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Our supplementary materials covers the following: background on 3D object detection in the range
view, additional quantitative results, qualitiative results, dataset details, and implementation details
for our models.

1 Range View Representation

The range view representation, also known as a range image, is a 2D grid containing the spherical
coordinates of an observed point with respect to the lidar laser’s original reference frame. We define
arange image as:

r 2 {(pij, 0i,mij) 1 <i < H;1 <5 < WY, 4))

where (p;;,0;;,7;;) are the inclination, azimuth, and range, and H, W are the height and width
of the image. Importantly, the cells of a range image are not limited to containing only spherical
coordinates. They may also contain auxillary sensor information such as a lidar’s intensity.

1.1 3D Object Detection

Given a range image r, we construct a set of 3D object proposals which are ranked by a confidence
score. Each proposal consists of a proposed location, size, orientation, and category. Let D represent
are predictions from a network.

K
D £ {d; € R®},_ ., where K C N, 2)

i £ {x§g07y§g0)ngovliawiahiaeiaci} (3)

where 2%, y:¥°, 2% are the coordinates of the object in the ego-vehicle reference frame, ;, w;, h;

are the length, width, and height of the object, §; is the counter-clockwise rotation about the vertical
axis, and ¢; is the object likelihood. Similarly, we define the ground truth cuboids as:

G={g ERg}iﬂil,whereM CN, @
9i = {‘T:goayggovngoal%w%hiva%(h} ) (5)

where g; is a continuous value computed dynamically during training. For example, g; may be set to
Dynamic 3D Centerness or loUggy. The detected objects, D are decoded as the same parameterization

as G.

Dé{deRS:clZu'ch}szl,whereKCN, 6)
dk £ {ngo’yzg07 Z]eggov lka Wi, hk‘vek} . (7)

We seek to predict a continuous representation of the ground truth targets as:

Dé{deRSSQ2"'ch}kK:1,whereKcN, 8)
9k = {ng07yzgo7Z]igoalkawk7hk79kack}a (9)

where 275, 4%, 2% are the coordinates of the object in the ego-vehicle reference frame, Iy, wi, by

are the length, width, and height of the object, 6}, is the counter-clockwise rotation about the vertical
axis, and ¢ is the object category likelihood.
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3D Anchor Points in the Range View. To predict objects, we bias our predictions by the location
of observed 3D points which are features of the projected pixels in a range image. For all the 3D
points contained in a range image, we produce a detection d.

Regression Targets. Following previous literature, we do not directly predict the object proposal
representation in Section 1.1. Instead, we define the regression targets as the following:

T(P,G) = {ti(pi, g;) € R®}E |, where K € N, (10)
ti(pi7 gl) = {Ax’n Ayia Azia log li7 IOg Wi, 1Og hi7 sin eia COS 97,} 5 (1 1)
where P and G are the sets of points in the range image and the ground truth cuboids in the 3D
scene, Ax;, Ay;, Az; are the offsets from the point to the associated ground truth cuboid in the

point-azimuth reference frame, log/;, log w;, log h; are the logarithmic length, width, and height of
the object, respectively, and sin ;, cos §; are continuous representations of the object’s heading 6;.

Classification Loss. Once all of the candidate foreground points have been ranked and assigned,
each point needs to incur loss proportional to its regression quality. We use Varifocal loss [1] with a
sigmoid-logit activation for our classification loss:

qi(—g;log(c;) + (1 — g;) log(1l — ¢;)) if ¢; > 0

12
—ac] log(1 — ¢;) otherwise, (12)

VFL(c;, ¢;) = {

where c; is classification likelihood and g; is 3D classification targets (e.g., Dynamic IoUggy or
Dynamic 3D Centerness). Our final classification loss for an entire 3D scene is:

N "PG

ZZVFL e, q), (13)

]111

where M is the total number of foreground points, IV is the total number of objects in a scene, Pé
is the set of 3D points which fall inside the j™ ground truth cuboid, ¢! is the likelihood from the
network classification head, and qf is the 3D classification target.

Regression Loss. We use an ¢; regression loss to predict the regression residuals. The regression
loss for an entire 3D scene is:

IPL

N
L, = N Z Z L1Loss(r?, 1), (14)

where N is the total number of objects in a scene, Pé is the set of 3D points which fall inside the j®

ground truth cuboid, rf is the predicted cuboid parameters from the network, and t{ are the target
residuals to be predicted.

Total Loss. Our final loss is written as:

L=L.+L, (15)

1.2 Argoverse 2
Additional details on the evaluation metrics used in the Argoverse 2.

» Average Precision (AP): VOC-style computation with a true positive defined at 3D Eu-
clidean distance averaged over 0.5m, 1.0 m, 2.0 m, and 4.0 m.

» Average Translation Error (ATE): 3D Euclidean distance for true positives at 2 m.
* Average Scale Error (ASE): Pose-aligned 3D IoU for true positives at 2 m.

* Average Orientation Error (AOE): Smallest yaw angle between the ground truth and
prediction for true positives at 2 m.
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* Composite Detection Score (CDS): Weighted average between AP and the normalized true
positive scores:

CDS = AP- > "1 —x, where z € {ATEupi1, ASEunit, AOEupi} - (16)
reX

We refer readers to Wilson et al. [2] for further details.

1.3 Waymo Open
Additional details on the evaluation metrics used in the Waymo Open are listed below.

1. 3D Mean Average Precision (mAP): VOC-style computation with a true positive defined
by 3D IoU. The gravity-aligned-axis is fixed.

(a) Level 1 (L1): All ground truth cuboids with at least five lidar points within them.

(b) Level 2 (L2): All ground cuboids with at least 1 point and additionally incorporates
heading into its true positive criteria.

Following RangeDet [3], we report L1 results.

2 Range-view 3D Object Detection

Baseline Model. Our baseline models are all multi-class and utilize the Deep Layer Aggregation
(DLA) [4] architecture with an input feature dimensionality of 64. In our Argoverse 2 experiments,
we incorporate five input features: x, y, z, range, and intensity, while for our Waymo experiments, we
include six input features: x, y, z, range, intensity, and elongation. These inputs are then transformed
to the backbone feature dimensionality of 64 using a single basic block. For post-processing, we
use weighted non-maximum suppression (WNMS). All models are trained and evaluated using
mixed-precision with BrainFloat16 [5]. Both models use a OneCycle scheduler with AdamW using a
learning rate of 0.03 across four A40 gpus. All models in the ablations are trained for 5 epochs on a
uniformly sub-sampled fifth of the training set.

State-of-the-art Comparison Model. We leverage the best performing and most general methods
from our experiments for our state-of-the-art comparison for both the Argoverse 2 and Waymo Open
dataset models. The Argoverse 2 and Waymo Open models use an input feature dimensionality of
256 and 128, respectively. Both models uses the Meta-Kernel and a 3D input encoding, Dynamic 3D
Centerness for their classification supervision, and we use our proposed Range-Subsampling with
range partitions of [0 - 30 m), [30 m, 50 m), [50 m, co) with subsampling rates of 8, 2, 1, respectively.
For both datasets, models are trained for 20 epochs.

Method mAPT ATE| ASE| AOE| CDS?
Dynamic IoUggy [3] 14.2 0.87 0.51 1.24 10.9
Dynamic 3D Centerness (ours) 16.9 0.77 0.46 1.04 12.8

Table 1: Classification Supervision: Argoverse 2. Evaluation metrics and errors using two different classifica-
tion supervision methods on the Argoverse 2 validation set. We observe that our Dynamic 3D Centerness method
outperforms all methods. Surprisingly, Dynamic 3D centerness outperforms IoUggy in average translation, scale,
orientation errors.

2.1 Qualitative Results

We include qualitative results for both Argoverse 2 and Waymo Open shown in Figs. 1 and 2.



Method 3D AP, T
Vehicle Pedestrian Cyclist

Dynamic IoUggy [3] 59.90 67.08 25.52
Dynamic 3D Centerness (ours)  59.98 68.03 34.66

Table 2: Classification Supervision: Waymo Open. Evaluation metrics and errors using two different
classification supervision methods on the Waymo Open validation set. Our results suggest that Dynamic 3D

Centerness is a competitive alternative to loUggy, while being simpler.

Method mAPT ATE] ASE| AOE| CDS?*T
Basic Block 16.7 0.78 0.47 1.15 12.7
Meta Kernel [3] 18.7 0.80 0.50 1.18 14.1
Range Aware Kernel* [6] 16.3 0.81 0.51 1.23 124

Table 3: 3D Input Encoding: Argoverse 2. Mean Average Precision using different 3D input feature encodings
on the Argoverse 2 validation set. *: Code unavailable. Re-implemented by ourselves.

Method 3D AP T
Vehicle Pedestrian Cyclist
Basic Block 60.27 66.95 22.42
Meta Kernel [3] 64.44 72.75 43.52
Range Aware Kernel* [6]  60.00 66.42 18.54

Table 4: 3D Input Encoding: Waymo Open. L1 Average Precision (AP) across three different 3D input feature
encodings on the Waymo validation set. The Meta Kernel outperforms all methods improving AP considerably
across all categories. Surprisingly, the Range Aware Kernel performs worse than our baseline method. *: Code
unavailable. Re-implemented by ourselves based on details in the manuscript [6].

Z < L &
o g o 9 ] = ] -
z g ] @ =l 2 2 2 ES = 5 ES 7 £ £
5§ % : & s 3 % % : i g I s 3 5 2 £ g 9 & % ¢
3 £ & ©O g g 2 = 2 g 4 & 38 F O gz & % T w & &£ F 2 4
Mean & & 2 O Y 4 B & &£ B m & ¥ B 2 = B s E 2 & <4 2 & =z =
Distribution (%) - 5692 1795 6.8 362 263 1.99 142 125 1.09 1.06 091 0.83 069 054 047 044 038 02 018 0.16 0.15 0.1 008 0.06 005 0.0
mAP 1
CenterPoint [7] 220 67.6 46.5 40.1 322 295 - 245 39 374 - 63 389 224 226 334 -
FSD [8] 282 68.1 590 418 649 412 - 386 59 385 - 119 409 269 148 49.0 - 334 305 - 39.7 - 204 264 138
VoxelNext [9] 30.7 72.7 632 539 649 449 - 40.6 6.8 40.1 - 149 388 209 199 424 - 324 252 - 4.7 - 20.1 394 157 -
Ours 316 75.7 672 486 702 503 396 400 7.5 326 196 18.0 440 220 240 495 193 344 440 55 421 58 99 415 177 34 00

Table 5: State-of-the-Art Comparison: Argoverse 2 (All categories). We compare our range-view model
against different state-of-the-art, peer-reviewed methods on the Argoverse 2 validation dataset. This table
includes all categories — some which were omitted due to space in the main manuscript.
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Figure 1: Qualitative Results: Argoverse 2. True positives (green) and ground truth cuboids (blue) are shown

below for our best performing model. True positives are shown using a 2 m Euclidean distance from the ground
truth cuboid center.



Figure 2: Qualitative Results: Waymo Open. True positives (green), false positives (red) and ground truth
cuboids (blue) are shown below for our best performing model. True positives are shown using a 0.5 IoU
threshold.
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