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Supplementary materials
The supplementary materials contain five sections:

• A: Details of the CRN Architecture
• B: Details of Experimental Setting
• C: More Visual Comparisons on Document Registration
• D: More Experimental Results of Document Dewarping

A DETAILS OF THE CRN ARCHITECTURE
Figure 9 shows our CRN (coarse registration network) described
in Sec. 3.1. In general, this architecture is an extension of the de-
warping network, where we add a flat target image 𝐼𝑡 as prior
information to form a pair of inputs. We first use two identical geo-
metric heads to extract shallow features from the paired warped-flat
document images. In detail, we adopt an EfficientNet B7 noisy stu-
dent model [41] as the head to perform shallow feature extraction
on the given input 𝐼𝑠𝑜 ∈ R𝐻×𝑊 ×3, obtaining 𝑓𝑠𝑜 ∈ R35×35×128
and 𝑓𝑡 ∈ R35×35×128 where 𝐻 = 𝑊 = 280. Then, the two sets of
features are concatenated and fed into the visual transformer (ViT)
to predict mapping flow 𝑓𝑐 ∈ R𝐻×𝑊 ×2, where we leverage a learn-
able upsampling module proposed in GeoTr [12]. Finally, we can
apply 𝑓𝑐 to sample 𝐼𝑠𝑜 to obtain a coarse-dewarped image 𝐼𝑠𝑤 by
the 𝑔𝑟𝑖𝑑_𝑠𝑎𝑚𝑝𝑙𝑒 function in PyTorch. We can see the warp of 𝐼𝑠𝑤 is
mild compared to the original input document 𝐼𝑠𝑜 , demonstrating
the effectiveness of the CRN.

Geometry 
Head

𝑰𝒕 = 𝐼𝑡𝑎𝑟𝑔𝑒𝑡

𝑰𝒔𝒐

𝑓𝑐 𝑰𝒔𝒘

Geometry 
Head

ViT
S

Figure 9: CRN (coarse registration network) Architecture

B DETAILS OF EXPERIMENTAL SETTING
To better understand our experiments, we summarize the details of
our experimental setting in the training of CRN, Cross-reconstruction
pre-training, and FRN in the following tables Tab.5, Tab.6, and Tab.7,
respectively. For CRN, we basically refer to the optimal settings of
Inv3D [17].

C MORE VISUAL COMPARISONS
To better demonstrate the effectiveness of our proposed document
registration pipeline, we show more visual qualitative comparisons
in Fig. 10, which is a supplement to Fig. 6. We can see that the
existing methods either cannot align character-level texture fea-
tures well, such as Fig. 10(b)(d), or they are prone to produce error
matches in texture-less areas such as Fig. 10(c). Our registration
method can effectively avoid these issues and is suitable for various
warping patterns (such as curves and folds), thus obtaining better
results, as shown in Fig. 10(e). Specifically, compared to Fig. 10(b)(d),

Table 5: Experimental Setting for CRN

Settings Value

training data Doc3D
data augmentation Random crop
ViT layers 6
embedding dimension 256
ViT patch size 8 × 8
input resolution 280 × 280

training epochs 300
batch size 8
optimizer AdamW
scheduler OnceCycleLR
initial learning rate 4E-6
peak learning rate 1E-3

Table 6: Experimental Setting for Cross-Reconstruction Pre-
training

Settings Value

training data coarse-dewarped image 𝐼𝑠𝑤
and flat counterpart 𝐼𝑡

data augmentation ColorJitter, RandomGrayscale
ViT patch size 16 × 16
ViT layers 11
input resolution 384 × 512

training epochs 100
warm-up epochs 10
batch size 12
optimizer AdamW
scheduler Cosine
initial learning rate 4E-6
peak learning rate 1E-3
EMA coeff 0.995
weight decay 5E-2

Table 7: Experimental Setting for FRN

Settings Value

training data coarse-dewarped image 𝐼𝑠𝑤
and flat counterpart 𝐼𝑡

data augmentation Shadow Replacement
ViT patch size 16 × 16
ViT decoder layers 5
embedding dimension 64,128,256,512,1024
input resolution 384 × 512

training epochs 80
batch size 12
optimizer AdamW
scheduler MultiStepLR
learning rate milestones 30,60 by factor 0.5
initial learning rate 2E-5 and 4E-4

for encoder,decoder respectively
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(a) Paired Input: warped and flat documents (b) TransMorph*   (c) DKM* (d) DocAligner (e) Ours

Figure 10: More Qualitative comparison on the proposedWarpDoc-R benchmark. Ourmethod is superior to existing registration
methods(b∼d) in both character-level alignment and texture-less areas. Zoom-in is recommended for better visualization. Since
TransMorph and DKM are originally proposed for general images, we re-trained them on document datasets and specified by
the symbol "*".

our method can obtain better registration results at different scales.
For large-scale objects, the horizontal table lines(red dotted dashes
in the first row) registered by ours are more horizontal, and the
2 × 2 figure(in the second row) maintains a regular rectangular
structure. In the case of the third and fourth rows, we exhibit some
small-scale objects; we can register fine-grained characters without
distortion, while Fig. 10(d) is prone to local distortion (red dotted
box part). Compared with Fig. 10(c), our method greatly suppresses
error matching in texture-less areas, which we believe is mainly at-
tributed to the design of the location classifier mentioned in Sec. 3.3.

D MORE EXPERIMENTAL RESULTS OF
DOCUMENT DEWARPING

To better verify the effectiveness and high quality of the registered
real document data, we evaluate the dewarping performance by

Table 8: Dewarping quantitative comparisons on the dewarp-
ing model DewarpNet [8] trained by different dataset scales.

Dataset Data type Dataset scale MS-SSIM↑ LD ↓ AD ↓ ED ↓ CER ↓

Doc3D [8]
Synthetic 0.8k 0.441 16.7 0.375 992 0.263
Synthetic 20k 0.443 14.8 0.273 628 0.175
Synthetic 80k 0.464 12.3 0.236 516 0.142

Ours Real 0.8k 0.520 10.8 0.161 441 0.131
Ours+Doc3D Real+Synthetic 0.8+20k 0.516 11.5 0.197 468 0.138

another representative dewarping model DewarpNet [8].Similar to
Tab. 2, we conduct experiments on synthetic and real documents
with different dataset scales. As shown in Tab. 8, given only reg-
istered 800 real document training samples, we can exceed the
dewarping performance of 100× dataset scale of synthetic training
data. The similar phenomenon in both models (Tab. 2 and Tab. 8)
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Figure 11: Qualitative visual comparison of the dewarping model DewarpNet [8] on WarpDoc-R benchmark and the synthetic
data Doc3D with different number of dataset scales.

illustrates the effectiveness of our registration pipeline. Besides,
the results in the last row of Tab. 8 also confirm that the mixture
of a small number of real and a large number of synthetic docu-
ments benefits the model to obtain better performance. This again
confirms the insight that fewer high-quality real samples are more
valuable than a large amount of low-quality synthetic data.

Furthermore, we add more visual dewarping comparison results
as a supplement to Fig.7, as shown in Fig.11 . We can see that our
model trained on 800 registered real documents (Fig.11(c)) surpasses
all models trained on purely synthetic data with different dataset
scales including 1× scale (Fig.11(b)), 25× scale (Fig.11(d)) or 100×
scale (Fig.11(e). It can be seen from Fig.11(b)(d)(e) that with the
amount of synthetic data gradually increasing, the difference in
visual results of dewarping has only a small improvement, such as
background removal. Even some results may introduce additional
distortion. For instance, 80k in the third row introduces greater para-
graph distortion than 20k. We argue this may be due to the model’s
tendency to overfit on limited synthetic data. On the contrary, we
can achieve more satisfactory results with only 0.8k samples on real

document images, which confirms the effectiveness of the proposed
registration pipeline and the significance of using registered real
documents for dewarping training. Moreover, extra performance
improvements can be achieved by mixing real(0.8k) and synthetic
(20k) data, as shown in Fig.11(f). We hope that these phenomena
will inspire more research to explore how to mix synthetic and real
data better to aid training.
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