1 Appendix
In this appendix, we give more analysis about our dataset and present more experimental results.

1.1 Moiré Differences in Raw Domain

Moiré shapes in R, G1, G2, and B channels are different. In Fig. 1, we present the zoom-in version
of the moiré patterns in different raw channels for better observation. For the exampled image, its
R channel only contains vertical and horizontal stripes with the same regular scale. In contrast, its
G2 channel contains fine-scale moiré patterns besides the regular scale ones. To make this clear, we
further present the DCT spectra of the four channels. The moiré patterns usually appear as nearly
periodic stripes, which implies that the moiré patterns will be represented as strong peak spots in
the DCT spectrum. As shown in the second row of Fig. 1, the R and G1 channels only have peak
spots at the left-up corner, which represent coarse-scale moiré patterns and this is consistent with
the observation in the image domain. Meanwhile, the G2 and B channels have peak spots at left-up,
right-up, and left-down corners. It means that the two channels have both coarse-scale and fine-scale
moiré patterns, which is consistent with the observation in the image domain. Note that, all the
images are normalized (the DCT spectrum is also calculated from normalized image) to avoid the
effects of different intensities of different CFA channels.
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Figure 1: DCT spectrum of different channels.

We would like to point out that the moiré patterns are affected by the screen, camera, viewpoint,
and image content. One possible reason for the moiré differences between these channels is that the
viewpoints of the R, G1, G2, and B channels are different since there is a pixel shift in the CFA Bayer
pattern. During data acquisition, even one-pixel shift can have a significant impact on the period
and shape of moiré patterns. On the other hand, with the same camera, screen, and viewpoints but
different contents, the generated moiré patterns are also different. For the R, G1, G2, and B channels
of the same image, their contents are also different to some extent (due to different spectra responses
of the color filter). Therefore, the moiré patterns of the four channels are different.



Meanwhile, the DCT spectrum of the R, G, and B channels of the RGB image are similar, as shown
in the third row. The reason is that the demosaicing operation in the ISP process mixes these moiré
patterns and the unique properties of one specific channel do not exist. Then we perform inverseISP
(using the implementation provided by CycleISP) on the moiré RGB image, and the DCT spectrum
of the inversed raw image are presented on the fourth row. It can be observed that they still have
similar peak spots. In other words, the distinct moiré patterns in different raw channels cannot be
recovered. Therefore, utilizing the real captured raw images for demoiréing network training is better
than utilizing inversed (synthesized) raw images.

Our observation that different channels have different moiré patterns is representative. In Fig. 2, we
provide eight examples of the moiré frames and give their DCT spectram. It can be observed that the
DCT spectrum of different raw channels in the same image are different. This is consistent with our
observations in the image domain that different raw channels have different moiré patterns.
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Figure 2: DCT spectra of different channels for eight examples.

1.2 Analysis About Our Raw Video Demoiréing Dataset

Diversity of source videos. Compared with the video demoiréing dataset in [ 1], the source videos in
our dataset have a larger content diversity. Our dataset includes human activities, animal activities,
landscapes, documents, GUIs, webpages, and animes. Fig. 3 presents some examples of our source
videos and the percentages of different categories are also given.

Diversity of moiré patterns. The moiré patterns vary depending on the capturing distances, view-
points, cameras, and display screens. In order to enrich the diversity of moiré patterns in our dataset,
we utilize four different combines of cameras and screens, as shown in Table 1 for capturing. We also
change the capturing distances and viewpoints to generate more diverse moiré patterns. As shown in
Fig. 4 (a), the moiré patterns in our dataset have different scales, colors and stripes.

Temporal Confusion. As demonstrated in the main paper, it is difficult to keep the screen displaying
and camera recording synchronization, which leads to temporal confusion problem (namely ghosting
problem). Therefore, we developed an efficient temporal alignment method by inserting alternating
patterns. In this way, the recaptured frames in our dataset are always clear, as shown in Fig. 4 (b).
In contrast, the frames in [1] sometimes contain ghosting artifacts due to the temporal confusing
problem, which will heavily affect the learning process.

Compare with synthesized moiré datasets. There is a significant gap between the synthesized moiré
and real moiré patterns. Fig. 5 provides a comparison between CFAMoiré [7], LCDMoiré[6] and
our real dataset. Various moiré pattern cycles can be observed on the same image for real captured
ones. However, the synthesized moiré patterns lack this feature. In addition, real captured moiré
patterns often have diverse colors and morphologies, which are relatively limited in synthesized moiré
patterns. Finally, current moiré synthesis methods are all designed for SRGB domain moiré synthesis
other than raw domain moiré synthesis.
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Figure 3: Examples of the source videos in our dataset (left) and the pie graph of categories (right).
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Figure 4: Comparison between our dataset and the dataset in [1]. (a) presents exampled moiré
patterns in the two datasets and the moiré patterns in our dataset are more diverse. (b) illustrates
the temporal confusion problem (i.e. generating ghosting frames) during recapturing, which is well
solved by our method but existed in [1].

Table 1: The combinations of smart-phone cameras and screens used in our capturing process.

Phone Screen Screen Size (inch) trainset  testset

Xiaomi Dell G3 3590 15.6” 4020 720

Redmi Lenovo Legion R7000P2021H 15.6” 4020 720
OnePlus 7 Lenovo Legion R9000P2021H 16” 3900 720
Honor V9 SKYWORTH 24X2 23.8” 3060 840
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Figure 5: Examples of the moiré images in synthesized datasets and our dataset.

1.3 Ablation Study
1.3.1 Ablation on Channel Modulation

As shown in Figure 5 in the main paper, we utilize four color groups (R, G1, G2, and B) for channel
modulation. In this experiment, we replace it with one color group but keep the channel number of
extracted features be the same as that in color-separated features. As shown in Table 2, the three
variants are all inferior to our complete version. This demonstrates that individual channels in the
raw domain have limited features and are insufficient for effective fusion. In addition, our approach
with GConv significantly reduces the parameter numbers.

Table 2: Ablation study results by exploring different channel modulation methods. The best results
are highlighted in bold.

Variant PSNRT SSIMt LPIPS|

R-channel 28.559 09176 0.0932
G-channel 28.516 0.9182 0.0935
B-channel 28.551 09175 0.0914
Complete  28.706 0.9201  0.0904

1.3.2 Comparison of Modulation and Attention

Our "channel modulation" operation is different from the traditional "channel attention" operation. In
Table 3, we perform an ablation experiment by replacing our channel modulation with traditional
channel attention [2]. Despite channel attention utilizing more parameters (fully connected layers) to
learn channel weights, its performance is inferior to that of our method. Fig. 6 presents the learned
weights of channel modulation and channel attention. It can be observed that the channel attention
weights are similar, which means there are no large differences. The main reason is that it needs a
sigmoid layer to generate these coefficients. Different from it, our modulation coefficients are learned
by setting them to be learnable parameters. The learned modulation coefficients have a large variance,
which implies that different channels contribute very differently in the following.

Table 3: Comparison between our channel modulation and traditional channel attention. The best
results are highlighted in bold.

Variant PSNRt SSIM{  LPIPS)

Channel Attention ~ 28.492 09170  0.0987
Channel Modulation  28.706  0.9201  0.0904

We also transform two raw image processing methods (RDNet [8] and UNet) for video demoiréing
by incorporating the PCD module and fusion module. The results are presented in Table ??. Our
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Figure 6: Comparison of learned weights between channel modulation and channel attention.

method consistently outperforms RDNet and UNet on all the three metrics. Despite RDNet being
a raw domain approach, it did not consider the moiré differences in raw domain channels and it
merely adjusted the channel number of the first convolution layer to fit the raw inputs, without any
other tailored operations for raw data. In contrast, our method is tailored to the distinctive channel
distribution properties of raw domain moiré patterns.

1.4 Temporal Consistency

We have provided a video demo to show the video moiré removal results and there are slightly
jittering artifacts. To solve this problem, we further fine-tune our network by introducing the temporal
loss proposed in []. After introducing temporal losses, our performance is further improved (see
Table 4) and the temporal consistency is also improved.

Table 4: Comparison of with and without temporal loss. The best results are highlighted in bold.

Variant PSNR1T SSIM?T LPIPS|

w/o temporal loss  28.706  0.9201  0.0904
w temporal loss ~ 28.968 0.9200 0.0884

1.5 Limitation

When the image has high color saturation and the moiré pattern contrast is strong, our method may
cannot remove the patterns clearly, as shown in Fig. 7. Our method can remove the moiré patterns to
some extent, while some compared methods failed in dealing with this hard example.

Moiré(sRGB) MBCNN* UHDM* VDMoiré& EDVR* VRT™* Qurs
Figure 7: Demoiréing results in dealing with severe moiré patterns.
In terms of temporal consistency, we present additional results by fine-tuning with temporal loss

presented in [1] in Table 4. We did not explore more advanced temporal consistency strategies,
leaving this as a direction for future exploration.



2 Visual Comparisons for Image and Video Demoiréing

In this section, we present more visual comparison results for different demoiriéing methods. As
introduced in the main paper, for image demoiréing, we present the visual comparison results with the
first raw image demoiréing method RDNet [&] , and two state-of-the-art image demoiréing methods
in SRGB domain, i.e., MBCNN [9] and UHDM [5]. We also present their results with raw inputs,
denoted as MBCNN* and UHDM?*. For video demoiréing, we present the visual comparison results
for the six compared methods with raw inputs, including MBCNN*, UHDM*, VDMOiré* [1],
EDVR¥* [4], and VRT ™ * [3].

Figs. 8-9 present the image demoiréing results. It can be observed that RDNet and MBCNN cannot
remove the moiré patterns clearly. UHDM also failed for the hard samples (as shown in Fig. 8). For
the first image in Fig. 9, UHDM and UHDM* cannot recover the image details while removing moiré
patterns. For the second image in Fig. 9, the compared methods tend to have color cast. In contrast,
our method can recover the image details and remove the moiré patterns clearly.

Figs. 10-12 present the video demoiréing results. For the colorful scenes, the compared methods
cannot remove the dense moiré patterns clearly, as shown in the first image of Fig. 10, Fig. 11, and
the second image of Fig. 12. For image details, our method can recover the words in Fig. 12 clearly
while the compared methods cannot recover them well. In summary, our method achieves the best
performance in moiré removal and detail reconstruction. Note that, we also present a video demo to
show the video demoiréing results.

References

[1] Peng Dai, Xin Yu, Lan Ma, Baoheng Zhang, Jia Li, Wenbo Li, Jiajun Shen, and Xiaojuan Qi. Video
demoireing with relation-based temporal consistency. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 17622-17631, 2022.

[2] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 7132-7141, 2018.

[3] Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, and Luc
Van Gool. Vrt: A video restoration transformer. arXiv preprint arXiv:2201.12288, 2022.

[4] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and Chen Change Loy. Edvr: Video restoration with
enhanced deformable convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pages 0-0, 2019.

[5] Xin Yu, Peng Dai, Wenbo Li, Lan Ma, Jiajun Shen, Jia Li, and Xiaojuan Qi. Towards efficient and scale-
robust ultra-high-definition image demoiréing. In Computer Vision—-ECCV 2022: 17th European Conference,
Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XVIII, pages 646-662. Springer, 2022.

[6] Shanxin Yuan, Radu Timofte, Ales Leonardis, and Gregory Slabaugh. NTIRE 2020 challenge on image
demoiréing: Methods and results. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 460—461, 2020.

[7] Shanxin Yuan, Radu Timofte, Gregory Slabaugh, Ale§ Leonardis, Bolun Zheng, Xin Ye, Xiang Tian, Yaowu
Chen, Xi Cheng, Zhenyong Fu, et al. AIM 2019 challenge on image demoiréing: Methods and results. In
Proceedings of the IEEE International Conference on Computer Vision, pages 3534-3545, 2019.

[8] Huanjing Yue, Yijia Cheng, Yan Mao, Cong Cao, and Jingyu Yang. Recaptured screen image demoiréing in
raw domain. IEEE Transactions on Multimedia, 2022.

[9] Bolun Zheng, Shanxin Yuan, Gregory Slabaugh, and Ales Leonardis. Image demoiréing with learnable
bandpass filters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3636-3645, 2020.



Moiré(sRGB) RDNet MBCNN MBCNN*
UHDM )

53 IR

DYER

Figure 8

: Visual comparison for image de,}noiréing. Zoom in for better observation.
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Figure 9: Visual comparison for image degmoiréing. Zoom in for better observation.
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Figure 10: Visual comparison for video dsmoiréing. Zoom in for better observation.
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Figure 11: Visual comparison for video dﬁsnoiréing. Zoom in for better observation.
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Figure 12: Visual comparison for video dlelmoiréing. Zoom in for better observation.
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