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A Setups1

In this section, we illustrate the physical setup of the environment, robotic, and the target objects.2

Moreover, we list the parameters and settings of the employed models in detail.3

A.1 Physical Setup4

The subscenes taken as an experiment example in our paper is a multi-tabletop scene in a big room.5

We set up 3 tables of different sizes in the scene, arranged in a triangular pattern, with an average6

distance of 1 m between the tables, as shown in the diagram. The objects on the tables can be7

categorized as (1) daily-used containers, such as cups, bottles, plates, baskets, pen holders, and a8

sink, (2) geometric objects like cubes, (3) challenging objects for grasping, such as rubber toys,9

irregular toy models, and transparent objects. The arrangement of objects on the tables is relatively10

random. Regarding the robotic configuration, we employ the Franka Panda Arm as our robotic11

arm and the RealSense D435 camera, which is fixed at the rear of the robotic arm’s end effector and12

calibrated with the easy-hand-eye package. The gripper is a 3D-printed model with a length of 5 cm.13

For the mobile base, we employ the SLAMTEC Hermes, equipped with a laser radar for simplified14

mapping, localization, obstacle avoidance, and navigation.15

A.2 Model Setup16

Gaussian Reconstruction. For the Gaussian-Splatting-based scene reconstruction, we employ the17

widely-used open-source 3DGS[1] code base. The initial point clouds used as the Gaussian ini-18

tialization are downsampled by a factor of 5. The rendering process generates results as the origin19

image resolution of 640× 480. Subsequently, Gaussians are optimized for 30,000 iterations across20

all scenes, utilizing the same loss function, Gaussian density, schedule, and hyperparameters as21

specified in the original implementation.22

Depth Completion. The depth inpainting process is powered by a diffusion model which is built23

upon Latent Diffusion Models (LDMs) [2, 3, 4, 5] using a pre-trained Variational Auto-Encoder24

(VAE) and a U-Net-based[6] denoising architecture. The depth map is repeated at channels to form25

a tri-channel input as an RGB image and is normalized. A composite feature map is constructed by26

concatenating the encoded depth and image elements. The denoising step is set to 20 at inference27

as default to trade off the time consumption and the effect. The U-Net-based denoising architec-28

ture iteratively refines the depth latent by predicting and removing noise at each timestep, which is29

managed by the DDIM[4] scheduler to ensure that noise is progressively reduced in control.30

Gaussian Merging and Fine-tuning. With the corresponding camera pose and obtained depth map31

of the inpainted image, the 2D inpainted data is unprojected into a 3D colored point cloud from32

image space. Then, features from the original and inpainted Gaussian point clouds are merged by33

concatenating their poses, features, and opacities. To remove floaters at the edges of the mask, the34

minimum number of points within a radius of 0.1 for a point to be considered not an outlier is set35
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to 100 as default. The following fine-tuning process optimizes the model using a combination of36

L1 loss and D-SSIM (Differentiable Structural Similarity Index) to ensure that the final rendered37

results closely match the inpainted reference images. The weight parameters are set to 0.8 and38

0.2 respectively, reflecting the emphasis on maintaining a balance between pixel-wise accuracy and39

perceptual similarity. The optimization is performed over 150 iterations to achieve the final Gaussian40

model.41

B Task Videos42

We provide videos illustrating our cross-subscene fine-grained manipulation ability on 4 tasks. Each43

of the interacting objects can be located in the arbitrary sub-scenes.44

Pick and Place. The input query is in the form of “Move the [A] to the [B]”, where [A] and [B]45

are objects in the whole scene. For example, in the video, we set “Move the pink cup to the white46

plate”, in which objects lie on 2 separate tables.47

Stacking. The input query is in the form of “Stack the [A] onto the [B]”, where [A] are objects to48

be stacked and [B] is the target place. In the video, we show the result of applying “Stack the orange49

cubes onto the blue cube”. In this case, orange cubes on different tables will be collected and placed50

on the blue one.51

Pouring. The query is in the form of “Pour the liquid in the [A] into the [B]”, where [A] is the52

container that has liquid in it and [B] is the target container. We show the result of “Pour the liquid53

in the bottle into the white cup”. In this example, the robotic carries the bottle smoothly to the cup54

and rotates the bottle to pour.55

Tidy-up. The query is in the form of “Tidy up the table with [A]”, where [A] is the representative56

objects of a subscene. For example, the video shows the result of “Tidy up the table with toys and57

cups”. In this example, the small objects on the table with toys and cups will be rearranged into a58

basket.59

C Mobile Manipulation60

Point Cloud Extraction To extract a scene-wide point cloud for manipulation, we reconstructed61

the entire scene based on 3D Gaussian Splatting [1] and performed depth completion using dif-62

fusions [4, 2]. Starting from the completed depth map, we performed back-projection to obtain63

point clouds of several sub-scenes. Subsequently, we transformed the point clouds into the robot’s64

working coordinate system , and executed specific navigation or manipulation tasks based on the65

transformation matrices of the movement base and end-effector relative to the working coordinate66

system.67

Navigation and Manipulation The navigation process is finished by employing the API provided68

by the SLAMTEC mobile base. Specifically, a 2D topdown occupancy map is built for the en-69

vironment as the scene map. Based on the occupancy map, the trajectory planning and obstacles70

avoidance is completed by querying the map with the target position and the current position. By71

generating a set of waypoints, the mobile base is guided to the target position. As for manipula-72

tion, Franka Panda Arm is operated through the MoveIt! library [7]. We provide the 6 DoF pose73

of the target and employ the movement API to approach and operate the gripper to close and open74

depending on the width of the estimated target objects.75

Motion Planning based on 6D Pose Some fine-grained robotic manipulations mainly rely on the 6D76

pose of the target for motion planning [8]. Based on the poses of different category-level objects and77

the tasks to be performed (e.g., pouring, stack), we utilized MoveIt! [7] to set up target-driven action78

sequences. Therefore, the success rate of robotic manipulation heavily depends on the accuracy of79

pose estimation. Fig. C1 presents the qualitative results of pose estimation across different scenes.80

The top row of Fig. C1 demonstrates the excellent poses in most cases. However, there are instances81

where the results are suboptimal, often due to inaccurate depth data. This can be observed in the82
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Figure C1: The qualitative results of pose estimation under different scenes. The top row shows the
excellent poses under the corresponding views. The two bottom rows show unmet poses with depth.
In these bottom rows, the left column presents the original depths acquired by the depth camera,
while the right column shows the depths completed using our method.
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Figure D1: The comparison of reconstruction failure caused by camera jittering and the successful
results.

bottom two rows. When we attempt to acquire the pose of the ”black pen,” the original depth (left83

column) and the completed depth (right column) are both unsatisfactory, affecting the subsequent84

pose estimation process.85

D Failure Cases86

Capture Failures. Accurate camera pose is crucial for scene reconstruction. During the experi-87

mentation process, we discovered that the jittering and offset errors of the mobile base and robotic88

arm could result in inaccurate camera poses used for scene reconstruction. Consequently, this leads89

to errors in the initialization and optimization processes of Gaussians, resulting in issues such as90

ghosting in the reconstructed scene. One possible solution is to reduce the movement speed of the91

base and robotic arm, capture data only when they are stable, and minimize frequent movements of92

the chassis as much as possible. The visualization of comparison is shown in Fig. D1.93

Segmentation Failures. Our experiments have shown that when using a segmentation model based94

on SAM[9] as a mask for image inpainting and depth completion, the inaccuracy of the mask can95

result in incomplete object editing, leaving behind edges or blurry traces. A more precise mask can96

achieve better visual effects. The comparison inpainting results between using inaccurate masks and97

refined masks are shown in Fig. D298

E Detailed Illustration of Limitations99

Monocular Depth Estimation In practical applications of robotic arm manipulation, it is common100

to use the depth values directly captured by a depth camera as the input for scene modeling and ob-101

ject pose estimation. This is because the depth values provided by a depth camera are absolute depth102

values, which differ from the relative depth typically obtained through monocular depth estimation.103

This absolute depth information is highly valuable for practical operations. However, depth camera104

captured results often exhibit errors and significant uncertainty, particularly at the edges of the cam-105

era’s field of view and when dealing with transparent or reflective objects. These factors raise issues106

in performing operations in challenging scenarios. In this paper, we utilize a diffusion-based depth107

completion method to partially address the discontinuities and errors present in the depth camera108

results. However, the completed depth results still contain certain errors compared to the original109

absolute depth input. How to leverage depth maps from multiple viewpoints to supplement depth110

maps from a single viewpoint and obtain a dense and reliable point cloud remains an open question.111
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Figure D2: The comparison of inpainting failures caused by inaccurate masks and the successfully
inpainted Gaussians results.

What’s more, the object occlusion may also cause depth completion failure. As mentioned above,112

even the diffusion-based method is also unable to solve the depth prediction problem for objects113

with severe occlusion. Additionally, for transparent objects, objects located behind them can also114

affect depth and pose estimation. To manage this issue in 3D space, amodal-based method will be115

our future work direction.116

3D Objects Inpainting Calculating precise poses for robotic arm manipulation has always been117

an open and challenging problem, especially in scenarios lacking constraints. For example, it is118

difficult for a robotic arm to place a cup in the exact middle of the plate to achieve the same level of119

precision as a human. Similarly, stacking blocks together is challenging for a robotic arm to achieve120

a perfect appearance. These results stem from two main reasons: the difficulty of endowing the121

robotic arm with real-time adjustment capabilities and the inability of the arm to obtain accurate122

pose information of the target location. Through a comparison with existing successful robotic123

arm grasping tasks, we observed that while the estimation of graspable object poses can now yield124

fairly accurate results, it remains challenging to estimate the precise poses required for tasks such as125

placing a cup in the center of a plate or achieving perfect block stacking. Consequently, we propose126

using inpainting techniques, employing a ”think before you do it” approach, to address this issue.127

We first edit the images and depth maps, followed by editing Gaussians to create a 3D representation128

of the desired task-completed scenario. We then estimate the poses of the target objects in this scene129

to obtain a more accurate target pose for interaction. However, implementing this approach still130

presents difficulties. The current Gaussians inpainting methods perform well for editing relatively131

planar objects but struggle with editing voluminous and complex-shaped objects. Therefore, our132

future research direction will focuse on how to edit objects in 3D space to obtain accurate results133

that can be used for interactive operations.134

F Implementation Details of Comparison Methods135

For the cross-subscene mobile manipulation task, only a few works have been open-sourced. In this136

paper, we choose F3rm[10] and HomeRobot[11] as the comparison methods. To enable them with137

the cross-subscene ability in our environment, we re-implement and fine-tune these methods for the138

aiming tasks.139

F3rm. We implement F3rm to expand its workspace to the cross-subscene environment. For the data140

source, the same images from RealSense D435 are used as input, and to be fair, the depth images141
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are also employed to train the implicit representation as an additional loss. The camera poses come142

from the calibrated camera on the robotic arm. As the environment expands, the need for VRAM143

increases obviously. Fairly, we maximize the VRAM usage of the RTX 3090 by employing a smaller144

feature resolution, as mentioned in F3rm, and ignoring the regions out of the tabletop workspace.145

As for the manipulation process, we first drive the mobile base to ensure the manipulation targets146

are reachable for the robotic arm and optimize the target pose for manipulation.147

HomeRobot. We implement HomeRobot in our environment for the cross-subscene task. The148

provided Detic and Grounded-SAM libraries are employed to get semantics. The exploration of149

the environment is replaced by feeding the recorded RGB-D sequences to the HomeRobot, and the150

navigation and planning of the mobile base is implemented in the same way as our proposed TaMMa.151

For mobile manipulation, the mobile base is first guided to approach the target, ensuring the targets152

are reachable, and the Contact Graspnet is employed to generate the 6 DoF grasp pose of the target.153

The pose of the receptacle, the location on which the object is placed, comes from adjusting from a154

reference object. For example, to put the cup on a plate, we optimize the pose of the plate and add a155

bias on the y-axis to get the target pose of the cup.156
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