
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIAL FOR SYNTHETIC DATA IS
SUFFICIENT FOR ZERO-SHOT VISUAL GENERALIZA-
TION FROM OFFLINE DATA

Anonymous authors
Paper under double-blind review

A APPENDIX

We have made our codebase and datasets available on https://github.com/
anonymous2025ICLR/augdiff_RL. The code repository contains reference code bases
in two folders: V-D4RL and Procgen. The README.md files in each sub-repository include
detailed instructions for replicating the experimental results in this paper, training offline learning
models, and creating additional datasets for use.

B DATASET DETAILS

B.0.1 VISUAL D4RL ENVIRONMENTS

For our V-D4RL experiments, we utilized the expert offline dataset from Lu et al. (2023a) and
conducted experiments on three environments:

• cheetah-run: A planar bipedal agent rewarded for forward velocity.
• walker-walk: A planar walker agent rewarded for upright posture and target velocity.
• humanoid-walk: A humanoid agent with 21 joints rewarded for maintaining specific ve-

locity.

We follow the V-D4RL approach, where learning from pixels is achieved by stacking three consec-
utive RGB images (84 × 84) along the channel dimension to capture dynamic information such as
velocity and acceleration. We utilize the expert dataset, with the baseline dataset size set at 100,000
samples per environment. The data collection policy is based on the Soft Actor-Critic (SAC) algo-
rithm for proprioceptive states, as described by (Haarnoja et al., 2018).

Visual D4RL Datasets:

1. 50K Baseline: A reduced dataset containing 50,000 samples, randomly sampled from the
original 100,000 expert policy dataset, without any data augmentation.

2. 100K Upsampled: An upsampled version of the 50,000 baseline dataset, increased to
100,000 samples using diffusion model-based upsampling.

3. 100K Augmented Baseline: The original 100,000 dataset, augmented using the selected
pixel-level augmentation techniques (rotation, color jittering, and background image over-
lay) to introduce additional diversity, without changing the dataset size.

4. 100K Augmented Upsampled: An upsampled version of the 50,000 augmented baseline
dataset, increased to 100,000 samples using diffusion model-based upsampling. This al-
lows for a comparison between explicit augmentation and augmentation combined with
diffusion upsampling.

Evaluation Distraction Dataset: The evaluation set, used for JS divergence analysis, is collected
across all distraction levels as well as the original evaluation set. Data is gathered during training
and combined across five random seeds. As a result, each environment’s evaluation set for each
testing difficulty level contains 256,000 samples. This larger size, compared to the original dataset,
helps minimize variation in the test distribution.

1

https://github.com/anonymous2025ICLR/augdiff_RL
https://github.com/anonymous2025ICLR/augdiff_RL

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We use the Fixed Distraction Dataset (FDD): provided by V-D4RL, which contains distractions
fixed in the background and color of the agent—unlike the evaluation distracting dataset, where
distractions change dynamically during evaluation. Previous attempts, as reported by (Lu et al.,
2023a), to incorporate this dataset into training by combining various portions (25%, 50%, 75%,
or even 100%) with the original dataset—without applying augmentation or our approach—have
shown no improvement in generalization performance. Consequently, the authors highlighted an
open challenge: ”How can we improve the generalization performance of offline model-free methods
to unseen visual distractions?”.

5% Fixed Distraction Dataset (5% FDD): To address this challenge, we incorporate a small por-
tion of the fixed distraction dataset into our training data. Specifically, we use only 5% of the total
fixed distraction dataset provided by the V-D4RL benchmark. In our reduced baseline of 50,000
datapoints, we replace 5,000 datapoints with samples from the fixed distraction dataset (combining
low, moderate, and high levels), resulting in 45,000 original datapoints and 5,000 from the fixed dis-
traction dataset. We believe that this addition introduces extra diversity to the original environment
enabled by our two-step approach. This strategy can be considered a form of few-shot learning;
however, since the 5% fixed distraction dataset is not part of the evaluation dataset, we refer to it as
incorporating a limited distraction exposure in our training data. The Fixed Distraction Dataset
is available exclusively for cheetah-medium and cheetah-expert. Therefore, we apply our approach
solely to the cheetah-expert environment. Figure 1 shows the samples from the fixed distracting
dataset for cheetah-run.

Figure 1: Sample screenshots from the V-D4RL cheetah-run fixed distracting dataset.

B.0.2 PROCGEN ENVIRONMENTS

We conducted experiments on three games from the Procgen suite:

• CoinRun: A platformer where the agent collects coins while avoiding obstacles.
• Ninja: An agent jumps across platforms, destroys bombs, and collects mushrooms.
• Jumper: A bunny navigates through multi-level environments, guided by a compass.

Procgen Datasets for Experiments:

1. 1M Baseline: The original dataset containing 1,000,000 transitions without any data aug-
mentation.

2. 2M Upsampled: An upsampled version of the 1,000,000 baseline dataset, increased to
2,000,000 samples using diffusion model-based upsampling.

3. 1M Augmented Baseline: The original 1,000,000 dataset, augmented using pixel-level
augmentation techniques to increase diversity, without changing the dataset size.

4. 2M Augmented Upsampled: An upsampled version of the 1,000,000 augmented baseline
dataset.

For the Offline Procgen dataset, we use 1M expert dataset collected using Proximal Policy Opti-
mization (PPO) Schulman et al. (2017). A single transition in Procgen consists of an observation
(depicted as an RGB image with dimensions 64x64x3), a discrete action (with a maximum action
space of 15), a scalar reward (which may be either dense or sparse depending on the game), and a
boolean value signifying the conclusion of the episode. Following the approach outlined by Medi-
ratta et al. (2024), each Procgen game level is procedurally generated using a level seed, which is
a non-negative integer. Levels in the range [0,200) are used to collect trajectories and train offline,
levels [200,250) are utilized for hyperparameter tuning and model selection, and levels [250,∞) are
reserved for online evaluation of the agent’s performance. We gather the Evaluation Test Set while

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

training with 5 random seeds, employing a methodology similar to that used in our V-D4RL (Visual
D4RL) study.

B.0.3 DATA AUGMENTATION

To strengthen the robustness of our model to variations in visual inputs and ensure it captures key
environment dynamics, we applied several data augmentation techniques to the initial dataset D0,
inspired by the work of (Laskin et al., 2020). While we initially experimented with ten different
augmentations, we found that using all of them simultaneously led to training instability. Through
empirical analysis, we identified that rotation, color jittering, color cutout, and background im-
age overlay were the most effective in improving generalization without compromising stability.
We select applied augmentation randomly during the training. Below, we provide detailed de-
scriptions of each of these augmentations. WE

::
To

::::::
further

::::::
refine

:::
our

::::::::::::
augmentation

:::::::
strategy

:::
and

:::::
reduce

:::
the

::::::::::::::
time-consuming

:::::::
process

::
of

::::::::
extensive

::::::
tuning,

:::
we

:::::::::
employed

:::
JS

:::::::::
divergence

:::::::
analysis

:::
and

::::::::::
visualization

::
of

:::
the

:::::::::::
distributions

::
of

:::
the

:::::::::
upsampled

::::
and

:::::::
baseline

:::::::
datasets.

:::::
This

:::::::
allowed

::
us

::
to

:::::
assess

::::::::
alignment

:::
and

::::::::
diversity

::::::
without

::::::::
repeated

:::
RL

:::::::
training,

:::::::::::
significantly

::::::::::
streamlining

:::
the

:::::::
process.

:::::
These

::::::::::::
augmentations,

:::::::::
combined

::::
with

:::::::::::::
diffusion-based

:::::::::::
upsampling,

::::
were

:::::::::::
instrumental

::
in
:::::::::

increasing
::::

data
:::::::
diversity

:::
and

:::::::::
enhancing

::::::::::::
generalization.

:

:::
The

::::::::::::
augmentation

:::::::
function

::::::
applied

:::
to

:::::
states

:
s
::::
and

::
s′

::::
uses

::::::::::::
independently

:::::::
sampled

:::::::::::::
transformations

::::
from

:::
the

:::::
same

:::
set

:::
of

:::::::::::::
augmentations,

::::
with

:::::
each

:::::::::::::
transformation

:::::::
selected

::::
with

:::::
equal

::::::::::
probability.

:::::
Within

:::::
each

::::
state

:::::
(e.g.,

:
a
:::::

stack
::
of
::::::::

frames),
:::
the

:::::
same

::::::::::::
transformation

::
is

::::::::::
consistently

:::::::
applied

:::::
across

::
all

::::::
images

:::
in

:::
the

:::::
stack.

:::::
This

:::::::
ensures

::::
that

:::::::
temporal

::::
and

::::::
spatial

:::::::::::
relationships

::::::
within

:::
the

::::
state

:::
are

::::::::
preserved,

::::::::::
preventing

::::::::
disruption

:::
of

::::::
critical

:::::::::
structural

::::::::::
information

:::::
while

::::
still

:::::::::
promoting

:::::::
diversity

:::::
across

::::::
states.

::::
This

::::::::
approach

::
is

::::::::
consistent

::::
with

:::
the

::::::::::::
methodology

::::
used

::
in

:::::
RAD

::::::::::::::::
(Laskin et al., 2020)

:
,
:::::::
ensuring

:::::::
uniform

::::::::::
exploration

::
of

:::
the

:::::::::::
augmentation

:::::
space

:::::
while

::::::::::
maintaining

:::
the

::::::::
structural

:::::::
integrity

::
of

::::::
stacked

:::::::::::
observations.

:

Rotation: We applied random rotations to the input images to make the model invariant to the ori-
entation of objects within the environment. Each image was rotated by an angle randomly selected
from a uniform distribution within a specified range, typically [−θmax, θmax], where θmax is the max-
imum rotation angle which we set 90◦. This augmentation helps the model generalize to different
viewpoints and orientations it might encounter during deployment.

Color Jittering: To simulate variations in lighting conditions and color distributions, we employed
color jittering. This technique involves randomly adjusting the brightness, contrast, saturation, and
hue of the images. Specifically, we modified these properties by factors randomly sampled from
uniform distributions around their original values. In our experiments, we adjusted the brightness
in [0.2, 0.6], contrast in [0.2, 0.8], saturation in [0.2, 0.8], and hue in [0.1, 0.7]. By introducing
variability in the color space, the model learns to focus on features that are more robust to changes
in illumination and color, improving its performance in diverse visual conditions.

Color Cutout: Color cutout is an augmentation technique where random rectangular regions of the
image are occluded with a random color. Unlike standard cutout, which typically uses a fixed color
(such as black or gray), color cutout replaces the occluded region with colors randomly sampled
from the color space. Specifically, For each image, we selected one rectangle with dimensions
up to 20% of the image’s width and height. These regions were then filled with colors whose
RGB values were uniformly sampled from [0, 255]. This augmentation forces the model to rely on
contextual information from the visible parts of the image, improving its ability to handle occlusions
and missing data in the input.

Background Image Overlay: To further broaden visual diversity and simulate different environ-
mental conditions, we applied background image overlays. This technique involves blending the
original images with randomly selected background images using random alpha channels. Specifi-
cally, we generated background images using an image model (Rombach et al., 2022), and for each
original image, we overlaid a background image with an alpha blending factor α randomly chosen
from a uniform distribution in [0.2, 0.5]. The augmented image Iaug is computed as:

Iaug = α× Ibg + (1− α)× Iorig,

where Ibg is the background image and Iorig is the original image. This augmentation exposes
the model to a variety of background patterns and textures, helping it to generalize better to new
environments where background elements may differ from those seen during training.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2 shows sample images from the Procgen environment, with similar techniques applied to
the V-D4RL environment.

Figure 2: Sample images of applied augmentation techniques for the Procgen Coinrun game.

C ALGORITHM DETAILS AND HYPERPARAMETERS

::
To

::::::
ensure

:::
fair

:::::::::::
comparisons

::::
and

:::::::
validate

:::
the

:::::::::::
effectiveness

::
of

::::
our

:::::::
method,

:::
we

:::::::
selected

:::::::::
benchmark

:::::::::
algorithms

:::
and

:::::::
datasets

:::::::
aligned

::::
with

::::::::::
established

::::::
offline

:::
RL

:::::::::::
benchmarks.

::::::::::::
Specifically,

:::
we

::::
used

:::::::
DrQ+BC

::::
and

:::::
CQL

::::
for

::::::::::
experiments

:::
on

::::::::
V-D4RL

::::
and

:::::::
Offline

::::::::
Procgen,

:::::::::::
respectively,

::::::::
following

::::::::::::::
(Lu et al., 2023a)

:::
and

:::::::::::::::::::
(Mediratta et al., 2024)

:
.
:::::
These

:::::::::
algorithms

:::::
were

::::::
chosen

:::
due

::
to

::::
their

::::::::
relevance

::
to

::::::::::::
generalization

:::::::::
challenges,

:::
as

:::::::::::
demonstrated

:::
in

:::::
these

::::::
papers,

::::::
where

::::::::
DrQ+BC

:::::::::
highlights

:::::
issues

::
in

:::::::
handling

::::::
visual

:::::::::
distractions

::::
and

:::::
CQL

::::::::::::
underperforms

::
in

::::::
offline

::::::::::::
generalization

:::::
tasks

::
in

:::::::
Procgen,

::::::::
providing

::::
ideal

::::
test

:::::
cases

:::
for

:::::::::
evaluating

:::
our

:::::::::
approach.

::::::
While

:::
our

:::::
focus

::
is
:::

on
::::::::::::
demonstrating

:::
the

:::::::::::::::
algorithm-agnostic

::::::
nature

::
of

::::
our

:::::::
method,

::::
this

::::::
section

:::::::
explains

:::
the

::::::::
selected

:::::::::
algorithms,

::::::::
DrQ+BC

:::
and

:::::
CQL,

:::
and

:::
the

::::::::::::
corresponding

::::::::::::::
hyperparameters

::::
used

::
in

:::
our

:::::::::::
experiments.

:

C.1 DRQ+BC ALGORITHM

We utilize the DrQ+BC algorithm in our experiments, following the implementation described in
Lu et al. (2023b). DrQ+BC builds upon DrQ-v2 (Yarats et al., 2021) by incorporating a behavioral
cloning regularization term into the policy loss, similar to the approach used in TD3+BC (Fujimoto
& Gu, 2021). As noted in Lu et al. (2023b), the base policy optimizer of DrQ-v2 shares similarities
with TD3 (Fujimoto et al., 2018), which has been successfully adapted to offline settings from
proprioceptive states by incorporating a regularizing behavioral cloning term into the policy loss.
This modification results in the TD3+BC algorithm (Fujimoto & Gu, 2021).

Specifically, the policy objective becomes:

π = argmax
π

E(s,a)∼Denv

[
λQ(s, π(s))− (π(s)− a)2

]
, (1)

and the loss function is expressed as:

Lϕ(D) = −Est,at∼D
[
λQθ(ht, at)− (πϕ(ht)− at)

2
]

Here, λ is an adaptive normalization term computed over minibatches:

λ =
α

1
N

∑
(hi,ai)

|Q(hi, ai)|

where λ is a normalization term, Q is the learned value function, and π is the learned policy. The
authors apply the same regularization technique to DrQ-v2 and refer to the resulting algorithm as
DrQ+BC. The scalar α represents a behavioral cloning weight, which is fixed to 2.5 recommended
by the authors.

The network architectures for the encoder, policy, and Q-function networks are consistent with those
used in DrQ-v2 (Yarats et al., 2021). Specifically:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• Encoder Network (fξ): A convolutional neural network (CNN) with 4 layers, each with
32 channels, 3 × 3 kernels, and ReLU activations. The output is passed through a fully
connected layer to produce a 50-dimensional latent vector.

• Actor Network (πϕ): An MLP with two hidden layers of 1024 units each, using ReLU
activations, outputting mean and standard deviation for a Gaussian policy.

• Critic Network (Qθ): An MLP with two hidden layers of 1024 units each, using ReLU
activations, taking the concatenated state and action as input.

The hyperparameters used for the DrQ+BC algorithm in our experiments are summarized in Table 1.

Table 1: Hyperparameters for DrQ+BC Algorithm
Parameter Value
Batch size 256
Action repeat 2
Observation size [84, 84]
Discount (γ) 0.99
Learning rate 1× 10−4

Optimizer Adam
Agent training epochs 256
n-step returns 3
Exploration stddev. clip 0.3
Exploration stddev. schedule linear(1.0, 0.1, 500000)
BC Weight (α) 2.5
The number of training steps 1,000,000

C.2 CQL

We used the code base available at https://github.com/facebookresearch/gen_
dgrl to implement CQL to our work. CQL (Conservative Q-Learning) is an offline reinforcement
learning algorithm designed to penalize the overestimation of Q-values, thus encouraging conser-
vative action selection. This approach helps avoid actions that have not been sufficiently explored
in the dataset by regularizing the Q-function to lower the predicted values of out-of-distribution ac-
tions. CQL works especially well when offline data does not fully cover the state-action space. This
makes policy evaluation and improvement more reliable (Kumar et al., 2020).

The Q-function objective reformulation:

min
Q

αCQLEs∼D

[
log

∑
a

exp(Q(s, a))− Ea∼π̂β(a|s)[Q(s, a)]

]
+

1

2
Es,a,s′∼D

[(
Q− B̂πkQk

)2
]
.

In this formulation, αCQL is the trade-off parameter, π̂β is the empirical behavioral policy, and B̂πk

denotes the empirical Bellman operator that updates a single sample. We approximate this by taking
gradient steps and sampling actions within the defined bounds.

Network architecture: The network architecture is adopted from (Mediratta et al., 2024), which is
detailed below.

• Encoder Network: ResNet-based convolutional neural network with approximately 1 mil-
lion parameters (He et al., 2015).

• Q-Function Network: The encoder outputs a latent vector that is passed through a fully
connected layer with 256 units and ReLU activation, followed by an output layer producing
Q-values for each of the 15 discrete actions.

The hyperparameters used for the CQL algorithm in our Procgen experiments are listed in Table 2.

5

https://github.com/facebookresearch/gen_dgrl
https://github.com/facebookresearch/gen_dgrl

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Hyperparameters for CQL Algorithm
Parameter Value
Batch size 256
Learning rate (Q-function) 5× 10−4

Optimizer Adam
Epochs 1000
Q-Function Network Hidden Size 256
Target Network Update Frequency 1000
τ 0.99
α 4.0

C.3 ELUCIDATED DIFFUSION MODEL

In our work, we employ the Elucidated Diffusion Model (EDM) proposed by Karras et al. Kar-
ras et al. (2022). The denoising network Dθ is parameterized as a multilayer perceptron (MLP)
with skip connections from the previous layer, following the architecture described by Tolstikhin et
al. Tolstikhin et al. (2021). Each layer of the network is defined as:

xL+1 = Linear(Activation(xL)) + xL, (2)

where xL is the input to layer L, and the activation function is typically ReLU.

The hyperparameters used for the denoising network are listed in Table 3. To encode the noise level
of the diffusion process, we utilize a Random Fourier Feature (RFF) embedding as introduced by
Tancik et al. Tancik et al. (2020). The base network has a width of 1024 neurons per layer and a
depth of 6 layers, resulting in approximately 6 million parameters.

We adjust the batch size during training based on the size of the dataset. For online training and
offline datasets with fewer than 1 million samples (e.g., medium-replay datasets), we use a batch
size of 256. For larger datasets, we increase the batch size to 1024. For V-D4RL, we employ uniform
hyperparameters for both augmented and baseline training to maintain consistency. Likewise, we
implement the identical principle to the Procgen dataset. The hyperparameters are listed in Table 3.

::::::::::
Additionally,

:::
we

:::::::::
conducted

:
a
::::::
similar

:::::::
ablation

:::::
study

::
to

:::
that

:::::::::
performed

::
in

::::::::
SynthER

::::::::::::::
(Lu et al., 2023b)

:::
and

::::::::
observed

::::::
results

::::::::
consistent

:::::
with

::::
those

::::::::
reported

::
by

::::
the

:::::::
authors.

:::
To

:::::
avoid

::::::::::
redundancy,

:::
we

:::
did

:::
not

::::::
include

:::
an

:::::::::
exhaustive

::::::::::
presentation

::
of

:::::
these

::::::::
ablations

::
in

:::
our

::::::
paper.

::::
For

:
a
:::::::
detailed

::::::::
analysis,

::
we

::::
refer

::::::
readers

:::
to

:::
the

::::::::
SynthER

::::::::::::
supplementary

:::::::
material

::::::::
(Section

::
C

::::
and

::::::
Section

:::
F),

::::::
which

:::::::
provides

::::::::::::
comprehensive

:::::::
insights

:::
into

:::::
their

:::::::
findings.

:

Table 3: Default Hyperparameters for the Residual MLP Denoiser.
Parameter Value(s)
Number of layers 6
Width 1024
Batch size 1024
RFF dimension 16
Activation function ReLU
Optimizer Adam
Learning rate 3× 10−4

Learning rate schedule Cosine annealing
Number of training steps 100,000

For the diffusion sampling process, we use the stochastic SDE sampler from Karras et al. Kar-
ras et al. (2022) with the default hyperparameters used for ImageNet, as shown in Table 4. We
employ a higher number of diffusion timesteps, set to 128, to improve sample fidelity. The imple-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

mentation is based on the publicly available code at https://github.com/lucidrains/
denoising-diffusion-pytorch, which is released under the Apache License.

Table 4: Default Hyperparameters for the ImageNet-64 EDM.
Parameter Value
Number of diffusion steps 128
σmin 0.002
σmax 80
Schurn 80
Stmin 0.05
Stmax 50
Snoise 1.003

C.3.1
:::::::::
ABLATION

::::::
STUDY

::::
FOR

::::::::
LATENT

::::::
SPACE

::::::::::
DIMENSION

::
To

::::::::
complete

:::
the

:::::::
ablation

::::::
studies

:::::
from

:::
the

::::::
original

::::::::
SynthER

:::::::::
approach,

:::
we

::::::::
performed

:::
an

::::::::
additional

::::::
analysis

::::::::
focusing

:::
on

:::::
latent

::::::
space

:::::::::
dimension

::::
size.

:::::
This

::::::
aspect

::::
was

::::
not

:::::::
covered

::
in

:::
the

:::::::
original

:::::::
SynthER

::::::
work.

::::
The

:::::::::::::
dimensionality

:::::::
settings

:::::
align

::::
with

:::::
those

::::
used

:::
in

::::::
offline

:::
RL

::::::::::
algorithms,

::
as

::::::
detailed

:::
in

:::::::
Sections

:::
C.1

::::
and

::::
C.2.

::::
This

:::::
study

:::::::
extends

:::
the

::::::::::::
understanding

::
of

:::
the

::::
role

::
of

:::::
latent

:::::
space

::::::::::::
dimensionality

::
in

::::::::::::
generalization

:::::::::::
performance.

:

::::::::::
Environment

::::::
Method

:::::
Latent

:::::::::
Dimension

:::
Size

:::::::::
Normalized

::::::::::::
Generalization

::::::::::
Performance

V-D4RL Averaged
:::
Ours

: ::
32

: :::
0.92

:::
Ours

: ::::::::::
64(default)

::
1.0

:

:::
Ours

: :::
128

:::
0.96

:::
Ours

: :::
256

:::
0.79

Procgen Averaged
:::
Ours

: ::
64

: :::
0.94

:::
Ours

: ::::::::::
100(default)

: ::
1.0

:

:::
Ours

: :::
256

:::
0.92

:::
Ours

: :::
512

:::
0.68

::::
From

::::
our

::::::
results,

:::
we

:::::::
observe

::::
that

:::::::
reducing

::::
the

:::::
latent

:::::
space

:::::::::
dimension

:::::::::::
compromises

:::
the

:::::::
model’s

:::::
ability

:::
to

::::::
capture

::::
the

:::::::::
underlying

::::::::::
distribution

:::
of

:::
the

::::
data

::::::::::
effectively.

:::
In

::::::::
V-D4RL,

::::
for

:::::::
instance,

:::::::::
dimensions

:::::::
smaller

::::
than

:::
the

::::::
default

::::
value

:::::
result

:::
in

::::
poor

::::::::::
performance

:::
as

:::
the

:::::::
reduced

:::::::::::
representation

:::
fails

:::
to

::::::::::
encapsulate

:::
the

:::::::::
necessary

::::
data

::::::::
diversity.

::::
On

:::
the

:::::
other

:::::
hand,

:::::::::
increasing

:::
the

:::::
latent

:::::
space

::::::::
dimension

:::::::
beyond

::::
the

::::::
default

::::::::::
introduces

:::::::::
challenges

:::
for

::::
the

::::::::
diffusion

::::::
model,

:::::::::
requiring

:::::
larger

::::::::
denoising

::::::::
networks.

:::::
This

:::
not

:::::
only

::::::::
increases

::::::::::::
computational

::::
costs

::::
but

::::
also

::::
risks

:::::::::
overfitting

::
to

:::
the

::::::
training

:::::
data.

::::
For

:::
the

::::::
largest

:::::
latent

::::::::::
dimension,

:::
the

::::::::
diffusion

:::::
model

::::::::
struggles

:::
to

::::
learn

:::
an

::::::
aligned

:::::::::
distribution

::
of

::::::::::
augmented

::::::::
V-D4RL,

:::::
further

:::::::::
degrading

:::::::::::
performance.

:

:
A
:::::::::::

comparable
::::::::
tendency

::
is
:::::::

evident
:::

in
::::::::
Procgen.

::::::::::::
Insufficiently

::::::
small

:::::
latent

::::::::::
dimensions

::::
fail

::
to

:::::::::
encapsulate

::::
the

:::::
data’s

::::::::
diversity,

::::::::
resulting

:::
in

:::::::
inferior

:::::::::::
performance.

:::::::
Larger

::::::::::
dimensions

:::::::
increase

:::::::::
processing

:::::::
demands

::::
and

:::::::
diminish

:::
the

:::::::
learning

::::::::
capability

:::
of

:::
the

:::::::
diffusion

::::::
model.

:

C.4 COMPUTATIONAL COST ANALYSIS

We evaluate the computational time required for our proposed approach compared to the baseline
(without augmentation and upsampling) on an NVIDIA 4090 GPU.

In addition to the baseline runs for both benchmarks, our method introduces two supplementary
computational overheads: one for the augmentation process and the other for the upsampling pro-
cedure. Applying the initial augmentation step to images increases the overall computational cost,
which extends the runtime. However, because our method leverages latent space upsampling, the
dimensionality reduction mitigates some of the computing costs compared to directly operating on
high-dimensional images.

7

https://github.com/lucidrains/denoising-diffusion-pytorch
https://github.com/lucidrains/denoising-diffusion-pytorch

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

The Table C.4 below summarizes the computational costs for a single seed run, highlighting the
baseline and two variants of our method.

Environment Method Aug. Upsampling Runtime (hours)

V-D4RL
100K Baseline ✗ ✗ 3.49
100K Augmented + Upsampled ✓ ✓ 7.50

Procgen
1M Baseline ✗ ✗ 0.20
2M Augmented + Upsampled ✓ ✓ 0.37

Table 5: Computational cost analysis for different methods across V-D4RL and Procgen environ-
ments.

REFERENCES

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
2021.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. 2018. URL https://arxiv.org/abs/1802.09477.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018. URL http://arxiv.org/abs/1801.01290.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015. URL https://arxiv.org/abs/1512.03385.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. 2020. URL https://arxiv.org/abs/2006.04779.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Re-
inforcement learning with augmented data. 2020.

Cong Lu, Philip J. Ball, Tim G. J. Rudner, Jack Parker-Holder, Michael A. Osborne, and Yee Whye
Teh. Challenges and opportunities in offline reinforcement learning from visual observations.
2023a.

Cong Lu, Philip J. Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay. 2023b.

Ishita Mediratta, Qingfei You, Minqi Jiang, and Roberta Raileanu. The generalization gap in offline
reinforcement learning. 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022. https://huggingface.co/
CompVis/stable-diffusion-v-1-4-original.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. 2017. URL https://arxiv.org/abs/1707.06347.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. 2020. URL https:
//arxiv.org/abs/2006.10739.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. 2021. URL https:
//arxiv.org/abs/2105.01601.

8

https://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2006.04779
https://huggingface.co/CompVis/stable-diffusion-v-1-4-original
https://huggingface.co/CompVis/stable-diffusion-v-1-4-original
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2006.10739
https://arxiv.org/abs/2006.10739
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.01601

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. 2021.

9

	Appendix
	Dataset Details
	Visual D4RL Environments
	Procgen Environments
	Data Augmentation

	Algorithm Details and Hyperparameters
	DRQ+BC Algorithm
	CQL
	Elucidated Diffusion Model
	Ablation Study for Latent Space Dimension

	Computational Cost Analysis

