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A APPENDIX

We have made our codebase and datasets available on https://github.com/
anonymous2025ICLR/augdiff_RL. The code repository contains reference code bases
in two folders: V-D4RL and Procgen. The README.md files in each sub-repository include
detailed instructions for replicating the experimental results in this paper, training offline learning
models, and creating additional datasets for use.

B DATASET DETAILS

B.0.1 VisuAL D4RL ENVIRONMENTS

For our V-D4RL experiments, we utilized the expert offline dataset from Lu et al.| (2023a) and
conducted experiments on three environments:

* cheetah-run: A planar bipedal agent rewarded for forward velocity.

* walker-walk: A planar walker agent rewarded for upright posture and target velocity.

* humanoid-walk: A humanoid agent with 21 joints rewarded for maintaining specific ve-
locity.

We follow the V-D4RL approach, where learning from pixels is achieved by stacking three consec-
utive RGB images (84 x 84) along the channel dimension to capture dynamic information such as
velocity and acceleration. We utilize the expert dataset, with the baseline dataset size set at 100,000
samples per environment. The data collection policy is based on the Soft Actor-Critic (SAC) algo-
rithm for proprioceptive states, as described by (Haarnoja et al., 2018).

Visual D4RL Datasets:

1. 50K Baseline: A reduced dataset containing 50,000 samples, randomly sampled from the
original 100,000 expert policy dataset, without any data augmentation.

2. 100K Upsampled: An upsampled version of the 50,000 baseline dataset, increased to
100,000 samples using diffusion model-based upsampling.

3. 100K Augmented Baseline: The original 100,000 dataset, augmented using the selected
pixel-level augmentation techniques (rotation, color jittering, and background image over-
lay) to introduce additional diversity, without changing the dataset size.

4. 100K Augmented Upsampled: An upsampled version of the 50,000 augmented baseline
dataset, increased to 100,000 samples using diffusion model-based upsampling. This al-
lows for a comparison between explicit augmentation and augmentation combined with
diffusion upsampling.

Evaluation Distraction Dataset: The evaluation set, used for JS divergence analysis, is collected
across all distraction levels as well as the original evaluation set. Data is gathered during training
and combined across five random seeds. As a result, each environment’s evaluation set for each
testing difficulty level contains 256,000 samples. This larger size, compared to the original dataset,
helps minimize variation in the test distribution.
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We use the Fixed Distraction Dataset (FDD): provided by V-D4RL, which contains distractions
fixed in the background and color of the agent—unlike the evaluation distracting dataset, where
distractions change dynamically during evaluation. Previous attempts, as reported by (Lu et al.,
2023a)), to incorporate this dataset into training by combining various portions (25%, 50%, 75%,
or even 100%) with the original dataset—without applying augmentation or our approach—have
shown no improvement in generalization performance. Consequently, the authors highlighted an
open challenge: ”How can we improve the generalization performance of offline model-free methods
to unseen visual distractions?”.

5% Fixed Distraction Dataset (5% FDD): To address this challenge, we incorporate a small por-
tion of the fixed distraction dataset into our training data. Specifically, we use only 5% of the total
fixed distraction dataset provided by the V-D4RL benchmark. In our reduced baseline of 50,000
datapoints, we replace 5,000 datapoints with samples from the fixed distraction dataset (combining
low, moderate, and high levels), resulting in 45,000 original datapoints and 5,000 from the fixed dis-
traction dataset. We believe that this addition introduces extra diversity to the original environment
enabled by our two-step approach. This strategy can be considered a form of few-shot learning;
however, since the 5% fixed distraction dataset is not part of the evaluation dataset, we refer to it as
incorporating a limited distraction exposure in our training data. The Fixed Distraction Dataset
is available exclusively for cheetah-medium and cheetah-expert. Therefore, we apply our approach
solely to the cheetah-expert environment. Figure [I] shows the samples from the fixed distracting
dataset for cheetah-run.
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Figure 1: Sample screenshots from the V-D4RL cheetah-run fixed distracting dataset.

B.0.2 PROCGEN ENVIRONMENTS

We conducted experiments on three games from the Procgen suite:

* CoinRun: A platformer where the agent collects coins while avoiding obstacles.
» Ninja: An agent jumps across platforms, destroys bombs, and collects mushrooms.
* Jumper: A bunny navigates through multi-level environments, guided by a compass.

Procgen Datasets for Experiments:

1. 1M Baseline: The original dataset containing 1,000,000 transitions without any data aug-
mentation.

2. 2M Upsampled: An upsampled version of the 1,000,000 baseline dataset, increased to
2,000,000 samples using diffusion model-based upsampling.

3. 1M Augmented Baseline: The original 1,000,000 dataset, augmented using pixel-level
augmentation techniques to increase diversity, without changing the dataset size.

4. 2M Augmented Upsampled: An upsampled version of the 1,000,000 augmented baseline
dataset.

For the Offline Procgen dataset, we use 1M expert dataset collected using Proximal Policy Opti-
mization (PPO) [Schulman et al|(2017). A single transition in Procgen consists of an observation
(depicted as an RGB image with dimensions 64x64x3), a discrete action (with a maximum action
space of 15), a scalar reward (which may be either dense or sparse depending on the game), and a
boolean value signifying the conclusion of the episode. Following the approach outlined by |[Medi-
ratta et al.| (2024), each Procgen game level is procedurally generated using a level seed, which is
a non-negative integer. Levels in the range [0,200) are used to collect trajectories and train offline,
levels [200,250) are utilized for hyperparameter tuning and model selection, and levels [250, 0o) are
reserved for online evaluation of the agent’s performance. We gather the Evaluation Test Set while



Under review as a conference paper at ICLR 2025

training with 5 random seeds, employing a methodology similar to that used in our V-D4RL (Visual
DA4RL) study.

B.0.3 DATA AUGMENTATION

To strengthen the robustness of our model to variations in visual inputs and ensure it captures key
environment dynamics, we applied several data augmentation techniques to the initial dataset Dy,
inspired by the work of (Laskin et al., [2020). While we initially experimented with ten different
augmentations, we found that using all of them simultaneously led to training instability. Through
empirical analysis, we identified that rotation, color jittering, color cutout, and background im-
age overlay were the most effective in improving generalization without compromising stability.
We select applied augmentation randomly during the training. Below, we provide detailed de-
scriptions of each of these augmentations. WE-To further refine our augmentation strategy and

reduce the time-consuming process of extensive tuning, we employed JS divergence analysis and
visualization of the distributions of the upsampled and baseline datasets. This allowed us to assess
alignment and diversity without repeated RL training, significantly streamlining the process. These
augmentations, combined with diffusion-based upsampling, were instrumental in increasing data
diversity and enhancing generalization.

The augmentation function applied to states s and s uses independently sampled transformations
from the same set of augmentations, with each transformation selected with equal probability.
Within each state (e.g., a stack of frames), the same transformation is consistently applied across
all images in the stack. This ensures that temporal and spatial relationships within the state are
preserved, preventing disruption of critical structural information while still promoting diversity
across states. This approach is consistent with the methodology used in RAD (Laskin et al., 2020)

ensuring uniform exploration of the augmentation space while maintaining the structural integrit
of stacked observations.

Rotation: We applied random rotations to the input images to make the model invariant to the ori-
entation of objects within the environment. Each image was rotated by an angle randomly selected
from a uniform distribution within a specified range, typically [—0max, Omax], Where O,y is the max-
imum rotation angle which we set 90°. This augmentation helps the model generalize to different
viewpoints and orientations it might encounter during deployment.

Color Jittering: To simulate variations in lighting conditions and color distributions, we employed
color jittering. This technique involves randomly adjusting the brightness, contrast, saturation, and
hue of the images. Specifically, we modified these properties by factors randomly sampled from
uniform distributions around their original values. In our experiments, we adjusted the brightness
in [0.2,0.6], contrast in [0.2,0.8], saturation in [0.2,0.8], and hue in [0.1,0.7]. By introducing
variability in the color space, the model learns to focus on features that are more robust to changes
in illumination and color, improving its performance in diverse visual conditions.

Color Cutout: Color cutout is an augmentation technique where random rectangular regions of the
image are occluded with a random color. Unlike standard cutout, which typically uses a fixed color
(such as black or gray), color cutout replaces the occluded region with colors randomly sampled
from the color space. Specifically, For each image, we selected one rectangle with dimensions
up to 20% of the image’s width and height. These regions were then filled with colors whose
RGB values were uniformly sampled from [0, 255]. This augmentation forces the model to rely on
contextual information from the visible parts of the image, improving its ability to handle occlusions
and missing data in the input.

Background Image Overlay: To further broaden visual diversity and simulate different environ-
mental conditions, we applied background image overlays. This technique involves blending the
original images with randomly selected background images using random alpha channels. Specifi-
cally, we generated background images using an image model (Rombach et al.,[2022), and for each
original image, we overlaid a background image with an alpha blending factor o randomly chosen
from a uniform distribution in [0.2, 0.5]. The augmented image I,,, is computed as:

Iaug =« X Ibg + (1 — Ot) X Iorig;

where Iy, is the background image and I, is the original image. This augmentation exposes
the model to a variety of background patterns and textures, helping it to generalize better to new
environments where background elements may differ from those seen during training.
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Figure [2] shows sample images from the Procgen environment, with similar techniques applied to
the V-D4RL environment.

Original Rotation Color Jittering Color Cutout Background Image

Figure 2: Sample images of applied augmentation techniques for the Procgen Coinrun game.

C ALGORITHM DETAILS AND HYPERPARAMETERS

To ensure fair comparisons and validate the effectiveness of our method, we selected benchmark
algorithms and datasets aligned with established offline RL benchmarks. Specifically, we used
DrQ+BC and CQL for experiments on V-D4RL and Offline Procgen, respectively, followin

(Lu et al.,|2023a) and (Mediratta et al., 2024). These algorithms were chosen due to their relevance

2L

to generalization challenges, as demonstrated in these papers, where DrQ+BC highlights issues

in handling visual distractions and CQL underperforms in offline generalization tasks in Procgen,
providing ideal test cases for evaluating our approach. While our focus is on demonstrating the
algorithm-agnostic nature of our method, this section explains the selected algorithms, DrQ+BC
and CQL,, and the corresponding hyperparameters used in our experiments.

C.1 DRQ+BC ALGORITHM

We utilize the DrQ+BC algorithm in our experiments, following the implementation described in
Lu et al|(2023b). DrQ+BC builds upon DrQ-v2 (Yarats et al.,|2021) by incorporating a behavioral
cloning regularization term into the policy loss, similar to the approach used in TD3+BC (Fujimoto
& Gul 2021). As noted in|Lu et al.| (2023b), the base policy optimizer of DrQ-v2 shares similarities
with TD3 (Fujimoto et al.| 2018)), which has been successfully adapted to offline settings from
proprioceptive states by incorporating a regularizing behavioral cloning term into the policy loss.
This modification results in the TD3+BC algorithm (Fujimoto & Gu, [2021).

Specifically, the policy objective becomes:

T = arg mng(s@)NDem [)\Q(s, 7(s)) — (w(s) — a)z] , (D

and the loss function is expressed as:

£¢(D) = _]Est,atND P\Qe(hhat) - (7T¢(ht) - at)2]

Here, ) is an adaptive normalization term computed over minibatches:

[0
\ =
% Z(hi,ai)

where A is a normalization term, () is the learned value function, and  is the learned policy. The
authors apply the same regularization technique to DrQ-v2 and refer to the resulting algorithm as
DrQ+BC. The scalar « represents a behavioral cloning weight, which is fixed to 2.5 recommended
by the authors.

Q(hi, ai)l

The network architectures for the encoder, policy, and Q-function networks are consistent with those
used in DrQ-v2 (Yarats et al., 2021). Specifically:
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* Encoder Network (f¢): A convolutional neural network (CNN) with 4 layers, each with
32 channels, 3 x 3 kernels, and ReLU activations. The output is passed through a fully
connected layer to produce a 50-dimensional latent vector.

* Actor Network (74): An MLP with two hidden layers of 1024 units each, using ReLU
activations, outputting mean and standard deviation for a Gaussian policy.

* Critic Network (Qp): An MLP with two hidden layers of 1024 units each, using ReLU
activations, taking the concatenated state and action as input.

The hyperparameters used for the DrQ+BC algorithm in our experiments are summarized in Table[I]

Table 1: Hyperparameters for DrQ+BC Algorithm

Parameter Value
Batch size 256
Action repeat 2
Observation size [84, 84]
Discount () 0.99
Learning rate 1x1074
Optimizer Adam
Agent training epochs 256
n-step returns 3
Exploration stddev. clip 0.3
Exploration stddev. schedule linear(1.0, 0.1, 500000)
BC Weight (a) 2.5
The number of training steps 1,000,000

C.2 CQL

We used the code base available at https://github.com/facebookresearch/gen_
dgrl|to implement CQL to our work. CQL (Conservative Q-Learning) is an offline reinforcement
learning algorithm designed to penalize the overestimation of Q-values, thus encouraging conser-
vative action selection. This approach helps avoid actions that have not been sufficiently explored
in the dataset by regularizing the Q-function to lower the predicted values of out-of-distribution ac-
tions. CQL works especially well when offline data does not fully cover the state-action space. This
makes policy evaluation and improvement more reliable (Kumar et al.| 2020).

The Q-function objective reformulation:

minacqLEswp [1og Y exp(Q(s,)) = Eanry(aln) [Qs, )]

a

+ %]Es,a,s’w'D {(Q — B Qk>1 .

In this formulation, acq, is the trade-off parameter, 74 is the empirical behavioral policy, and B
denotes the empirical Bellman operator that updates a single sample. We approximate this by taking
gradient steps and sampling actions within the defined bounds.

Network architecture: The network architecture is adopted from (Mediratta et al.,[2024), which is
detailed below.

* Encoder Network: ResNet-based convolutional neural network with approximately 1 mil-
lion parameters (He et al.|[2015).

* Q-Function Network: The encoder outputs a latent vector that is passed through a fully
connected layer with 256 units and ReLU activation, followed by an output layer producing
Q-values for each of the 15 discrete actions.

The hyperparameters used for the CQL algorithm in our Procgen experiments are listed in Table
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Table 2: Hyperparameters for CQL Algorithm

Parameter Value
Batch size 256
Learning rate (Q-function) 5x 107*
Optimizer Adam
Epochs 1000
Q-Function Network Hidden Size 256
Target Network Update Frequency 1000

T 0.99

a 4.0

C.3 ELUCIDATED DIFFUSION MODEL

In our work, we employ the Elucidated Diffusion Model (EDM) proposed by Karras et al. [Kar-
ras et al. (2022). The denoising network Dy is parameterized as a multilayer perceptron (MLP)
with skip connections from the previous layer, following the architecture described by Tolstikhin et
al. Tolstikhin et al.| (2021)). Each layer of the network is defined as:

xr+1 = Linear(Activation(zy)) + x, 2)

where z [, is the input to layer L, and the activation function is typically ReLU.

The hyperparameters used for the denoising network are listed in Table [3] To encode the noise level
of the diffusion process, we utilize a Random Fourier Feature (RFF) embedding as introduced by
Tancik et al. [Tancik et al|(2020). The base network has a width of 1024 neurons per layer and a
depth of 6 layers, resulting in approximately 6 million parameters.

We adjust the batch size during training based on the size of the dataset. For online training and
offline datasets with fewer than 1 million samples (e.g., medium-replay datasets), we use a batch
size of 256. For larger datasets, we increase the batch size to 1024. For V-D4RL, we employ uniform
hyperparameters for both augmented and baseline training to maintain consistency. Likewise, we
implement the identical principle to the Procgen dataset. The hyperparameters are listed in Table[3]

Additionally, we conducted a similar ablation study to that performed in SynthER (Lu et al.} 2023b)
and observed results consistent with those reported by the authors. To avoid redundancy, we did
not include an exhaustive presentation of these ablations in our paper. For a detailed analysis, we
refer readers to the SynthER supplementary material (Section C and Section F), which provides

Table 3: Default Hyperparameters for the Residual MLP Denoiser.

Parameter Value(s)
Number of layers 6

Width 1024
Batch size 1024

RFF dimension 16
Activation function ReLU
Optimizer Adam
Learning rate 3x107*
Learning rate schedule Cosine annealing
Number of training steps 100,000

For the diffusion sampling process, we use the stochastic SDE sampler from Karras et al. [Kar-
ras et al| (2022) with the default hyperparameters used for ImageNet, as shown in Table @ We
employ a higher number of diffusion timesteps, set to 128, to improve sample fidelity. The imple-
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mentation is based on the publicly available code at https://github.com/lucidrains/
denoising-diffusion-pytorch, which is released under the Apache License.

Table 4: Default Hyperparameters for the ImageNet-64 EDM.

Parameter Value
Number of diffusion steps 128
Omin 0.002
Umax 80
Schurn 80
Stoin 0.05
Emax 50
Shoise 1.003

C.3.1 ABLATION STUDY FOR LATENT SPACE DIMENSION

To complete the ablation studies from the original SynthER approach, we performed an additional
analysis focusing on latent space dimension size. This aspect was not covered in the original
SynthER work. The dimensionality settings align with those used in offline RL algorithms, as
detailed in Sections C.1 and C.2. This study extends the understanding of the role of latent space
dimensionality in generalization performance.

Environment Method  Latent Dimension Size  Normalized Generalization Performance
Qurs_ 32 0.92
Ours 64 (de fault 1.0
V-D4RL Averaged Ours 128 0.96
Qurs_ 256 0.79
Qurs 64, 0.94
Ours 100(de fault 1.0
Procgen Averaged Ours_ 256 0.92
Qurs_ 212 0.68

From our results, we observe that reducing the latent space dimension compromises the model’s
ability to capture the underlying distribution of the data effectively. In V-D4RL, for instance,
dimensions smaller than the default value result in poor performance as the reduced representation
fails to encapsulate the necessary data diversity. On the other hand, increasing the latent space
dimension beyond the default introduces challenges for the diffusion model, requiring larger
denoising networks. This not only increases computational costs but also risks overfitting to the
training data. For the largest latent dimension, the diffusion model struggles to learn an aligned
distribution of augmented V-D4RL, further degrading performance.

A comparable tendency is evident in Procgen. Insufficiently small latent dimensions fail to
encapsulate the data’s diversity, resulting in inferior performance. Larger dimensions increase
rocessing demands and diminish the learning capability of the diffusion model.

C.4 COMPUTATIONAL COST ANALYSIS

We evaluate the computational time required for our proposed approach compared to the baseline
(without augmentation and upsampling) on an NVIDIA 4090 GPU.

In addition to the baseline runs for both benchmarks, our method introduces two supplementary
computational overheads: one for the augmentation process and the other for the upsampling pro-
cedure. Applying the initial augmentation step to images increases the overall computational cost,
which extends the runtime. However, because our method leverages latent space upsampling, the
dimensionality reduction mitigates some of the computing costs compared to directly operating on
high-dimensional images.
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The Table [C.4] below summarizes the computational costs for a single seed run, highlighting the
baseline and two variants of our method.

Environment = Method Aug. Upsampling  Runtime (hours)
100K Baseline X X 3.49
V-D4RL 100K Augmented + Upsampled v 4 7.50
1M Baseline X X 0.20
Procgen 2M Augmented + Upsampled v v 0.37

Table 5: Computational cost analysis for different methods across V-D4RL and Procgen environ-
ments.
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