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Document Registration: Towards Automated Labeling of
Pixel-Level Alignment Between Warped-Flat Documents

Anonymous Author(s)∗

(a) Paired input: warped and flat images (b) TransMorph* (c) DKM* (d) DocAligner (e) Ours

Figure 1: Comparing results of different image registration methods (TransMorph [5], DKM [10], DocAligner [51]) where we
output the dewarping results based on the obtained pixel-level alignments. Since TransMorph and DKM are originally proposed
for general images, we re-trained them on document datasets for fair comparison and specified by the symbol "*". Red dotted
dashes highlight some poor results in text blocks.

ABSTRACT
Photographed documents are prevalent but often suffer from defor-
mations like curves or folds, hindering readability. Consequently,
document dewarping has been widely studied, however its per-
formance is still not satisfied due to lack of real training samples
with pixel-level annotation. To obtain the pixel-level labels, we
leverage a document registration pipeline to automatically align
warped-flat documents. Unlike general image registration works,
registering documents poses unique challenges due to their severe
deformations and fine-grained textures. In this paper, we intro-
duce a coarse-to-fine framework including a coarse registration
network (CRN) aiming to eliminate severe deformations then a fine
registration network (FRN) focusing on fine-grained features. In
addition, we utilize self-supervised learning to initialize our docu-
ment registration model, where we propose a cross-reconstruction
pre-training task on the pair of warped-flat documents. Extensive
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experiments show that we can achieve satisfied document registra-
tion performance, consequently obtaining a high-quality registered
document dataset with pixel-level annotation. Without bells and
whistles, we re-train two popular document dewarping models on
our registered document dataset WarpDoc-R, and obtain superior
performance with those using almost 100× scale of synthetic train-
ing data, verifying the label quality of our document registration
method. The code and pixel-level labels will be released.

CCS CONCEPTS
• Applied computing → Document management and text process-
ing; Document capture; Document scanning; Annotation.

KEYWORDS
Photographed Documents, Document Registration, Image Match-
ing, Document Dewarping, Pixel-Level Alignment

1 INTRODUCTION
With the popularity of smartphones, taking photos of documents
has become increasingly convenient, which reduces reliance on
traditional scanning equipment. But it also brings challenges to the
readability of documents due to the severe deformation, resulting in
lower OCR performance [29, 38]. To improve readability, document
dewarping has been widely studied, aiming to eliminate geomet-
rical deformation as a pre-processing module for OCR [8, 12, 47].
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Figure 2: (a) Summary of document dewarping datasets with three dimensions (sizes, reality and label richness). Small, middle
and large circles indicate page-level labels, sparse key point labels, and pixel-level labels, respectively. Our proposed registration
method automatically annotates real documents on pixel-level, as shown by the blue circle, see Sec. 2.2 for more details. (b)
Comparison of document dewarping (top row, single input) and registration (bottom row, paired input).

Figure 2 (b) (Top row) shows a typical workflow of current doc-
ument dewarping models, where the training highly replies on
pixel-level annotation between warped-flat documents. Unfortu-
nately, it is costly for humans to manually annotate pixel-level
labels on real photographed documents. Thus, most dewarping
models are trained on synthetic documents, where the pixel-level
labels can be automatically generated during the synthesis process,
but the performance of such dewarping models is not satisfied in
realistic environment due to the obvious difference of illumination
and warping patterns.

We summarize mainstream document dewarping datasets in Fig-
ure 2 (a). We can see that most of datasets are synthetic, containing
rich labels at pixel level. On the other side, there are only two real
documents datasets (i.e., DIW [33] and WarpDoc [49], two small
cycles at the left-top corner in Fig. 2(a)), containing very coarse
labels only at page level. Such data dilemma motivates us: can
we automatically annotate pixel-level labels for real photographed
documents? In this paper, we propose to automatically annotate
pixel-level mapping between real documents and flat counterparts
by document registration pipeline, as shown in the bottom row of
Fig. 2(b). Through our method, we can generate rich annotation
labels on WarpDoc [49] as shown by the large blue cycle1.

To the best of our knowledge, there is very few research about
document registration. One concurrent effort DocAligner [51] presents
a dewarping-then-registration framework aiming to align the pixel-
level annotations on real datasets, however, the performance is not
good as shown in Fig. 1(d). On the other side, dense image registra-
tion has been widely studied [32], which usually focuses on natural
images, such as building images [35, 53], face images [5, 20], point
cloud [4, 19] and street view images [18, 46]. Unlike natural images,
photographed documents often contain more complex deforma-
tions, diverse layouts, and finer-grained character-level textures.
Therefore, directly applying such SOTA dense image registration
works into the document images cannot obtain satisfactory results,
as shown in Fig. 1(b)(c).
1As no flat documents are released by DIW [33], our pipeline can not be applied.

In this paper, we propose a two-stage framework including a
coarse registration network (CRN) and a fine registration network
(FRN), as shown in the bottom row of Fig. 2(b). The first stage
CRN aims at roughly eliminating severe geometric deformation
and reducing background interference so that the FRN stage could
concentrate on fine-grained distortion registration. Inspired by
Inv3D [17], our CRN employs flat documents as templates to itera-
tively register the corresponding warped documents, obtaining a
coarse registered result. Afterward, the FRN applies a multi-scale
encoder-decoder to obtain a fine-grained warp flow correction,
where we adopt a classification-then-regression [30] idea instead
of a common regression block to improve the learning efficiency.

Motivated by the success of pre-training [6, 7, 15], we propose
to pre-train the encoder of FRN in this work. In the pre-training
task, we impel the warped document to cross-reconstruct the fea-
tures of its flat counterpart, rather than reconstructing itself in
typical Masked Image Modeling (MIM) [15]. This pre-training ob-
jective is well suited to document registration tasks as (1) both
pre-training and downstream registration rely on a cross-image
feature decoder to correlate the pair of input documents for predic-
tion and (2) introducing additional flat documents as a reference
helps the pre-trained encoder implicitly understand fine-grained
geometric deformations.

To sum up, our contributions are four-fold:

• We propose a document registration pipeline to automati-
cally annotate pixel-level labels on real documents.

• We propose a cross-construction pre-training task for mod-
els in document registration.

• Through our proposed document registration method, we
enrich the annotations of current real document dataset
WarpDoc [49] to form WarpDoc-R.

• Extensive experiments show that we can achieve state-of-
the-art registration performance and boost dewarping per-
formance.

2 2024-04-13 11:53. Page 2 of 1–10.
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Figure 3: Pre-training then fine-tuning pipeline for the FRN stage of document registration. The proposed pre-training task
can reconstruct from a masked input and obtain the features of another counterpart. Student Enc. and Student Dec. mean
student encoder and decoder respectively, which account for masked image feature extraction and reconstruction. Teacher Enc.
denotes teacher encoder to extract features of counterpart. Symbol "//" means gradient stop. The proposed fine-tuning stage
contains a shared Enc. (registration encoder) and a Dec. (registration decoder). Finally, the Dec. outputs a warp flow to sample
the coarse-dewarped image 𝐼𝑠𝑤 and obtain the final registered image.

2 RELATEDWORK
2.1 Dense Image Registration: Broad Sense
As a fundamental task in image processing, dense image registra-
tion has been widely investigated [3, 31], which is also known as
image matching or correspondence [32]. In this paper, we discuss
several typical dense image registration methods, including dense
geometry matching [10, 35, 36, 42], optical flow estimation [18, 46],
and medical image registration [1, 5]. Among them, DKM [10] di-
rectly predicts the warp flow between two 3D building scenes at
different capture angles and illumination, leading to pixel-level
bidirectional mapping relationships, but they are difficult to deal
with complex deformation and texture-less margins in document
scenes. Distractflow [18] is only suitable for small displacement
estimation between adjacent video frames. Transmorph [5] focuses
on matching the same landmark feature of specific organs in differ-
ent domains, which is inapplicable for diverse document layouts.
Therefore, it is necessary to design a dedicated model that can
handle document registration task.

2.2 Document Dewarping: A Data Perspective
In this section, we review document dewarping works from the
perspective of datasets, which is summarized in Fig. 2(a). Although
photographed documents are convenient to collect, their annota-
tion is extremely expensive to obtain. To this end, early works such
DIWF [47], DocUNet [34], DDCP [48], DRIC [25], and SP [23] at-
tempt to synthesize documents by rendering simulated warping
shape, illumination, and texture, meanwhile obtaining pixel-level
annotations. To improve the reality, some works add real materials
into the synthesis process. Doc3D [8] and Inv3D [17] incorporate
real warping shapes into the rendering pipeline, while UVDoc [43]

cleverly obtain real lighting rendering by using physically marked
ultraviolet ink. However, such synthesize documents still have sig-
nificant differences from real documents due to the complex and
ever-changing real environment, hindering the document dewarp-
ing in real application. To overcome this issue, some works [33, 49]
directly rely on real documents, but they leverage weakly super-
vised training since only page-level annotation exists, constraining
the dewarping performance. In this paper, we propose document
registration pipeline to automatically annotate real documents on
pixel-level and obtain a rich labeled real document dataset as shown
in the blue circle of Fig 2(a), boosting document dewarping.

2.3 Pre-training: Self/Cross-Reconstruction
Pre-training has made great success in computer vision [6, 22, 28],
which usually adopts masked image modeling (MIM) [7, 13, 15]
for the self-reconstruction. Recently, DocMAE [27] utilizes MIM in
document dewarping, demonstrating the effectiveness. However,
it is sub-optimal to directly utilize these single-vision pre-trained
representations for image registration tasks, because the registra-
tion needs to correlate pair input. To address this issue, some works
have focused on building dual input pre-training tasks. In dense
geometry matching, Pmatch [53] designs a pre-trained encode-
decoder framework to reconstruct pair inputs each self. For the
optical flow estimation task, Crocov2 [45] establishes pairs of asym-
metric branches for the masked original image and the reference
image respectively, then reconstructs the original image itself by
feature fusion. In this paper, we reformulate the previous MIM to
cross-construction in a symmetrical encoder architecture, encour-
aging the reconstruction of flat image features based on the masked
warped source image.

2024-04-13 11:53. Page 3 of 1–10. 3
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Figure 4: Architecture of cross-construction pre-training task for FRN, corresponding to the pre-training stage in Fig. 3(a)

3 METHODOLOGY
Our proposed document registration pipeline contains three key
components, including CRN, cross-construction pre-training, and
FRN in Sec. 3.1, Sec. 3.2 and Sec. 3.3 respectively. As shown in Fig. 2,
we first achieve severe deformation elimination and background
removal through CRN. Given a warped source document 𝐼𝑠𝑜 and
a flat target counterpart 𝐼𝑡 , CRN can predict the coarse warp flow
𝑓𝑐 , and then obtain the weakly warped source 𝐼𝑠𝑤 as the input of
following FRN. As for FRN stage, to sufficiently leverage a large
number of unlabeled document images and help the training of
FRN stage, we first construct a novel pre-training task to pre-train
the encoder of FRN, corresponding to Fig. 3(a). Then, we train the
entire CRN based on the initialization from pre-training to make it
have finer registration capabilities, corresponding to Fig. 3(b). The
overall process of FRN can be formalized as: given a weakly warped
image 𝐼𝑠𝑤 and a counterpart 𝐼𝑡 , FRN can predict the fine warp
flow 𝑓𝑓 , and then obtain the finer registered image 𝐼𝑟 . Finally, we
introduce detailed designs of the loss function in each component.

3.1 Coarse Registration Network (CRN)
Unlike the dewarping task, document registration needs to consider
dual input. To this end, inspired by Inv3D [17], our first-stage CRN
employs flat documents as a template input. Concretely, given a
photographed document 𝐼𝑠𝑜 and a counterpart 𝐼𝑡 , we use two Effi-
cientNet [41] to extract the features of the two images respectively
and concatenate them into the GeoTr [12]. In order to adapt to
large margin problem [52] in testset, the proposed CRN network
is trained in a two-time iteration manner so that the background
margin can be removed better. Finally, CRN can predict the coarse
warp flow 𝑓𝑐 , and then obtain the weakly warped intermediate 𝐼𝑠𝑤 .
Albeit 𝐼𝑠𝑤 is perhaps imprecise and still involves weak deformation
or introduced artifacts, it can be further corrected by following
FRN stage. In this way, we greatly alleviate the learning difficulties
caused by severe deformation. The loss function in CRN is defined
as the L1-norm between the predicted warp flow 𝑓𝑐 and the ground

true warp flow 𝑓𝑐 , formulated as:

L𝑐𝑟𝑛 =




𝑓𝑐 − 𝑓𝑐





1

(1)

Since the architecture of our CRN is largely borrowed from Inv3D [17],
we will detail this in Section A of supplementary materials.

3.2 Cross-construction Pre-training task
We depict the detailed architecture of cross-construction task in
Fig.4. It takes two images 𝐼𝑠𝑤 and 𝐼𝑡 as inputs. cross-construction
aims to reconstruct the feature of 𝐼𝑡 based on that of 𝐼𝑠𝑤 . A student
and a teacher branch is operated in the task. On the one hand, the
student branch is made up of a student encoder that extracts the
feature of visible token of 𝐼𝑠𝑤 , and a student decoder that predicts
the feature of 𝐼𝑡 . On the other hand, the teacher branch only has a
symmetrical momentum encoder updated by exponential moving
average (EMA), except for without any masked mechanism. After
the pre-training, only the student encoder is used for downstream
registration fine-tuning. We will introduce the specific design in
four parts.

Detailed decoupled encoder module: Since the downstream
registration requires progressive registration with multi-scale fea-
tures, we must pre-train an encoder with multi-scale feature extrac-
tion capability. Inspired by the scale-space theory from ROMA [11],
we choose a decoupled feature extractor in both student and teacher
encoders. Specifically, we employ a parallel ViT [9] and VGG [39]
to extract global and local scale features respectively. We formalize
this process as:

{𝜙𝑡
𝑙
, 𝜙𝑠𝑚

𝑙
}5
𝑙=1 = E𝜃 (𝐼𝑡 , 𝐼𝑠𝑤). (2)

where 𝑙 = 5 denotes the global small-scale feature from ViT; 𝑙 < 5
denotes the local large-scale features from each layer of VGG. Note
that previous work [51] simply used ResNet [16] to extract multi-
level features, we argue that VGG is more suitable for document
images with more texture details, as VGG has been proven to handle
more precisely localization and have obvious texture bias [14, 37].

4 2024-04-13 11:53. Page 4 of 1–10.
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Figure 5: Detailed architecture of decoder in FRN.𝐶𝑔,𝐶𝑙 mean correlation volume operation in global and local scope. Operation
𝑢𝑝 () stands for upsampling. Symbol "//" means gradient stop.

Multi-scalemaskmechanism: Because of themulti-scale prop-
erties of the encoder, if only masking ViT without the VGG layers,
it will lead to information leakage [13]. Thus, we also mask the
VGG layers. In particular, our cross-construction task also adopts a
similar block-wise masking strategy in MIM [15]. It initially gener-
ates a mask for ViT, then gradually upsamples the mask to higher
resolutions for each convolutional layer in VGG. Before each con-
volution operation, we perform the Hadamard product operation
on masks and features.

Feature fusion module: In order for student decoders to pro-
cess these multi-scale features, we fuse these features through the
StrideConv operator to upsample and dimensionally transform the
different scale feature maps into the smallest scale uniformly. Then
all of the features can be easily fused by the addition operator.

Student decoder module: We define the results after the two-
branch feature fusion module as 𝜙𝑠 𝑓5 and 𝜙𝑡5. Since the goal of
registration is to obtain the result from 𝐼𝑠𝑤 to 𝐼𝑡 . We design a
student decoder to recover the features of 𝐼𝑡 . Specifically, we first
incorporate both the mask tokens and visible tokens and feed all
tokens into the 4-layer ViT decoder to achieve the prediction of 𝐼𝑡5
features, denoted as 𝜙𝑡

′
5 .

Pre-Training task object: Considering the construction diffi-
culty for dual inputs, we simplify the goal of predicting pixels into
predicting features. Therefore, we apply the same mean squared
error (MSE) loss from MAE [15], but the study object in our task is
to cross-reconstruct flat document’s feature 𝜙𝑡5 rather than recon-
structing pixel. We formulated the MSE loss as:

L𝑐𝑐 =




𝜙𝑡 ′5 − 𝜙𝑡5





2

(3)

3.3 Fine Registration Network (FRN)
With a pre-trained multi-scale encoder, followed by a decoder in
FRN also maintains a multi-scale architecture to correlate two sets
of matched features and predict a series of warp flow, as shown in
Fig. 5. Inspired by the idea of classification-then-regression [30],
our decoder in FRN is divided into two parts: 𝐷𝑙𝑐 and 𝐷𝑜𝑝 . First, at
the smallest feature map, we classify the initial mapping position
of the 𝐼𝑠𝑤 through location classifier 𝐷𝑙𝑐 to obtain the initial warp

flow. Then, a predicted offset is added by multi-scale offset predictor
𝐷𝑜𝑝 to correct the initial warp flow progressively. Given the paired
features, we formalize the procedure of the decoder as:

𝑓 1
𝑙=5 = D𝜃 {𝜙𝑡𝑙 , 𝜙

𝑠𝑤
𝑙

}1
𝑙=5 (4)

where 𝑙 = 5 implies the decoder will start from a small-scale location
classifier and then regress the large-scale warp flow offset from a
coarse to fine manner. 𝑙 = 1 indicates the finest and largest scale,
and 𝑓𝑙=1 = 𝑓𝑓 is the final and finest warp flow as model output.
We’ll cover two key modules in FRN in two parts:

Location classifier 𝐷𝑙𝑐 : Unlike DocAligner [51] and DKM [10],
which simply treat multi-scale registration decoder as a serial warp
flow regression task from small to large scale, we advocate that
the small-scale decoder is much more important than large-scale
decoder. The small-scale decoder provides an initial global coarse
initialization for subsequent large-scale decoders, which makes it
possible to focus further on fine-grained alignment. To design a bet-
ter small-scale decoder, motivated by HscNet [24] and ROMA [11],
we propose to treat the small-scale decoder as a classifier-based
initial locator. Specifically, we first calculate the global correlation
volume 𝐶𝑔 to calculate the vector-by-vector similarity between the
two feature maps. Based on 𝐶𝑔 , we feed the feature map and 𝐶𝑔
into a location classifier. we divide the feature map of 𝑙 = 1 into
64× 64 bins. We adopt a 5-layer ViT to predict which bin should be
classified for each pixel on the small-scale feature map {𝜙𝑡

𝑙=5, 𝜙
𝑠𝑤
𝑙=5}.

In this way, flow prediction on a small scale is transformed into a
classification task for these bins. Then, according to the classified
bins, we convert the positions of these bins into initial warp flow
𝑓𝑙=5 as the input of the subsequent large-scale decoders.

Offset predictor 𝐷𝑜𝑝 : With the initial warp flow provided by
the small-scale decoder, we further perform offset warp flow Δ𝑓𝑙
correction under the large-scale decoder. The process is denoted as:

𝑓𝑙 = 𝑢𝑝 (𝑓𝑙+1) + Δ𝑓𝑙 (5)

In order to determine the offset value that needs to be corrected,
here we apply the previous warp flow 𝑓𝑙+1 to sample 𝜙𝑠𝑤

𝑙
, as shown

in Fig. 5(b). In addition, we also calculate the correlation volume
between sampled 𝜙𝑠𝑤

𝑙
and 𝜙𝑡

𝑙
. Since the global correlation requires

2024-04-13 11:53. Page 5 of 1–10. 5
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a large amount of GPU memory, we only calculate the local correla-
tion 𝐶𝑙 in the 7 × 7 local neighborhood, as shown in Fig. 5(b). With
all these prior (𝐶𝑙 , Sampled feature, feature map, warp flow), we
concatenate and feed them into a convolution-based offset predictor.
This process can be formalized as:

Δ𝑓𝑙 = 𝐷𝑜𝑝 (𝐶𝑙 ⊕ 𝑆 (𝜙𝑠𝑤
𝑙

, 𝑢𝑝 (𝑓𝑙+1)) ⊕ 𝜙𝑡
𝑙
⊕ 𝑢𝑝 (𝑓𝑙+1)) (6)

In such a way, we can progressively correct warp flow to obtain a
final warp flow 𝑓𝑓 .

The loss function for FRN is divided into a localization classifica-
tion loss for 𝐷𝑙𝑐 and a regression loss for multi-scale 𝐷𝑜𝑝 , denoted
as:

L𝑓 𝑟𝑛 = L𝑙𝑐 + L𝑜𝑝 (7)

= −
𝐶∑︁
𝑐=1

ˆ𝑝𝑖 𝑗 (𝑐) log 𝑝𝑖 𝑗 (𝑐) +
𝐿∑︁
𝑙=1




𝑓𝑓 − 𝑓𝑓





1

(8)

where L𝑙𝑐 is cross-entropy loss, L𝑜𝑝 is L1-norm. 𝐶 is the location
bin class index, and L is the scale index. 𝑝𝑖 𝑗 (𝑐) is the probabilities
for the ijth pixel in small-scale feature map {𝜙𝑡

𝑙=5, 𝜙
𝑠𝑤
𝑙=5}. 𝑓𝑓 is fine-

grained warp flow.

4 EXPERIMENTS
4.1 WarpDoc-R: Pixel-level Annotated WarpDoc
Through our proposed document registration method, we enrich
the annotations of current the largest real document dataset Warp-
Doc [49] to form WarpDoc-R. To this end, we first remove those
documents containing occlusions and extreme deformations to
ensure a stable registration training process, then we split the re-
maining 840 documents into training (800 samples, 95%) and test
(40 samples, 5%) sets.

During the training, we synthesize severely warped documents
and slightly warped documents based on such 800 samples, which
are used for the training of CRN and FRN respectively. For se-
verely warped documents, we apply the same image rendering
software provided by Inv3D [17] and Doc3D [8] to render 25,000
documents. For slightly warped documents in FRN fine-tuning, we
overlay 500 shadow distributions from SD7K [26] with 12,000 warp
shapes from DocAligner [51] to simulate photographed documents.
During the cross-reconstruction pre-training stage, we first infer
800 raw photographed images on the well-trained CRN, and then
the obtained coarsely dewarped documents 𝐼𝑠𝑤 serve as input for
the pre-training task. We also randomly augment 𝐼𝑠𝑤 by adding
deformation and color jitter in the pre-training stage.

Based on the well-trained registration network, we can automat-
ically obtain pixel-level annotations for all 840 pairs of samples,
forming WarpDoc-R, which will be released. We can use the train-
ing set of 800 samples to train document dewarping model, and
the remaining 40 samples are for evaluation of both document
registration and dewarping models.

4.2 Implementation Details
We train our registrationmodel in three parts: CRN, Cross-Construction
pre-training and FRN. For CRN, we train for 300 epochs using a
batch size of 8 based on the AdamW optimizer, in which we used
the OnceCycleLR scheduler [40] and control the maximum learning

Table 1: Quantitative comparisons of document registration
performance on theWarpDoc-R test set. "*" means the model
is re-trained.

Method Venue MS-SSIM↑ LD ↓ AD ↓ ED ↓ CER ↓
TransMorph∗ [5] MIA’22 0.691 6.88 0.308 1835 0.546
DKM∗ [10] CVPR’23 0.752 5.04 0.106 389 0.141
DocAligner [51] Arxiv’23 0.830 4.09 0.0338 283 0.0997
Ours - 0.835 3.19 0.0313 318 0.0842

Table 2: Dewarping quantitative comparisons on fixed de-
warping model GeoTr (Without pre-segmentation and aug-
mentations) trained by different dataset scales.

Dataset Data type Dataset scale MS-SSIM↑ LD ↓ AD ↓ ED ↓ CER ↓

Doc3D [8]
Synthetic 0.8k 0.476 12.5 0.580 1740 0.410
Synthetic 20k 0.483 9.14 0.356 784 0.207
Synthetic 80k 0.528 8.88 0.306 643 0.170

Ours Real 0.8k 0.629 6.19 0.190 632 0.168
Ours+Doc3D Real+Synthetic 0.8+20k 0.643 5.39 0.143 491 0.132

rate to 1E-3. The input image resolution is set to 280 × 280. For
pre-training, we trained for 100 epochs using a batch size of 12
based on the AdamW optimizer. We use 10 epochs as a warm-up
with a peak learning rate of 1E-3. Regarding the masking strategy,
we follow BEiT [2] to use blockwise masking and set the patch size
as 16 × 16. For FRN, we set the batch size as 12 to train 80 epochs,
and use AdamW as the optimizer along with the initial learning rate
2E-5 and 4E-4 for encoder(pre-trained) and decoder respectively.
The learning rate is reduced by a factor of 0.2 after each 30 and
60 epochs. Both pre-training and FRN training adopt 384 × 512 as
input image resolution. You can find more details on the training
and network setting in Section B of the supplementary materials.

4.3 Evaluation Metrics
Since we do not have ground-truth of pixel-level mapping labels in
our test set of WarpDoc-R, we rely on the dewarping performance
to evaluate our registration model. Specifically, we leverage the reg-
istration results of our model to dewarp photographed documents,
then compare to the flat counterpart to calculate dewarping metrics.
In the evaluation of document dewarping models, we directly in-
puts photographed documents and output dewarped result, which
are compared with flat counterpart to calculate metrics.

We employ three widely-used dewarping metrics [8, 34] includ-
ing similarity, feature alignment, and OCR error rate. For similarity,
we adopt MS-SSIM [44] to measure the general similarity between
𝐼𝑑/𝐼𝑟 and 𝐼𝑡 . For feature alignment, we measure LD (Local Dis-
tortion) [50] and AD (Aligned Distortion) [33] by the dense SIFT
flow [31]. For the OCR error rate quantization, we select ED (Edit
Distance) and CER (Character Error Rate) [21], and view the OCR
result of flat document as ground truth.

4.4 Results of Document Registration
The registration performance will directly affect the subsequent
dewarping task. To evaluate the validity of our proposed regis-
tration framework. We conduct both quantitative and qualitative
experiments on the proposed benchmarks of WarpDoc-R. Note that

6 2024-04-13 11:53. Page 6 of 1–10.
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(a) Paired Input: warped and flat documents (b) TransMorph*   (c) DKM* (d) DocAligner (e) Ours

Figure 6: Qualitative comparison of different registration methods (b∼e). Our method is superior to existing methods in both
character-level alignment and texture-less areas. Zoom-in is recommended for better visualization. Since TransMorph and
DKM are originally proposed for general images, we re-trained them on document datasets and specified by the symbol "*".

(b)Doc3D(800)  (c) Ours(800) (d) Doc3D(20000) (e)Doc3D(80000) (a) Input warped image (f)Ours(20800) 

Figure 7: Qualitative comparison of the dewarping model GeoTr [12] trained on different data. Noted that we remove some
tricky module like pre-segmentation, random background replacement for fair training comparison.

Transmorph [5] and DKM [10] don’t take into account two-stage
registration. For a fair comparison, we use 𝐼𝑠𝑤 from our CRN stage
to serve as re-training input for the twoworks.When evaluating the
two works, we only evaluate their fine registration capability. As
shown in Tab. 1, our method achieves state-of-the-art performance
on most metrics, among which we show significant superiority
on LD metrics. Our approach not only outperforms previous state-
of-the-art general image registration approaches but also exceeds
DocAligner proposed concurrently. As shown in Fig. 6, the pro-
posed method can be well applied to different deformations such as
curves or folds, and can be well suited to different texture features
in document images, such as table lines, characters, and so on. In
addition, our proposed method also be capable of suppressing the
error matching for texture-less areas in the margin area, compared
with Fig. 6(c). For more visual comparison, you may refer to the
Section C of the supplementary materials.

4.5 Results of Document Dewarping
Furthermore, we also validate the label quality of our registration
method from the perspective of dewarping. Doc3D [8] is currently
the most popular and widely used synthetic document dataset, and
we attempt to prove through experiments that our small amount of
real document data is better than large-scale synthetic documents.
Concretely, we re-train two popular document dewarping models
(GeoTr [12] and DewarpNet [8]) on our registered WarpDoc-R and
Doc3D respectively. As shown in Tab. 2, even with only registered
800 real document samples, we can also obtain superior perfor-
mance with those using almost 100× scale of synthetic training data
(line 3 in Tab. 2). This phenomenon demonstrates the importance
of real training samples, that is fewer high-quality real samples is
more valuable than a large amount of low-quality synthetic data.
Due to page space constraints, we have included the Dewarpnet-
based dewarping training experiment results in our Section D of

2024-04-13 11:53. Page 7 of 1–10. 7
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the supplementary materials. We also examine that adding a small
number of real documents (0.8k) to the synthetic document dataset
(20k) can still improve the dewarping performance again. This also
confirms that our registered real documents have extremely high
data quality.

4.6 Ablation Studies

Table 3: Ablation study for different components: 𝐷𝐿𝐶 de-
notes the location classifier in FRN, Flow represents the
model predict target is warp flow’s offset rather than a pixel
mapping’s offset.

Network Components Experimental Results
CRN FRN 𝐷𝐿𝐶 Flow MS-SSIM↑ LD↓ AD ↓ ED ↓ CER ↓
✓ 0.622 6.63 0.236 721 0.374

✓ 0.715 4.15 0.206 682 0.328
✓ ✓ ✓ 0.820 3.47 0.0466 649 0.347
✓ ✓ ✓ 0.815 4.14 0.0873 647 0.317
✓ ✓ ✓ ✓ 0.835 3.19 0.0313 642 0.293

Table 4: Ablation study on mask ratio and in the cross-
construction pre-training stage. We also compare the results
of without pre-training or with ImageNet pre-training.

Pre-training method MS-SSIM↑ LD ↓ AD ↓ ED ↓ CER ↓
Without 0.812 4.75 0.0592 724 0.302
ImageNet 0.815 3.81 0.0490 718 0.304
0% mask 0.833 3.38 0.0319 691 0.304
10% mask 0.835 3.19 0.0313 642 0.293
25% mask 0.824 3.92 0.0415 706 0.318
50% mask 0.821 4.50 0.0671 681 0.322

In this section, we conduct ablation experiments on key com-
ponents of the two-stage network and different settings of cross-
reconstruction pre-training.

Network components: As shown in Tab. 3, we verify the ef-
fectiveness of four key components of our proposed registration
method, respectively. It can be seen from the first two rows that
relying only on single-stage registration cannot achieve satisfactory
results, especially on the AD metric. On the basis of the complete
two-stage method, in the third and fourth lines, we can either esti-
mate a better warp flow initialization by building 𝐷𝑙𝑐 classifier, or
progressively correct warp flow in multi-scale decoder. The model
configuration in the last row enjoys all the above properties, thus
achieving state-of-the-art performance.

We also provide an ablation study visualization in Fig. 8. Given
a pair of input images in Fig. 8(a), if the CRN stage is removed,
relying only on FRN will not be able to fully handle these complex
distortions and deformations, and will also cause the registered
image to contain some redundant background, as shown in Fig. 8(b).
Conversely, if the FRN stage is removed, although the model can
mitigate severe deformation to a large extent, it cannot focus well
on fine-grained texture alignment, as shown in Fig. 8(c). Only by
combining the two-stage registration, as shown in Fig. 8(d), can

164, 161, 34

(b) w/o CRN (c) w/o FRN (d) CRN+FRN(a) Paired input image

Figure 8: Qualitative visual ablation comparison with two-
stage registration results of CRN and FRN, respectively.

we achieve both the capacity of severe distortion mitigation and
fine-grained content alignment.

Pre-training setting: The masking ratio heavily impacts the
difficulty of self-supervised learning. Hence, we adopt diverse mask
ratios to explore a suitable value. As shown in Tab. 4, we find that
a better registration result can be achieved at a mask ratio of 10%.
This is different from the best 70% mask ratio proposed in the
original MAE [15]. We consider this is because the document image
contains more fine-grained content, and adding an excessively high
mask ratio causes a difficult learning process. In addition, as a
reference, we also provide results without pre-training and with
pre-training on the traditional supervised ImageNet classification
task. This shows that the proposed cross-reconstruction strategy
has a positive effect on the registration task as a whole.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose a document registration pipeline to au-
tomatically annotate pixel-level labels on real photographed docu-
ments, aiming to solve the data dilemma of document dewarping.
Such dilemma lies in the fact that synthetic data has rich labels
but lack of reality, while real photographed documents only have
page-level annotation. In our document registration pipeline, we
construct a coarse-to-fine framework with a coarse registration
network (CRN) aiming to eliminate severe deformations then a fine
registration network (FRN) focusing on fine-grained features. In the
FRN, we leverage a classification-then-regression model to improve
the registration performance, furthermore, we propose a cross-
reconstruction pre-training task for the encoder of FRN. Through
our proposed document registration method, we enrich the labels of
one existing real document dewarping dataset to form WarpDoc-R
with pixel-level annotation. Extensive experiments demonstrate
the high-quality of the pixel-level labels, boosting the document de-
warping performance. In the future, we will enlarge the size of real
photographed documents to empower the data-centric document
intelligence.

8 2024-04-13 11:53. Page 8 of 1–10.
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