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Our supplementary materials covers the following: background on 3D object detection in the range1

view, additional quantitative results, qualitiative results, dataset details, and implementation details2

for our models.3

1 Range View Representation4

The range view representation, also known as a range image, is a 2D grid containing the spherical5

coordinates of an observed point with respect to the lidar laser’s original reference frame. We define6

a range image as:7

r ≜ {(φij , θij , rij) : 1 ≤ i ≤ H; 1 ≤ j ≤ W}, (1)

where (φij , θij , rij) are the inclination, azimuth, and range, and H , W are the height and width8

of the image. Importantly, the cells of a range image are not limited to containing only spherical9

coordinates. They may also contain auxillary sensor information such as a lidar’s intensity.10

1.1 3D Object Detection11

Given a range image r, we construct a set of 3D object proposals which are ranked by a confidence12

score. Each proposal consists of a proposed location, size, orientation, and category. Let D represent13

are predictions from a network.14

D ≜
{
di ∈ R8

}K

i=1
, where K ⊂ N, (2)

di ≜
{
xego
i , yego

i , zego
i , li, wi, hi, θi, ci

}
(3)

where xego
i , yego

i , zego
i are the coordinates of the object in the ego-vehicle reference frame, li, wi, hi15

are the length, width, and height of the object, θi is the counter-clockwise rotation about the vertical16

axis, and ci is the object likelihood. Similarly, we define the ground truth cuboids as:17

G ≜
{
gi ∈ R8

}M

i=1
, where M ⊂ N, (4)

gi ≜
{
xego
i , yego

i , zego
i , li, wi, hi, θi, qi

}
, (5)

where qi is a continuous value computed dynamically during training. For example, qi may be set to18

Dynamic 3D Centerness or IoUBEV. The detected objects, D are decoded as the same parameterization19

as G.20

D ≜
{
dk ∈ R8 : c1 ≥ · · · ≥ ck

}K

k=1
, where K ⊂ N, (6)

dk ≜
{
xego
k , yego

k , zego
k , lk, wk, hk, θk

}
. (7)

We seek to predict a continuous representation of the ground truth targets as:21

D ≜
{
dk ∈ R8 : c1 ≥ · · · ≥ ck

}K

k=1
, where K ⊂ N, (8)

gk ≜
{
xego
k , yego

k , zego
k , lk, wk, hk, θk, ck

}
, (9)

where xego
k , yego

k , zego
k are the coordinates of the object in the ego-vehicle reference frame, lk, wk, hk22

are the length, width, and height of the object, θk is the counter-clockwise rotation about the vertical23

axis, and ck is the object category likelihood.24
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3D Anchor Points in the Range View. To predict objects, we bias our predictions by the location25

of observed 3D points which are features of the projected pixels in a range image. For all the 3D26

points contained in a range image, we produce a detection dk.27

Regression Targets. Following previous literature, we do not directly predict the object proposal28

representation in Section 1.1. Instead, we define the regression targets as the following:29

T (P,G) = {ti(pi, gi) ∈ R8}Ki=1, where K ∈ N, (10)
ti(pi, gi) = {∆xi,∆yi,∆zi, log li, logwi, log hi, sin θi, cos θi} , (11)

where P and G are the sets of points in the range image and the ground truth cuboids in the 3D30

scene, ∆xi,∆yi,∆zi are the offsets from the point to the associated ground truth cuboid in the31

point-azimuth reference frame, log li, logwi, log hi are the logarithmic length, width, and height of32

the object, respectively, and sin θi, cos θi are continuous representations of the object’s heading θi.33

Classification Loss. Once all of the candidate foreground points have been ranked and assigned,34

each point needs to incur loss proportional to its regression quality. We use Varifocal loss [1] with a35

sigmoid-logit activation for our classification loss:36

VFL(ci, qi) =
{
qi(−qi log(ci) + (1− qi) log(1− ci)) if qi > 0

−αcγi log(1− ci) otherwise,
(12)

where ci is classification likelihood and qi is 3D classification targets (e.g., Dynamic IoUBEV or37

Dynamic 3D Centerness). Our final classification loss for an entire 3D scene is:38

Lc =
1

M

N∑
j=1

|Pj
G|∑

i=1

VFL(cji , q
j
i ), (13)

where M is the total number of foreground points, N is the total number of objects in a scene, Pj
G39

is the set of 3D points which fall inside the jth ground truth cuboid, cji is the likelihood from the40

network classification head, and qji is the 3D classification target.41

Regression Loss. We use an ℓ1 regression loss to predict the regression residuals. The regression42

loss for an entire 3D scene is:43

Lr =
1

N

N∑
j=1

1

|Pj
G|

|Pj
G|∑

i=1

L1Loss(rji , t
j
i ), (14)

where N is the total number of objects in a scene, Pj
G is the set of 3D points which fall inside the jth44

ground truth cuboid, rji is the predicted cuboid parameters from the network, and tji are the target45

residuals to be predicted.46

Total Loss. Our final loss is written as:47

L = Lc + Lr (15)

1.2 Argoverse 248

Additional details on the evaluation metrics used in the Argoverse 2.49

• Average Precision (AP): VOC-style computation with a true positive defined at 3D Eu-50

clidean distance averaged over 0.5m, 1.0m, 2.0m, and 4.0m.51

• Average Translation Error (ATE): 3D Euclidean distance for true positives at 2m.52

• Average Scale Error (ASE): Pose-aligned 3D IoU for true positives at 2m.53

• Average Orientation Error (AOE): Smallest yaw angle between the ground truth and54

prediction for true positives at 2m.55
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• Composite Detection Score (CDS): Weighted average between AP and the normalized true56

positive scores:57

CDS = AP ·
∑
x∈X

1− x, where x ∈ {ATEunit,ASEunit,AOEunit} . (16)

We refer readers to Wilson et al. [2] for further details.58

1.3 Waymo Open59

Additional details on the evaluation metrics used in the Waymo Open are listed below.60

1. 3D Mean Average Precision (mAP): VOC-style computation with a true positive defined61

by 3D IoU. The gravity-aligned-axis is fixed.62

(a) Level 1 (L1): All ground truth cuboids with at least five lidar points within them.63

(b) Level 2 (L2): All ground cuboids with at least 1 point and additionally incorporates64

heading into its true positive criteria.65

Following RangeDet [3], we report L1 results.66

2 Range-view 3D Object Detection67

Baseline Model. Our baseline models are all multi-class and utilize the Deep Layer Aggregation68

(DLA) [4] architecture with an input feature dimensionality of 64. In our Argoverse 2 experiments,69

we incorporate five input features: x, y, z, range, and intensity, while for our Waymo experiments, we70

include six input features: x, y, z, range, intensity, and elongation. These inputs are then transformed71

to the backbone feature dimensionality of 64 using a single basic block. For post-processing, we72

use weighted non-maximum suppression (WNMS). All models are trained and evaluated using73

mixed-precision with BrainFloat16 [5]. Both models use a OneCycle scheduler with AdamW using a74

learning rate of 0.03 across four A40 gpus. All models in the ablations are trained for 5 epochs on a75

uniformly sub-sampled fifth of the training set.76

State-of-the-art Comparison Model. We leverage the best performing and most general methods77

from our experiments for our state-of-the-art comparison for both the Argoverse 2 and Waymo Open78

dataset models. The Argoverse 2 and Waymo Open models use an input feature dimensionality of79

256 and 128, respectively. Both models uses the Meta-Kernel and a 3D input encoding, Dynamic 3D80

Centerness for their classification supervision, and we use our proposed Range-Subsampling with81

range partitions of [0 - 30m), [30m, 50m), [50m, ∞) with subsampling rates of 8, 2, 1, respectively.82

For both datasets, models are trained for 20 epochs.83

Method mAP ↑ ATE ↓ ASE ↓ AOE ↓ CDS ↑
Dynamic IoUBEV [3] 14.2 0.87 0.51 1.24 10.9
Dynamic 3D Centerness (ours) 16.9 0.77 0.46 1.04 12.8

Table 1: Classification Supervision: Argoverse 2. Evaluation metrics and errors using two different classifica-
tion supervision methods on the Argoverse 2 validation set. We observe that our Dynamic 3D Centerness method
outperforms all methods. Surprisingly, Dynamic 3D centerness outperforms IoUBEV in average translation, scale,
orientation errors.

2.1 Qualitative Results84

We include qualitative results for both Argoverse 2 and Waymo Open shown in Figs. 1 and 2.85
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Method 3D APL1 ↑
Vehicle Pedestrian Cyclist

Dynamic IoUBEV [3] 59.90 67.08 25.52
Dynamic 3D Centerness (ours) 59.98 68.03 34.66

Table 2: Classification Supervision: Waymo Open. Evaluation metrics and errors using two different
classification supervision methods on the Waymo Open validation set. Our results suggest that Dynamic 3D
Centerness is a competitive alternative to IoUBEV, while being simpler.

Method mAP ↑ ATE ↓ ASE ↓ AOE ↓ CDS ↑
Basic Block 16.7 0.78 0.47 1.15 12.7
Meta Kernel [3] 18.7 0.80 0.50 1.18 14.1
Range Aware Kernel⋆ [6] 16.3 0.81 0.51 1.23 12.4

Table 3: 3D Input Encoding: Argoverse 2. Mean Average Precision using different 3D input feature encodings
on the Argoverse 2 validation set. ⋆: Code unavailable. Re-implemented by ourselves.

Method 3D APL1 ↑
Vehicle Pedestrian Cyclist

Basic Block 60.27 66.95 22.42
Meta Kernel [3] 64.44 72.75 43.52
Range Aware Kernel⋆ [6] 60.00 66.42 18.54

Table 4: 3D Input Encoding: Waymo Open. L1 Average Precision (AP) across three different 3D input feature
encodings on the Waymo validation set. The Meta Kernel outperforms all methods improving AP considerably
across all categories. Surprisingly, the Range Aware Kernel performs worse than our baseline method. ⋆: Code
unavailable. Re-implemented by ourselves based on details in the manuscript [6].
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Distribution (%) - 56.92 17.95 6.8 3.62 2.63 1.99 1.42 1.25 1.09 1.06 0.91 0.83 0.69 0.54 0.47 0.44 0.38 0.2 0.18 0.16 0.15 0.1 0.08 0.06 0.05 0.0
mAP ↑
CenterPoint [7] 22.0 67.6 46.5 40.1 32.2 29.5 - 24.5 3.9 37.4 - 6.3 38.9 22.4 22.6 33.4 -
FSD [8] 28.2 68.1 59.0 41.8 64.9 41.2 - 38.6 5.9 38.5 - 11.9 40.9 26.9 14.8 49.0 - 33.4 30.5 - 39.7 - 20.4 26.4 13.8 - -
VoxelNext [9] 30.7 72.7 63.2 53.9 64.9 44.9 - 40.6 6.8 40.1 - 14.9 38.8 20.9 19.9 42.4 - 32.4 25.2 - 44.7 - 20.1 39.4 15.7 - -

Ours 31.6 75.7 67.2 48.6 70.2 50.3 39.6 40.0 7.5 32.6 19.6 18.0 44.0 22.0 24.0 49.5 19.3 34.4 44.0 5.5 42.1 5.8 9.9 41.5 17.7 3.4 0.0

Table 5: State-of-the-Art Comparison: Argoverse 2 (All categories). We compare our range-view model
against different state-of-the-art, peer-reviewed methods on the Argoverse 2 validation dataset. This table
includes all categories — some which were omitted due to space in the main manuscript.
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Figure 1: Qualitative Results: Argoverse 2. True positives (green) and ground truth cuboids (blue) are shown
below for our best performing model. True positives are shown using a 2m Euclidean distance from the ground
truth cuboid center.
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Figure 2: Qualitative Results: Waymo Open. True positives (green), false positives (red) and ground truth
cuboids (blue) are shown below for our best performing model. True positives are shown using a 0.5 IoU
threshold.
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