
APPENDIX A
IMPLEMENTATION DETAILS

A. DEXCAP hardware implementations

Figure 11 illustrates the hardware design of DEXCAP. All
models are 3D-printed with PLA material. The chest camera
mount is equipped with four slots for cameras: at the top,
an L515 RGB-D LiDAR camera, followed by three T265
fisheye SLAM tracking cameras. The LiDAR camera and
the uppermost T265 camera are securely fixed to the camera
rack, while the two lower T265 cameras are designed to be
detachable and can be affixed to the glove’s back for hand 6-
DoF pose tracking. The design features of the camera mounts
on both the chest and gloves include a locking mechanism
to prevent the cameras from accidentally slipping out. On the
glove, the camera mount is positioned over the magnetic hub
on its dorsal side, ensuring a firm attachment between the hub
and the mount. For powering and data storage, the user wears
a backpack containing a 40000mAh portable power bank and
a mini-PC with 64GB RAM and 2TB SSD. The system’s
total weight is 3.96 pounds, optimized for ease of mobility,
supporting up to 40 minutes of continuous data collection.
The power bank’s rapid recharge capability, requiring only 30
minutes for a full charge, enables extensive data collection
sessions over several hours.

B. Data collection details

Figure 13 and the supplementary video illustrate the begin-
ning steps of a data collection session. Initially, all cameras
are mounted on the chest. Upon initiating the program, the
participant moves within the environment for several sec-
onds, allowing the SLAM algorithm to build the map of
the surroundings. Subsequently, the bottom T265 cameras are
relocated to the glove mounts, initiating the data collection
phase. This preparatory phase is completed in approximately
15 seconds, as demonstrated in the video submission.

The data collection encompasses four data types, recorded
at 60 frames per second: (1) the 6-DoF pose of the chest-
mounted LiDAR camera, as tracked by the top T265 camera;
(2) the 6-DoF wrist poses, as captured by the two lower T265
cameras attached to the gloves; (3) the positions of finger
joints within each glove’s reference frame, detected by the
motion capture gloves; and (4) RGB-D image frames from
the LiDAR camera. The initial pose of the top T265 camera
establishes the world frame for all data, allowing for the
integration of all streamed data—RGB-D point clouds, hand
6-DoF poses, and finger joint locations—into a unified world
frame. This configuration permits unrestricted movement by
the participant, enabling easy isolation and removal of body
movements from the dataset.

Data are initially buffered in the mini-PC’s RAM, support-
ing a 15-minute collection at peak frame rate (60 fps). Once
the RAM is full, data capture slows to 20 fps due to storage
shifting to the SSD. We empirically find that this reduction
in frame rate may affect SLAM tracking accuracy, potentially
leading to jumping tracking results. Thus, we use the first

Fig. 11: Detailed view of chest mount and glove mount
The glove mount follows the contour of the hump on the
top of the Rokoko glove, and an opening is added to route
the USB-C cable to the glove. The angle of the camera is
set to 45 degrees facing upwards so that the camera view is
less obstructed from the back of the hand. The slide guide
has an indentation matching the position of the back plate
to ensure the same insertion position across experiments. The
chest mount houses 3 identical slots following the contour of
the T265. An additional slot is added to fit in the slide plate
of the T265.

10 minutes of each session prioritized for high-quality data
capture. After collection, transferring the data from RAM to
SSD is efficiently completed within 3-5 minutes using multi-
threading.

In this study, we primarily investigate two types of DEXCAP
data: (1) data captured in the robot space and (2) data collected
in the wild. For the first category, we position the chest camera
setup on a stand between two robot arms. The robots are then
adjusted to a resting position, clearing the operational space
for human interaction. This arrangement allows for the direct
use of DEXCAP to collect data within the robot’s operational
area. Such data underpins basic experiments for tasks like
Sponge picking, Ball collecting, and Plate wiping, alongside
more complex challenges, including Scissor cutting and Tea
preparing. For the second category, individuals don DEXCAP
to gather data outside the lab setting, focusing on the system’s
zero-shot learning performance with in-the-wild DEXCAP data
and its ability to generalize to unseen objects, particularly in
the Packaging task.

C. Data retargeting details
To adapt the collected raw DEXCAP data for training robot

policies (commonly known as retargeting). This involves two
key steps: (1) retargeting the observations and (2) retargeting
the actions.

For observation retargeting, the initial step is to convert the
RGB-D inputs into 3D point clouds, ensuring each pixel’s
color is preserved. These point clouds are then aligned with the
world frame, defined by the initial pose of the main T265 cam-
era. Subsequently, a point cloud visualization UI is launched,
displaying the aligned input point clouds alongside the robot
operation space’s point clouds within a unified coordinate
frame. Through this UI, users can adjust the point cloud’s
position within the robot operation space using the keyboard’s



directional keys. This adjustment process is required only once
for all data collected in the same location and is completed in
under a minute. After aligning the point clouds with the robot
space, points below the robot’s table surface are eliminated,
refining the observation data for policy development.

Action retargeting begins with applying a consistent trans-
formation between the T265 cameras on the chest mount to
translate the hand joint locations into the world frame. Then,
we use the previously calculated point cloud transformation
matrix to transform the hand joints to the robot operation
space. The results of this process are visualized in Figure 12 by
depicting the transformed hand joints together with the point
cloud as a skeletal model of the hand. The final phase employs
inverse kinematics to map the fingertip positions between the
robot hand (LEAP hand) and the human hand. We use the
hand’s 6-DoF pose to initialize the LEAP hand’s orientation
for IK calculation. Figure 12 illustrates the IK results, showing
the robot hand model integrated with the observational point
clouds, thereby generating the actions required for training the
robot policy.

All of the point cloud observations are downsampled uni-
formly to 5000 points and stored together with robot propri-
oception states and actions into an hdf5 file. We manually
annotate the start and end frames of each task demonstration
from the entire recording session (10 minutes each). The
motion for resetting the task environment is not included in
the training dataset.

D. Robot controller details

Position control is employed throughout our experiments,
structured hierarchically: (1) At the high level, the learned
policy generates the goal position for the next step, which
encompasses the 6-DoF pose of the end-effector for both
robot arms and a 16-dimensional finger joint position for
both hands. (2) At the low level, an Operational Space
Controller (OSC) [46], continuously interpolates the arm’s
trajectory towards the high-level specified goal position and
relays interpolated OSC actions to the robot for execution.
Meanwhile, finger movements are directly managed by a joint
impedance controller. Following each robot action, we calcu-
late the distance between the robot’s current proprioception
and the target pose. If the distance between them is smaller
than a threshold, we regard that the robot has reached the
goal position and will query the policy for the next action. To
prevent the robot from becoming idle, if it fails to reach the
goal pose within h steps, the policy is queried anew for the
subsequent action. We designate h = 10 in our experiments.
We empirically find that for tasks that consist of physical
contact with objects or applying force, this situation happens
more often and a smaller h will have a smoother robot motion.

E. Policy model and training details

For all image-input methods, we use ResNet-18 [36] as
the image encoder. For models based on diffusion policy, we
use Denoising Diffusion Implicit Models (DDIM) [90] for the
denoising iterations. For all baselines, the time horizon of the

Hyperparameter Default

Batch Size 16
Learning Rate (LR) 1e-4

Num Epoch 3000
LR Decay None

Image Encoder ResNet-18
Image Feature Dim 64

RNN Type LSTM
RNN Horizon 3

GMM None

TABLE V: Hyperparameters - BC-RNN-img

Hyperparameter Default

Batch Size 16
Learning Rate (LR) 1e-4

Num Epoch 3000
LR Decay None

Point Cloud Encoder PointNet
Point Cloud Downsample 1000

Pooling Type MaxPooling
UNet Embed Dim 256
UNet Down dims [256, 512, 1024]
UNet Kernel Size 5

Diffusion Type DDIM
Diffusion Num Train 100
Diffusion Num Infer 10

Input Horizon 3

TABLE VI: Hyperparameters - DP-point

inputs is set to three. For pointcloud-based methods, the input
point cloud is uniformly downsampled to 1000 points. We list
the hyperparameters for each architecture in Table V, VI, VII.

F. Task implementations
In this section, we introduce the details of each task design
• Sponge Picking: A sponge is randomly placed on the

table within a 40⇥70 centimeter area. The objective is
to grasp the sponge and lift it upwards by more than 30
centimeters.

• Ball Collecting: A ball is randomly positioned on the
right side of the table within a 40⇥30 centimeter area,
while a basket is similarly placed randomly on the left
side within the same dimensions. The task is completed
when the ball is grasped and then dropped into the basket.

• Plate Wiping: In a setup akin to the Ball Collecting task,
a plate and a sponge are randomly placed on the right and
left sides of the table, respectively, each within a 40⇥30
centimeter area. The goal involves using both hands to
pick up the plate and sponge separately, then utilizing
the sponge to wipe the plate twice. This task demands
coordination between the two hands, positioning the plate
in the table’s middle area to facilitate the wiping action.

• Packaging: An empty paper box and a target object are
randomly positioned on the table, with the object within
a 40⇥30 centimeter area on the right and the box within
a 10⇥10 centimeter area on the left. This task aims to
assess the model’s ability to generalize across various
objects, including unseen ones not present in the training
dataset. Success involves using one hand to pick up the
object and the other to move the box to the table’s center.
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Fig. 12: Visualization of collected human data and retargeted robot data. DEXIL successfully adapts human motion capture
data for tasks such as plate wiping, scissor cutting, and packaging. We demonstrate the entire workflow of executing these
tasks.

Hyperparameter Default

Batch Size 16
Learning Rate (LR) 1e-4

Num Epoch 3000
LR Decay None

Point Cloud Encoder Perceiver
Point Cloud Downsample 1000

Pooling Type MaxPooling
UNet Embed Dim 256
UNet Down dims [256, 512, 1024]
UNet Kernel Size 5

Diffusion Type DDIM
Diffusion Num Train 100
Diffusion Num Infer 10

Input Horizon 3

TABLE VII: Hyperparameters - Ours (DP-prec)

The object is then placed into the box, followed by
stabilizing the box with one hand while the other closes
it by grasping and moving the lid.

• Scissor Cutting: A container is fixed at the table’s center,

Tea preparing DEXCAP Data Only 30 human corrections
Subtask All Subtask All

Ours 0.30 0.00 0.65 0.25

TABLE VIII: Quantitative results for the Tea preparing task.

with scissors on the left and a strip of paper tape on
the right. The task begins with the left hand function-
ally grasping the scissors—inserting the thumb into one
handle and the index and middle fingers into the other.
Simultaneously, the right hand grasps the paper tape. Both
scissors and tape are then lifted and moved towards the
center, with the left hand operating the scissors to cut
the tape. A cut exceeding 3 millimeters deems the task
successful.

• Tea Preparing: A tea table is centrally placed with a fixed
orientation, accompanied by a tea bottle, tweezers, and
a teapot. The robot must first grasp the tea bottle with
the left hand and unscrew the cap with the right hand,



Fig. 13: Prepration of data collection in the wild. The first row illustrates data collection conducted in a laboratory setting,
and the second row depicts in-the-wild data collection. (a) Initially, the human data collector moves around in the environment
to track 6-DoF wrist poses with SLAM. (b)-(d) Subsequently, the data collector detaches the two cameras from the chest mount
and secures them onto the glove mount. (e) With this setup, the human is prepared to begin data collection.

Fig. 14: Switching DEXCAP from the human to the robot. We illustrate, from both first-person and front views, the seamless
transition of DEXCAP from a human data collector to a bimanual dexterous robot system. This process involves effortlessly
detaching the cameras from the chest mount and inserting them into a stationary mount on the robot’s table.

completing two rotations. The cap is then taken off and
placed on the right side of the tea table. Subsequently, the
right hand picks up the tweezers from the top right corner
of the tea table. The robot then attempts to pour tea from
the bottle into the teapot with the left hand, while the
right hand uses the tweezers to aid the pouring process.
Finally, the robot returns the tweezers and the tea bottle
to their corresponding positions on the table. The task is
deemed successful if tea makes it into the teapot and both
the tea bottle and tweezers are returned to their respective
places. For the task to be considered fully successful, the
tea bottle must be completely released from the left hand.

G. Human-in-the-loop implementations

DEXCAP incorporates two human-in-the-loop correction
methodologies: teleoperation and residual correction. Both
methods can be utilized during policy rollouts to gather
additional correction data, which is used in further refining the
policy for enhanced task performance. Detailed descriptions of
these algorithms and their implementation are provided in the
main paper. In the human-in-the-loop process, we employ the
mini-PC to live stream data from all T265 tracking cameras.
This tracking information is then transmitted to a Redis server
configured on the local network. Concurrently, the robot,
operating the learned policy on a workstation, receives delta



movements of the human hands from the Redis server. These
deltas serve as residual corrections and are integrated into each
robot action. The RGB-D LiDAR camera, positioned on the
central bar between the robot arms, connects to the workstation
to capture observation data. Instead of recording the robot’s
actual positional changes, we log the action commands dis-
patched to the robot controller. This design is crucial for tasks
involving physical contact with the environment and objects.
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