Data augmentation is applied to improve generalisation. Position encodings are normalised
by subtracting the mean position across the training examples and downscaling the coordi-
nates based on the maximum distance from the center found in the training dataset. This
stabilises the training process. In order to prevent overfitting, Gaussian noise is added to
object positions, with a standard deviation of 0.02 for the dining scene and 0.05 for the
office scene. For experiments where the task is to predict the positions of missing objects,
node masking (with a rate of 0.1) is applied during the training process, so that the net-
work can learn to predict the positions of an object based on other objects. The initial
learning rate is increased to 0.12, since the loss is otherwise more likely to stagnate in local
optima, and the batch size is increased to 6 to stabilise the learning process. Similarly,
a scene masking rate of 0.2 is applied to train the network to predict how a user would
arrange a new scene based on their preferences inferred from another scene.

3 Pose Graph Baseline

One of our core contributions is the use of spatial preferences to tidy in a personalised way.
To demonstrate that personalization improves user ratings, we include comparisons against
strong baseline methods which can produce neat but not personalised arrangements.

We developed a baseline method referred to in results tables as “Pose-Graph”. It con-
structs a probabilistic pose graph to model general tidying preferences (not specific to any
individual). The parameters of this model are learned from the same example arrange-
ments that NeatNet trains on. This model can be used as a tidiness cost function. A
sampling & scoring graph optimisation technique is used to find the optimum of this cost
function, outputting a tidy arrangement.

3.1 Modelling Arrangements as Pose Graphs

Each node represents an object, including its position. The edge between two nodes rep-
resents a probability distribution over possible displacements between those two objects.
This distribution can be multi-modal, as shown in Figure 6, and so each edge stores the
parameters of a Gaussian Mixture Model.

cup

plate
i

Figure 6: Example pose graph with two nodes and one edge, showing the most likely
displacements from the plate to the cup. The Gaussian Mixture Model has two peaks:
these positions for the cup as considered tidiest.

3.2 Learning Model Parameters

We now outline an algorithm for learning the parameters of this model from example
scenes, so that the model will represent general tidying preferences. The output is a
probabilistic pose graph, where each node is an object and each edge holds the parameters
of a distribution over the displacements between those two objects.

Algorithm 1: Learning the Cost Function

input : List of training scenes, each a list of n objects

output: n X n matrix, where entry (i, j) is a distribution over displacements from 4
to j

1 distributions < EmptyMatrix(n, n)

2 for each pair of objects i, j do

3 displacements « [|

4 for each scene in scenes do

5 ‘ displacements < displacements ++ (scene[j] — sceneli])

6 end

// Calls a density estimation algorithm, like EM-GMM.

7 distributions [i][j] + FitDistribution(displacements)

8 end

To fit the distribution in each edge, we apply the Expectation-Maximisation algorithm
(using the sckit-learn library [7]), which outputs the parameters of a Gaussian Mixture
Model.

3.3 Using the Model as a Cost Function

Here we describe how the probabilistic pose graph can be used as a cost function for
tidiness. The input to this function will be an arrangement (x1,...,xzy), i.e. a position
x; for each object node i. The output will be some scalar tidiness cost, so that tidy
arrangements have a low cost and untidy arrangements have a high cost.

Consider the local cost function ¢;;(z;, z;) for an edge between two objects ¢ and j. Sup-
pose that the displacement between them is z;; = x; — x;. In a tidy arrangement, that
displacement is a very likely one, i.e. p;;(zi;) is high. Therefore, we set the cost function of
this edge to be the negative log-likelihood of the displacement between those two objects:

L

cij(wi, xj) = —log pij(zij) (1)
The global cost function is an aggregation of edge likelihoods, summing over each pair of
objects:

C(xiy...,xn) = — z_: Z log pij(zij) (2)

i=1 j=i+1

This aggregation is similar to the global error function in graph-based SLAM literature,
which is also the sum of the errors in each edge [8]. This means that arrangements where
the distance between each object is likely are considered tidy, and arrangements where the
distances between each object are implausible will have a high cost.

3.4 Finding the Optimum of the Cost Function

At this point, we know how we can use a probabilistic pose graph as a cost function, and
we know how to learn the parameters of this cost function so that it models human tidying
preferences. Given an arrangement of objects, this cost function will tell us whether one
arrangement is more or less tidy than another.

Now, we want to find the tidiest possible arrangement, i.e. one which corresponds to the
optimum of the cost function. Once we have this optimal arrangement, then the robot
will know where each object should be placed to tidy a scene.

3.4.1 Objective Definition

The optimisation objective is to find the tidiest possible arrangement, i.e. we need to
find a position for each object such that the overall cost function defined in Equation 2 is
minimised. The tidiest arrangement which we are trying to find is therefore given by:

*
n

= argmin C(z;, ..., %) (3)

L1,y

*
Tlyees T

Intuitively, this means we need to find a position for each node such that each edge in the
pose graph is as “likely” as possible. An analogy often used in SLAM literature goes as
follows: imagine that each edge is an elastic spring attached between nodes. Shifting one
node may loosen some springs attached to it but tighten some others instead, which are
pulling in a different direction. We want to minimise the strain on the system, i.e. arrange
the nodes so that as many of the springs are as loose as possible. This means we need
to simultaneously optimise many relative constraints. Therefore, we can apply techniques
inspired by SLAM literature to optimise this pose graph, and find a solution with a low
cost.

3.4.2 Sampling & Scoring Algorithm

We now detail an algorithm for placing the objects into the scene in a way which si-
multaneously optimises the edges between all the object nodes. This is based on SLAM
techniques for handling multi-modal distributions [9].

The intuitive idea is as follows. We start with a set of candidate arrangements, each
containing just an origin node. Then, we add one object at a time. To add the next
object, we sample from the distribution in the graph edge which connects it to its parent
in the tree. This distribution returns a displacement, allowing us to place this new object
into the arrangement based on the position of its parent (already placed). We place
this object into every candidate arrangement. Then, we evaluate each candidate, by
aggregating the likelihood of all the edges in that arrangement (using the cost functions
defined in Section 3.3). Once all the objects have been placed, the candidate with the
highest likelihood is the tidied solution. If at any stage we have too many candidates
with low scores, we can re-sample: candidates with higher weights are more likely to
survive, and unlikely arrangements will be eliminated. However, since our graphs are fully
connected, re-sampling is often not necessary because the trees are rarely very deep, and
so error does not accumulate as much as it would when performing SLAM along a long
corridor.

This sampling & scoring algorithm is illustrated in Figure 7.

y position
w

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
X position

Figure 7: Illustration of our sampling-based method. Each candidate is assigned one colour
and represents one full arrangement of the Table, Bowl and Cup. The Table is chosen
as the origin node in this example. The green poses represent one possible arrangement,
which has the greatest circles and the largest weight. This is because the relative displace-
ments between the green pose estimates are closest to the ground truth optimal relative
displacements in this experiment, marked by the dashed lines. The slightly smaller blue
poses represent another candidate, slightly less likely but still reasonably highly weighted
(note that the relative displacement between the Bowl and Cup is similar to the optimal).
The red circles are the smallest because the arrangement is highly improbable.

The order in which we add objects into the scene is determined by a spanning tree of
the pose graph: this is passed into this algorithm. Since all edges are used to score ar-
rangements, the algorithm will run correctly regardless of which tree is chosen, but we can
improve performance by selecting edges according to some heuristics. We found that pri-
oritising edges with the lowest Bayesian Information Criterion [10] improved performance.
Intuitively, if the graph contains a “strict” edge between two objects (e.g. between the
fork and the knife), then that edge is likely to be prioritised, and this quickly eliminates
untidy arrangements. An example tree is shown in Figure 8.

lamp

O monitor
pencil *‘*Q

Q < desktop

notepad /‘O

keyboard mouse

Figure 8: The tree selected for the office scene using BIC. Arrows represent edges in the
tree. The notepad is chosen as the parent of both the lamp and the pencil, meaning that
the positions of those objects are closely related, as would be expected semantically.

The full algorithm for sampling and scoring arrangements is given below. The output is
a list of candidate arrangements, from which we can pick the tidiest (the one with the
highest score). This produces an arrangement which is near the optimum of the learned
cost function for tidiness.

Algorithm 2: Sampling & Scoring: Minimising the Cost Function

input : Matrix of relative distributions

input : A list of edges defining a minimum spanning tree in the distributions graph
input : Number of solutions, pop_size, defaulting to 1000

output: A list of scores

output: A list of arrangements, each a list of object positions

1 Initialise each score to 1 / pop_size
2 arrangements < | |
3 for each edge in edges do
4 (start, end) < edge
5 for ¢ in 0..pop_size do
// Sample a position for the new node.
// Displacement may need to be flipped to match edge direction.
6 displacement <« distributions [start][end].sample()
7 start_pos < arrangements [i][start]
8 end_pos < start_pos + displacement
9 arrangements [i][end] + end_pos
// Score arrangement based on total likelihood of all edges so
far.
10 likelihood « ScoreArrangement(distributions, arrangements [i])
11 score < 1 / pop_size + likelihood
12 end
13 Normalise scores: divide by total score.
14 If too many arrangements have a low score, can resample here.
15 end

16 Sort arrangements so that highest scores are first.

We have shown how these algorithms allow the Pose-Graph baseline method to generate
arrangements which are generally tidy, but not tailored to any specific user.

References

1]

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Rai-
son, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Py-
torch: An imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32, pages 8024-8035. Curran
Associates, Inc., 2019.

M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geo-
metric. In ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 8rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015.

P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph
Attention Networks. International Conference on Learning Representations, 2018.

I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. Botvinick, S. Mohamed,
and A. Lerchner. beta-VAE: Learning basic visual concepts with a constrained vari-
ational framework. In ICLR, 2017.

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural
network acoustic models. In Proc. ICML, volume 30, page 3, 2013.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

G. Grisetti, R. Kiimmerle, C. Stachniss, and W. Burgard. A tutorial on graph-based
SLAM. IEFEFE Intelligent Transportation Systems Magazine, 2(4):31-43, 2010.

M. Pfingsthorn and A. Birk. Simultaneous localization and mapping with multimodal
probability distributions. The International Journal of Robotics Research, 32:143-171,
02 2013.

A. A. Neath and J. E. Cavanaugh. The bayesian information criterion: Background,
derivation, and applications. WIREs Comput. Stat., 4(2):199-203, Mar. 2012. ISSN
1939-5108.

10

	Result Visualisations
	Can NeatNet Tidy a Known Scene?
	Can NeatNet Generalise to Objects Unseen During Training?
	Can NeatNet Predict a Personalised Arrangement for a New Scene?
	Can the User Latent Space be Interpreted?

	Implementation Details
	Libraries Used
	Optimisation: Batching Scenes & Users
	Hyperparameter Settings

	Pose Graph Baseline
	Modelling Arrangements as Pose Graphs
	Learning Model Parameters
	Using the Model as a Cost Function
	Finding the Optimum of the Cost Function
	Objective Definition
	Sampling & Scoring Algorithm

