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ABSTRACT

Research on optimizing the risk measure of a blackbox function using Gaussian
processes, especially Bayesian optimization (BO) of risk measures, has become
increasingly important due to the inevitable presence of uncontrollable variables
in real-world applications. Nevertheless, existing works on BO of risk measures
start the optimization from scratch for every new task without considering the
results of prior tasks. In contrast, its vanilla BO counterpart has received a thorough
investigation on utilizing prior tasks to speed up the current task through the body of
works on meta-BO which, however, have not considered risk measures. To bridge
this gap, this paper presents the first algorithm for meta-BO of risk measures (i.e.,
value-at-risk (VaR) and the conditional VaR), namely meta-VBO, by introducing a
novel adjustment to the upper confidence bound acquisition function. Our proposed
algorithm exhibits two desirable properties: (i) invariance to scaling and vertical
shifting of the blackbox function and (ii) robustness to prior harmful tasks. We
provide a theoretical performance guarantee for our algorithm and empirically
demonstrate its performance using several synthetic function benchmarks and
real-world objective functions.

1 INTRODUCTION

Real world optimization problems, such as maximizing the performance of a manufacturing line,
the crop yield of a farm, and the performance of machine learning (ML) models, often face with
the challenge of dealing with blackbox objective functions (i.e., without closed-form expressions,
convexity, or derivatives) and time-consuming or expensive noisy zeroth-order evaluations (Snoek’
et al.l 2012; [Nguyen et al.,|2021b). These issues have attracted significant attention, particularly on
the Bayesian optimization (BO) framework (Srinivas et al.,[2010; |Snoek et al., 2012} |Shahriari et al.,
2015} [Hernandez-Lobato et al.l 2014} Wang and Jegelka, [2017}; |Garnett, |2022). Recently, there has
been an increasing interest in BO of risk measures, driven by the need to address practical aspects
related to uncontrollable variables referred to as environmental random variables (Cakmak et al.|
2020), e.g., random errors in sensors of the manufacturing line, weather conditions in farms (Nguyen
et al.| 202 1bza), and random perturbation in training data of ML models (Bogunovic et al., 2018)). BO
of risk measure algorithms specifically search for the controllable decision variables (e.g., applied
torque, input force, nutrient amounts, and ML model hyperparameters) that optimize a risk measure
of the blackbox function where the risk is induced by the environmental random variables. Risk
measures investigated in existing works include the worst-case value (Bogunovic et al., |2018)), value-
at-risk (VaR) and conditional VaR (CVaR) (Cakmak et al., 2020; Nguyen et al., 202 1bfa}; |Picheny
et al., 2022), probability threshold robustness (Iwazaki et al.,[2021a), and the variance (Iwazaki et al.,
2021b; Makarova et al., 2021)).

While there is an extensive research on BO of risk measures, using learning experiences from
prior tasks to accelerate the optimization of the current task has not been explored. In contrast,
this approach has been shown to effectively reduce the number of costly observations required by
the vanilla BO counterpart through numerous works on meta-BO. These works encompass a wide
spectrum of methodologies, ranging from those that involve the transfer of the probabilistic models
from prior tasks to the current one (Swersky et al.}2013)), to more nuanced approaches centered on
transferring the optimization result (Feurer et al., |2018; [Wistuba et al., [2016; 2018}, [Perrone et al.,
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2019} Ramachandran et al., 2019; [Volpp et al.; 20205 Dai et al.,2022)). Although the former category,
such as the multi-task Gaussian processes (GP) (Swersky et al.,[2013)), is well-defined, it often suffers
from computational challenges as discussed by Dai et al.|(2022) and is not specifically tailored to
the goal of optimization - the blackbox function’s maximizer. In contrast, the latter category, which
attracts the majority of research attention, presents greater challenges and lacks a clearly defined
framework. For example, |[Feurer et al.| (2018)) transfers the ranking of function evaluations. Perrone
et al. (2019) narrows down the search space. Ramachandran et al.|(2019) considers the distribution of
the optima. |Dai et al.| (2022)) considers a weighted average of the acquisition functions.

In this paper, we focus on the challenge of transferring the optimization outcome. Specifically,
we pioneer the first solution to the meta-BO of risk measure problem, namely meta-VBO. Our
work accounts for the risk introduced by the environmental random variables - a crucial aspect not
addressed in any existing meta-BO works. We focus on two well-known risk measures: value-at-
risk (VaR) and conditional VaR (CVaR) (Cakmak et al.| [2020; Torossian et al.,[2020). Moreover,
our solution also extends to the adversarially robust BO (Bogunovic et al., |2018)) and applies to
the meta-BO problem. We assume that the distribution of the environmental random variables is
given, e.g., by estimating from historical data or domain knowledge. Additionally, we assume that
during the optimization, noisy evaluations of the blackbox function can be acquired (queried) at any
realizations of the environmental random variables. In the above examples, this can be achieved
running simulations of manufacturing lines with controlled random errors or growing indoor plants in
a laboratory environment where weather conditions are regulated. After the optimization is completed,
we recommend implementing the best decision variable in the real-world environment where the
environmental random variables are beyond our control. [1_-] These assumptions are commonly made in
several BO works with risk measures (Cakmak et al., 2020; Nguyen et al.,|2021bja).

Under the above settings, there are several major challenges in addressing meta-BO of risk measures.
First, the choice of the information to be transferred from prior tasks to the current task should be
tailored to the optimization goal of determining the optima’s locations. Since they are invariant under
scaling and vertical-shifting (i.e., increasing or decreasing the function by a constant) of the blackbox
function, it is crucial to ensure that the proposed meta-BO of risk measure solution maintains this
invariance. Hence, it rules out the use of the function gap (i.e., the maximum difference between
function evaluations) in the theoretical study of Dai et al.|(2022) as a similarity measure between
tasks. Second, as the number of prior tasks grows, the possibility of encountering a task that hampers
the current optimization task arises (Feurer et al., 2018; Dati et al.,|2022)). Thus, it is essential to be
resilient against such prior harmful tasks.

Moreover, one cannot easily extend existing meta-BO solutions to address the BO problem with
risk measures. While the posterior belief of the blackbox function follows a GP in the vanilla BO,
many risk measures including VaR and CVaR do not follow any well-known stochastic process.
Hence, it is challenging to adopt approaches based on the Gaussian posterior distribution in the
works of Ramachandran et al.| (2019) and [Dai et al.| (2022). Furthermore, risk measures are not
directly observed. They are only estimated from noisy evaluations of the blackbox function. As
a result, although Feurer et al.|(2018]) is able to discover and assign low weights to prior harmful
tasks by proposing a ranking loss function, extending this loss function to tackle risk measures is not
immediately obvious. Last, there are not any existing meta-BO works that possess both theoretical
performance guarantees and robustness against scaling and vertical-shifting of the blackbox function
and prior harmful tasks.

To address the above problems, we introduce a new perspective in constructing our solution, namely
meta-VBO. Specifically, while the classic Gaussian process - upper confidence bound (GP-UCB)
algorithm (Srinivas et al., |2010) offers only one option of the input query at each BO iteration, we
pursue a different approach of construcing a versatile query set (V-set) in Sec.[3.1] Interestingly, we
can obtain a no-regret algorithm by selecting any input in this set as the input query (Theorem|3.2).
To the best of our knowledge, this characteristic has not been introduced in any BO algorithm. On one
hand, it implies that by restricting the choice of the input query to V-set, the algorithm is no-regret
regardless of prior harmful tasks. On the other hand, the flexibility in choosing the input query from
a set (as opposed to one option in GP-UCB) allows us to transfer information from prior tasks to the
current task by assigning different preferences/priorities to inputs in V-set (Sec.[3.2)). Essentially,
inputs that are likely to be local (or global) maximizers of many prior tasks are assigned high priorities.

"The notion of the best decision variable is discussed in Sec.
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The size of V-set can be tuned via two hyperparameters, which allows a trade-off between the amount
of information to be incorporated from prior tasks and the cumulative regret bound of the current ask.
This reflects the intuition that without knowing the similarity between prior tasks and the current task,
utilizing more information from prior tasks may not benefit the current task. We justify the selected
hyperparameters in the experiments based on the incurred regret. Furthermore, V-set is adaptively
updated as observations are accumulated from one iteration to the next. This naturally adjusts the
effect of prior tasks on the current task as discussed in Remark [3.4] ensuring meta-VBO’s robustness
to prior harmful tasks. In Sec.[3.3] we propose a strategy to recommend an input that approximates
the optimal solution at each iteration such that its instantaneous regret diminishes towards zero as the
iteration progresses (Theorem[3.7). Last, we empirically evaluate the performance of meta-VBO in
optimizing VaR and CVaR of several synthetic and real-world objective functions in Sec. 4}

2 PRELIMINARY

2.1 BO OF RISK MEASURES

We are interested in maximizing a blackbox objective function f (e.g., the performance of a system)
that depends on both the decision variable x € X and the environmental variable z € Z, where X
and Z are bounded subsets of R and R, respectively. We assume that A’ and Z are discrete
for simplicity, though the results can be extended to continuous domains (Srinivas et al., [2010;
Chowdhury and Gopalan, 2017). Furthermore, in the real-world environment, x is controllable
while z (e.g., weather conditions and random errors) is not. Hence, the environmental variable is
represented as a random variable, denoted as Z. We assume that the distribution of Z is known, e.g.,
by estimating from historical data or domain knowledge. These settings are adopted from the existing
works of |(Cakmak et al.| (2020); Nguyen et al.| (2021bja).

Due to the randomness in Z, evaluating the blackbox function at a particular value of x can result in
a high value under one realization of Z but leading to a low value under another realization of Z. In
other words, the evaluation of f at x is a random variable, denoted as f(x, Z), whose randomness is
induced by Z. Therefore, to determine the “optimal” design variable x,, one cannot directly compare
the function evaluations at different values of x. An alternative approach is to consider a risk measure
of the distribution of f(x,Z) which accounts for the probability (or the risk) that f(x,Z) suffers
from poor realizations. In this paper, we examine two risk measures for f(x, Z): value-at-risk (VaR),
denoted as vy (x; o), and conditional VaR (CVaR), denoted as ¢ (x; «). Here, o € (0, 1) represents
a known risk level. VaR and CVaR are defined as follows:

vi(x;a) £ inf{y: P(f(x,Z) <v)>a} cr(x;a) & é/o ve(x;a’) da’ . 1

While v (x; a) can be viewed as 100a%-percentile of f(x,Z) (i.e., the event that f(x, Z) suffers
from realizations lower than vy (x; «) happens with a probability of at most «), c(x; ) is the
expected value of f(x,Z) in the worst 100a% of cases. To avoid unnecessary repetition, we unify
the notations of both VaR and CVaR as p¢(x; «). The notations v (x; ) and ¢f(x; a) are only used
when VaR and CVaR require distinct treatments.

Given the risk measure py(x; ) and the distribution of Z, the BO of risk measure problem
aims to search for the maximizer x, £ argmax,,y ps(x;a) (Cakmak et al., 2020). Since f
is unknown, determining this maximizer typically involves iteratively observing noisy evalua-
tions y(x¢,z¢) = f(x¢,2¢) + €(x¢, z¢) for iteration ¢ > 1 where e(x;,z¢) ~ N(0,02) are i.i.d. Gaus-
sian noises )| Furthermore, it is often expensive to obtain these evaluations (e.g., requiring running
expensive simulations). Thus, the crux of the problem lies in devising a selection strategy of the
input query (X, z;) at iteration ¢, considering observations in the previous ¢ — 1 iterations, denoted

asyp, = (y(xu,2z¢))5_, where Dy £ ((x4r,24))!_,, to quickly discover x..

We model f with a Gaussian process (GP) (Rasmussen and Williams| 2006). Specifically, we
use a constant GP prior mean function po and a squared exponential kernel k(x ) (x’ .2/ £
cov[f(x,2), f(x',2")] = o2exp(—0.5(x—x") TA;2(x—x')—0.5(z—2') "TA;?(z—2)) where A, =

2We adopt the settings outlined in previous works of|Cakmak et al.|(2020); Nguyen et al[(2021a)) such that z
is controllable during the optimization (discussed in Sec. E[)



Published as a conference paper at ICLR 2024

diag(ly,...,1q), A, = diag(lgs1,...,lara ), and o2 are the lengthscales and the signal variance,
respectively. Given yp,, the posterior belief of f(x,z) is a Gaussian distribution with the following
mean and variance

pe(x,2) = p1o + Kx 2 0, A, (YD, — 110) 07(%,2) £ k(x.2) — K(x,2) D, AD, KD, (x.2)

1 . ‘ o .
where Ap, £ (Kp,,p, +02I) ", K is the covariance matrix, and I is the identity matrix.

The performance of a BO algorithm is often analyzed through the cumulative regret, denoted
as Ry = Zle 7(x¢) where 7(x;) £ py(X.; ) — py(x4; @) is the instantaneous regret at the input
query x;. The algorithm is no-regret if its cumulative regret is sublinear, i.e., limy_, o Ry /T — 0.
In such a case, the simple regret St = min,—1__r7(x;) < Rr/T approaches 0. This suggests
that one should recommend the best observed input so far as the outcome of the optimization, e.g.,
in the vanilla BO problem with a small noise. Unfortunately, in BO of risk measures, pf(x;; a) is
unobserved due to the unobserved f(x¢,z) for (x;,z) ¢ D;. This prevents us from determining the
best observed input. Therefore, we will design a recommendation strategy such that the instantaneous
regret (x;) at the recommended input x} approaches zero as ¢ — oo in Sec.

2.2 META-BO OF RISK MEASURES

Unlike existing works on BO of risk measures, our approach in this paper considers a set 7 of prior
tasks. Let f : X x Z — R denote the blackbox function of the current task and f. : X x Z — R
denote the blackbox function in a prior task 7 € 7. Furthermore, to facilitate later theoretical
analysis, we follow the works of |Chowdhury and Gopalan| (2017) to assume that all blackbox
functions belong to the reproducing kernel Hilbert space (RKHS) associated with the kernel £ and
a bounded RKHS norm, i.e., ||f|lx < Band V7 € T, || f-|lx < B. The optimization result of a
prior task 7 € 7T includes the GP posterior mean and variance of f,, denoted as i, : X x Z - R
and 52 : X x Z — RT, respectively. Meta-BO of the risk measure p aims to utilize (fi,,o2),cr
to improve the optimization of py. However, the similarity between f and f. (hence, between py
and py, ) is unknown for all 7 € 7. In particular, if py, differs from p¢, naively utilizing fi,, 52 to
optimize py can deteriorate the optimization of py.

Under the assumption that blackbox functions belong to the RKHS space with a norm bounded
by B, we first revisit the well-known confidence bound of f(x,z) from the work of Chowdhury and
Gopalan|(2017). Let v; denote the maximum information gain about f that can be obtained from
any set of ¢ — 1 observations. Choosing & € (0,1), 8; = (B + 05,1/2( + 1 + log 1/5))?, then the
event that V¢ > 1,Vx € X,Vz € Z, [,(x,2z) < f(x,2z) < w(x,z) holds with probability > 1 — §
where the lower and upper confidence bounds are defined as

li(x,2) = pe(x,2) — Btl/zat(x,z) and  uy(x,z) 2 pe(x,2) + ﬁtl/zat(x,z) ,resp. (2)

Leveraging on the above confidence bounds I; and wu;, [Nguyen et al.| (2021bja)) propose the fol-
lowing confidence interval of the risk measure p(x; ) (applicable to both VaR and CVaR): with
probability > 1 — 4,

VE>1, Vx € X, pr(x;a) € [p, (x5 @), pu, (x5 Q)] . 3)

where [; and u; are defined in equation (2) and py, p;,, pu, can be replaced by vy, v;,, and v, for
VaR or by ¢y, ¢,, ¢, for CVaR in equation . For a prior task 7 € 7, we denote the confidence
interval of f.(x,z) as [I;(x,2), U, (x,2)] which is defined in equation (2) using the GP posterior
belief (fi,,52) of f, and the index of the last optimization iteration of task 7. Then, the confidence
interval of the risk measure p;_(x; a) of prior task 7 is [pr (x; @), pa, (x; )]

3 OUR PROPOSED SOLUTION TO META-BO OF RISK MEASURES

Typically, at each iteration of the GP-UCB algorithm (Srinivas et al., 2010), there is only one option
to select the input query from (assuming a unique maximizer of the GP-UCB acquisition function).
Hence, in order to incorporate the information from prior tasks, the existing RM-GP-UCB (Dai et al.|
2022) takes a weighted average of the GP-UCB acquisition functions of the current task and prior
tasks. However, these weights depend on the maximum difference between f and f. evaluations,
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Figure 1: (a) Plot of V; = {xg, xj‘ , X2} with A\ = 0 and 7 = 1. The dashed line shows the confidence
interval of py(x.; ). While x; and x; violate UC, x3 violates OC. (b) Plot of an informative prior
task 7 where V; \ P, |y, # (. (¢) Plot of an uninformative prior task 7 where Py, = V;.

known as the function gap, at observed inputs. Defining such a gap notion for risk measures is not
obvious. Moreover, the function gap is susceptible to function transformations such as scaling and
vertical-shifting. Last, in order to achieve theoretical performance guarantee, RM-GP-UCB requires
the weights of prior tasks to decay to zero.

In contrast, our meta-VBO approach tackles the problem from a different perspective that not only
exhibits robustness against scaling and vertical-shifting transformations but also eliminates the explicit
need for diminishing the effect of prior tasks via weight decay. Specifically, in the next section, we
offer multiple choices of the input query in the form of a versatile query set (V-set), denoted as V;
(depending on iteration ¢), such that any input query sequence in the Cartesian product Hthl Vi
incurs a sublinear cumulative regret,

NgE

1
xttle]:[Vt, hm —RTfhm?

—00 T—o0

r(x¢) =0. 4)
t=1

The flexibility of choosing any input query x; € V; grants us the opportunity to incorporate informa-
tion from prior tasks into the current optimization task as elaborated in Sec.[3.2]

3.1 VERSATILE QUERY SET

Intuitively, the versatile query set (V-set) V; should (C1) contain those inputs that are likely to be the
maximizer of py. Furthermore, we would like to avoid over-exploitation at inputs with well-estimated
risk measures where gathering observations leads to a minimal progress towards discovering x.. This
is done by introducing another criterion (C2) to exclude inputs with well-estimated risk measures
from V;. These two key criteria (C1) and (C2) are formulated as follows.

(C1) To determine whether an 1nput is likely to be the maximizer of py, we obtain the following
confidence interval of ps(x,; «) in App. l IAl With probability > 1 — 4,

VE> 1, pr(xa;) € [p, (%7 50), pu, (x5 0)] 5

where x; £ argmax,cy pr, (x;@) and x;7 £ arg max,c y pu, (x; @). It is noted that x;” is the
input query at iteration ¢ in V-UCB (Nguyen et al.,[2021b) and CV-UCB (Nguyen et al.,|2021a)). For
an input X’ to be the maximizer x, of py (i.e., the above condition (C1)), the confidence interval
of its risk measure py(x’; ) should overlap with that of the maximum risk measure ps(x,; o),
i.e., pu, (x';a) > pi,(x; ;) from equation (3) and equation . Hence, we propose to formulate
(C1) as the following overlapping condition (OC): For an input x’ to be in V;,

pun(X'300) > p1, (x;750) + A (pu, (%7 300) = pi, (x50)) - for A € [0,1] . ©)

As A = 1, py, (X'50) = py, (x]7; @), i.e., the overlap between the confidence interval of py(x’; @)
and that of p¢(x.; c) at iteration ¢ increases. When A = 1, the set of inputs satisfying OC reduce to

only the input query x;” of V-UCB (Nguyen et al., 2021b) or CV-UCB (Nguyen et al., 2021a).

(C2) We would like to exclude inputs with well-estimated risk measures by ensuring that the
uncertainty of their risk measures is relatively high compared to that of the maximum risk mea-
sure pr(x,;a). Specifically, we propose to formulate (C2) as the following uncertainty condition
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(UC): For an input x’ to be in V;,

(pulctio) = pu(xiia)) fornelL 1A @)

uncertainty of p s (x’; @) uncertainty of p s (X ; &)

SEES

pu, (X5 00) — pr, (x5 0) >

If n > 1/A, OC implies UC since p;, (x; ;) > pi,(x;a) Vx € X (from the definition of x; ).
Hence, we are only interested in UC when 7 < 1/ as specified in equation .

To sum up, we define V-set V; as the set of inputs x € X’ that satisfy both OC in equation (6) and
UC in equation (7)) (illustrated in Fig.[Th). The conditions of A < 1 and > 1 ensure V; is always
non-empty which follows from the following Lemma 3.1] (proved in App. [B).

Lemma 3.1. Forallt > 1, V; contains x;".

We note that the size of V; is non-decreasing when \ decreases or 7 increases. Specifically, A = 1
implies 7 = 1 (since n € [1,1/A]) and OC implies UC. In this case, V; = {x;"} (assuming p,, has a
unique maximizer), i.e., V; reduces to the UCB-typed input query such as those in V-UCB (Nguyen
et al., |2021b) and CV-UCB (Nguyen et al.| 2021a). There is not any flexibility in choosing x;
from V; = {x;" }, which prevents us from incorporating the information of prior tasks into the current
task. However, when A < 1and 5 € [1,1/)], V; contains other inputs than the popular input query x;"
of UCB-typed algorithms. This is a trade-off between prior tasks (existing knowledge) and the current
task (new knowledge). When A = 1 (V; = {x;F 1), we utilize only observations from the current
task. Conversely, decreasing A (increasing |V;|) promotes the exploitation/utilization of prior tasks to
select an input query in V. This fask-specific trade-off is distinct from the conventional (function-
evaluation-specific) exploration-exploitation trade-off associated with estimating the maximizer in
V-UCB (Nguyen et al.,[2021b)) and CV-UCB (Nguyen et al.,|2021a) (pertaining to a particular task).

Given the selected x; € V;, we adopt the choice of z; in the existing works of Nguyen et al.| (2021bza).
In particular, if the risk measure is VaR, then z, is selected as a lacing value (LV) w.r.t. Xy, Iy, uy,
and a If the risk measure is CVaR, we first find the risk level o £ arg MAaX, ¢ (0,a] Vu, (X3 Q) —
vy, (X¢; @'). Then, z; is selected as an LV w.r.t. Xy, Iz, u¢, and «;.

Interestingly, given the above choice of z;, any choice of x; in our proposed V; results in a sublinear
cumulative regret as shown in the following Theorem [3.2] (proved in App. D). In other words, we
achieve the goal of constructing V; that satisfies equation ().

Theorem 3.2. Given the selection of Xy as any input in V; and the selection of z, from the works
of INguyen et al.|(2021bla), the algorithm achieves a sublinear cumulative regret:

VI'>1,Rr < (n(1 = A)+ 1)/CiTBryr (8

holds with probability > 1 — & where Cy = 8/1og(1+ 0., 2); 1, Br, 0 are defined in equation ; A
and n are defined in equation (6) and equation (7), respectively.

Given the flexibility of choosing x; in V;, we are now able to transfer the information from prior
tasks to the current task by assigning different priorities to inputs in V;.

3.2 ASSIGNING PRIORITY TO INPUTS IN VERSATILE QUERY SET V;

Since selecting any input query x; € V; results in a no-regret algorithm (Theorem [3.2), we would
like to exploit the results of prior tasks to assign varying degrees of importance (i.e., priorities) to
inputs in V;. To be robust to scaling and vertical-shifting of the blackbox function, the priority is
based on the location of the maximizer rather than the estimated risk measure value. Besides, to
provide more opportunities for transferring information between tasks, we consider the case that the
global maximizer of the current task is the local maximizer of a prior task. Hence, we assign higher
priorities to inputs that have a higher chance of being a local maximizer (restricted to V;) of prior
tasks. For this reason, we propose the notion of the probable local maximizer set, denoted as Py,
which contains inputs that are probably a local maximizer restricted to V; of py_:

Priv, £ {x € V| pa, (x;0) > max gy, (x';0)} . )

3Lacing values zry W.r.t. X, Iy, ut, and o satisfy I (x, zryv) < g, (%5 @) < vy, (X5 @) < ug(X, zry) (Nguyen
et al.| [2021b).
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An alternative assumption is that the global maximizer of the current task is close to that of a prior task,
then we can consider the probable global maximizer set, defined as Prjx £ {x € X| pg, (x;0) >
maxxex py (x';a)}. Since using Py does not substantially change the implementation of meta-
VBO in comparison to using P;|y,, we only focus on the probable local maximizer set Py, in
this paper. Figs.|Ib and [lk show the set Py, of inputs x € V; such that pg_(x; @) is above the
dash-dotted line representing maxyx’cy, Pr. (x'; ). Essentially, we transfer the information about
the local maximizer restricted to V; of prior tasks to the current task. This is an unexplored direction
in the current meta-BO literature.

Given the probable local maximizer set Py, , the priority of an input x € V;, denoted as m;(x), is
measured by the number of the probable local maximizer sets that x belongs to, i.e.,

m(x) 2 lyep,y, - (10)

TET

The higher 7;(x) is, the more likely that x is in the probable local maximizer set of a prior task.
Hence, we select the input query x; as

X = max py, (x; ) where Vi max = {x € V| mi(x) = max m(x")} . (11)
Remark 3.3 (Prior harmful tasks). The local maximizers of p;_in a prior harmful task restricted
to V; are different from that of py of the current task. Contrary to the intuition suggesting that prior
harmful tasks may bias meta-VBO away from the desirable maximizer x,, Theorem [3;2] asserts that
our algorithm maintains a sublinear cumulative regret by constraining the choice of x; to the V.
However, one could reasonably anticipate a potential reduction in the convergence rate, as empirically
shown in Sec.[4] due to the influence of prior harmful tasks.
Remark 3.4 (Informativeness of a prior task). If 7 (x) is constant for all x € Vy, it results in Vi max =
V; and x; = x;. This happens when there are not any prior tasks or when the BO results of prior
tasks are uninformative in the local region V4, i.e., Pry, = V; V7 € T.Asx; = xt+ in these cases,
our meta-VBO algorithm reduces to V-UCB (Nguyen et al., [2021b) or CV-UCB (Nguyen et al.,
2021a)). Fig. |l illustrates an iteration ¢ where prior task 7 is uninformative as V; = P}y, while
Fig.[Ip shows the case that 7 is an informative task. It is noted that the informativeness of a prior task
w.r.t. the current task depends on V;, hence, the iteration ¢. A prior task may be informative when we
have not gathered many observations on the current task (V; is large such that 7.y, is a strict subset
of V;), but it may become uninformative when many observations are acquired (V; is small such
that Py, = V4). When a prior task is uninformative, it does not influence the optimization of the
current task in our meta-VBO algorithm (from the definition of 7;(x) in equation ). Hence, the
effect of a prior task on the current task is adaptively controlled by V; as illustrated in Appendix [}
This approach contrasts with that of |Dai et al.|(2022)) that explicitly requires a schedule of the weight
decay based on the function gap.
Remark 3.5 (Scaling and vertical-shifting of the blackbox functions). Our proposed meta-VBO
depends on V; and Pr)y,. These sets rely on comparing risk measures at different inputs which
remains unchanged under scaling or vertical-shifting of the blackbox function. Hence, our algorithm
is robust to these transformations.
Remark 3.6 (Meta-VBO for vanilla BO and adversarially robust BO). As our proposed meta-VBO
depends on the upper and lower confidence bounds of function evaluations, it is sufficiently general
to address the vanilla meta-BO problem (see Appendix [F)). Its potential applicability to the meta-
learning of other UCB-typed algorithms remains an area for future exploration. Furthermore, since
adversarially robust BO is a special case of BO of VaR o — 07 (Nguyen et al.,[2021b), our proposed
meta-VBO directly applies to adversarially robust BO (see App. [G).

3.3 DECISION VARIABLE RECOMMENDATION STRATEGY

At iteration ¢, we propose to recommend x; = x,) where ((t) £ argmaxy ey 4y 1, (X5 ).
We prove that its instantaneous regret approaches zero in App.
Theorem 3.7. Let ((t) £ arg maxy ey, 4} Pl (X5 @), then, by recommending x; = X () the

instantaneous regret at X} is bounded: r(x}) < n+/C1 Byt /t with probability > 1—6 where 1, Cy, By,
and v, are defined in Theorem[3.2]



Published as a conference paper at ICLR 2024

As sublinear bounds of v; are established for common kernels such as the SE kernel in the work
of Srinivas et al.|(2010), the instantaneous regret at X} = xg( £ approaches zero as t — oo. Further-

more, we should choose 7 = 1 to minimize the upper confidence bound of r(x}) in Theorem
Given 7 = 1, we choose A € [0, 1] to trade off between the flexibility in choosing x; (i.e., the
size of V-set) and the upper confidence bound of the cumulative regret R at the input queries in
Theorem[3.2} In the experiments, as we want to exploit the solutions of prior tasks, we maximize the
size of V-set by setting A = 0. In this case, the upper confidence bound of Ry is two times that of
V-UCB (Nguyen et al.,[2021b) and CV-UCB (Nguyen et al.,2021a): Ry < 2+/C11 Bryr.

4 EXPERIMENTS

Given the absence of prior research on meta-BO of risk measures, we compare the performance of our
proposed algorithm under different sets of prior tasks to that of V-UCB (Nguyen et al., 2021b) which
is equivalent to our proposed algorithm when there are not any prior tasks, i.e., 7 = (). Recall that our
emphasis in this paper is on transferring the optimization results, rather than transferring the surrogate
model, as discussed in Sec.[I] Therefore, we exclusively focus on independent GPs. They are also
more practical due to their lower computational overhead, while still enabling us to provide fair
comparisons to empirically demonstrate our advantage over V—UCBE]Our goal is to empirically verify
whether our proposed algorithm is (i) able to exploit the information from prior informative tasks to
improve its converge rate in comparison to V-UCB even if harmful tasks exist in 7 and (ii) robust to
prior harmful tasks even if there are not any useful tasks in 7. To achieve this, we design different
sets of prior tasks: Tisefu1-pos-scale (i-€., positive scaling of the blackbox function of the current
task: f;(x,2z) = af(x,z) for a > 0), Tuserul-vsnie (i-€., vertical-shifting f(x,z) = f(x,z) + b
for b € R), Tharmful-neg-scale (i-€., negative scaling f-(x,z) = —f(x,2)), and Tharmrul-nshi et
(i.e., horizontal-shifting f,(x,z) = f(x + &, z) for £ € R%). Additionally, 7., is the union of the
above 4 sets. We note that Tnarnsu1-neg-scale contains the most harmful task as the function evalua-
tions are negated. On the other hand, horizontal-shifting along the x dimensions in 7yarneu1-nshirt
moves the location of the maximizers away from that of the current task. As explained in Sec.

we set A = 0 and ) = 1. We present additional experimental results of meta-BO for CVaR in App. [l}

The experiments are performed on 6 synthetic functions: a Gaussian curve, the Branin-Hoo, the
Goldstein-Price, the six-hump camel, the Hartmann-3D, and the Hartmann-6D (obtained from
https://www.sfu.ca/~ssurjano); and using 2 real-world datasets: the yacht hydrodynam-
ics dataset (Dua and Graff] 2017) and a portfolio optimization dataset (obtained from the existing
works of |(Cakmak et al.|(2020); Nguyen et al.|(2021a))). In the first 4 experiments, both the dimensions
of x and z are set to d = d’ = 1. In the Hartmann-3D experiment, d = 2 and d’ = 1, while in
the Hartmann-6D experiment, d = 5 and d’ = 1. In the yacht hydrodynamics experiment, the
optimization problem is to minimize VaR of the residuary resistance per unit weight of displacement
of a yacht by controlling the its 5-dimensional hull geometry coefficients. The environmental random
variable is the 1-dimensional Froude number. The blackbox function is generated by fitting a GP to
the yacht hydrodynamics dataset (Dua and Graff,|2017). In the portfolio optimization experiment,
we follow the work of (Cakmak et al., 2020) to optimize a portfolio by controlling d = 3 decision
variables subject to the randomness in the bid-ask spread and the borrow cost (i.e., d’ = 2). The
blackbox function is generated by fitting a GP to the simulated portfolio dataset. The risk level is set
at o = 0.1 for all experiments.

The average and the standard error of (x}) (in Sec. [3.3)) over 30 random repetitions are shown in
Fig.[2] It is noted that the curves of useful-pos-scale, useful-vshift, and all overlap
each other in Figs. 2h, 2k, and [Zg. In these figures, we observe that when 7 contains only prior
useful tasks in Tsefu1-pos-scale aNd Tisefu1-vsni£e, our proposed meta-VBO outperforms V-UCB
which does not utilize any prior tasks. Notably, even when 7 contains both harmful and useful tasks
in 7311, meta-VBO still outperforms V-UCB. In the extreme case when 7 contains only harmful
tasks in Tharmeul-neg-scale ANd Tharmeul-nsnise, meta-VBO does not outperform V-UCB, but it still
converges to a low-regret solution. In Fig. , meta-VBO given the set Tharmeu1-neg-scale performs
poorly probably due to the large input space and the function surface of the Hartmann-6D. We can

*When computation cost are affordable, one may combine a method that transfers the surrogate model with
our algorithm by simply replacing independent GPs with a multitask GP because our algorithm only relies on
upper and lower confidence bounds that are readily obtainable from a multitask GP model.
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Figure 2: Plots of the regret at the recommended input against the BO iteration in experiments
with (a) a Gaussian curve, (b) the Branin-Hoo function, (c¢) the Goldstein-Price function, (d) the
six-hump camel function, (e) the Hartmann-3D function, (f) the Hartmann-6D function, (g) the yacht
hydrodynamics dataset, and (h) the portfolio optimization dataset.
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Figure 3: Percentage of prior tasks whose probable local maximizer sets contain the input query
(grouped by the transformation) at different BO iterations in the experiment with the Gaussian curve
and the set T,;; of prior tasks. The percentage is computed over 30 repeated experiments.

also observe the percentage of prior tasks whose probable maximizer sets Py, containing x; in
Fig.[3} It shows that as we gather more observations, the percentage of harmful tasks whose Py,
contains x; reduces.

5 CONCLUSION

In this paper, we propose meta-VBO which is the first algorithm for meta-BO of risk measures by
proposing a new concept of V-set and leveraging prior tasks to prioritize inputs in this set. Our
algorithm offers a theoretical performance guarantee even when prior tasks are harmful. Furthermore,
we propose a recommendation strategy that suggests an input as the result of the optimization, with
a proof of its instantaneous regret approaching zero. The empirical performance of the proposed
solution is demonstrated through several synthetic function benchmarks and real-world objective
functions. In the future, we would like to study our meta-VBO approach to perform meta-learning

for other BO variants such as federated BO 2020), preferential BO (Gonzalez et all 2017}

Nguyen et al}, 2021c), BO for finding Nash equilibria 2023), and BO with unknown
constraints (Nguyen et al., [2023).

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of both the theoretical and experimental results in our paper, we
have clearly elaborated on our assumptions, the proofs of the theoretical results, and provided the
implementation of the experiments. In particular, our main assumptions are stated in the third
paragraph in Sec.[T]and the first paragraph in Sec. 3] The details proofs of our theoretical results are

shown in Appendices[A] [El and
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A CONFIDENCE INTERVAL OF py(X,; @)

In this section, we prove a confidence interval of p;(x,; a):

VE > 1, pp(xe; ) € (o1, (X7 5 0), pu, (x5 )]
holds with probability > 1 — 4.

Proof. Let us assume that ps(x;«) is in its confidence interval, i.e., the event V¢ > 1,Vx €
X, pr(x; @) € [pr, (%5 @); pu, (x; @)] holds (which happens with probability > 1 — ¢§). Furthermore,
we define the following inputs in equation (3)).
X, = argmax py, (x; a) X, £ argmax p,, (x; a) .
xeX xeX
Then, Vx € X, Vt > 1, pr(xs;a) > pr(x; ) > pr, (x; o). Hence,

Wt > 1, pr(x.a) > max py, (x; )
xeX

ie,Vt > 1, pr(xe; ) > pr, (x4 5 00) . (12)
Furthermore,
VE> 1, pr(xea) < py, (xga) < max py, (x;0) = pu, (x5 0) . (13)
xE

From equation (I2) and equation (I3),
VES 1, py(xa;0) € (o1 (555 00, pu, (55 0)]

B PROOF OF LEMMA [3.1]
In this section, we prove that when A < 1l andn > 1, xf € V.

Proof. To show that x;” € V;, we show that x;" satisfies both OC equation (@) and UC equation (7)
conditions.

¢ OC: We observe that when \ < 1,
puc (X3 0) = pr (x5 0) + (pu, (573 0) = pr. (%75 )
> pr, (¢ 50) + A (pu, (575 0) = o1, (x50 -
Hence, x;" satisfies OC equation (@) when A < 1.

* UC: We observe that whenn > 1,
- 1 _
Pu (5 00) = pu, (x750) > pu, (x5 0) = pr, (x5 0) > p (Pu, (x5 0) = pr, (%73 ) -
Hence, x; satisfies UC equation (7) when n > 1.

O

C REVIEW OF THE UPPER CONFIDENCE BOUND OF THE p,, (X¢; &) — py, (X4 @)
Recall that the lacing value (LV), denoted as z y w.r.t. X, l;, us, and «, is defined as the input in Z
that satisfies the following property (Nguyen et al.,|2021b)

li(x,21y) < vy, (%5 0) < vy, (x50) < ug(X, 2v) (14)

The existence of LV is proved in (Nguyen et al.,2021b). It plays an important role in the choice of z,
given x; in V-UCB (Nguyen et al.,|2021b)) and CV-UCB (Nguyen et al.l 2021a)). Specifically, given
the input query x;, the works of Nguyen et al.[(2021bfa) select z; as follows:

12
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* If we are optimizing VaR of f(x, Z), z; is selected as an LV w.r.t. Xy, l;, u;, and o (Nguyen
et al.,[2021b).

* If we are optimizing CVaR of f(x,Z), z; is selected as an LV w.r.t. Xy, I3, us, and o £
arg max: ¢ (g,a) Vu, (Xt; &) — vy, (x¢; ') (Nguyen et al., 2021a).

We repeat the derivations in the works of Nguyen et al.|(2021b)) and Nguyen et al.| (2021a) to show
that with probability > 1 — 4, for any input query x; € X and the above choice of z;,

Py (Xe3) — pr, (x15.0) < 28,20 (x, 2¢) - (15)

It is noted that equation does not require any specific choice of x;. Due to the different choices
of z, in the optimization of VaR and CVaR, they are treated separately as follows.

C.1 OPTIMIZATION OF VALUE-AT-RISK

As z; is selected as an LV w.r.t. x4, l;, us, and ¢, it follows from the definition of LV equation
that

Uy (Xt; Oé) — U, (Xt; 04) < Ut(Xu Zt) - lt(Xt7Zt) = 25,51/20t(xt,zt) . (16)

C.2 OPTIMIZATION OF CONDITIONAL VALUE-AT-RISK

From the definition of CVaR in Sec.[2.11

1 «
Cu, (X5 0) — ¢, (X5 0) = E/ U, (Xg;0) — vy, (%45 0) da .
0

Recall that oy £ arg MAaX, ¢ (0,a] Vu, (X3 &) — 01, (25 07),

Va! € (0,a], vy, (x4 Q") — v, (x450") < vy, (Xe5 1) — v, (X5 )

A Y
ie., a/ Uy, (X¢;0) — vy, (%45 0") do/ <
0

(o3
O, (Xe5 ) — 1, (X5 ) d’

e (X3 Q) — vp, (X5 )
Therefore,

Cuy (Xt @) = 1, (%45 0) < vy, (%45 001) — i, (%45 )
Since z; is selected as an LV w.r.t. x;, l;, u;, and oy,

Uy (xt;00) — Ul,,(Xt;Oét) S ug(Xe,2¢) — (X, 2e) -
Hence,

Cu (Xt @) — 1, (%45 @) < ug(Xe, 2e) — le(Xe,24)
=28}"20,(x¢, 24) . (17)

As a result, equation (T3] follows from equation (I6) and equation (I7).

D PROOF OF THEOREM [3.2]

First, we prove an upper confidence bound of the instantaneous regret 7(x;) £ p(X.; ) — ps(Xs; @)
in the following lemma.

Lemma D.1. Given x, € V,, i.e., x; satisfies both OC equation ([6) and UC equation (7)), and z, is
selected as an LV w.r.t. Xy, ly, uy, and o (if optimizing VaR) or a; = arg MAaX, ¢ (0,0] Vue (Xt o) —
vy, (X¢; ) (if optimizing CVaR), then

VE> 1, r(x) <21 = N) + 1) B %0y (x4, 24)
holds with probability > 1 — 6.

13
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P (x; Q) pu, (X7 @)
— - pp(xa) 2L

Pu, (Xt )

%mduublo (A)_H:ein'(duciblo (B)%
D upper confidence bound of r(x;) ;1

Figure 4: Decomposition an upper confidence bound of r(x;).

Proof. Assuming that Vx € X, Vt > 1, py(x;a) € [p,(x; @), pu, (x; )] which happens with
probability > 1 — 4.

We decompose an upper confidence bound of the instantaneous regret (x;) into two parts.
r(xe) £ pr(xa) = py(xe)
= Puy (X*) — Pl (Xt; a)
S Puy (Xt+; a) — Pl (Xﬁ Oé)
= [pu: (%73 0) = pu, (%45 0)] + [pu, (xe30) — p1, (x5.0)] - (18)

irreducible (B) reducible (A)

Hence, an upper confidence bound p,, (x;"; &) — py, (x¢; @) of r(x;) is decomposed into (A) a
reducible part and (B) an irreducible part. (A) is called the reducible part because gathering ob-
servations at x; reduces the uncertainty of ps(x;; ), hence, reducing (A), while (B) is called
the irreducible part because it is likely that gathering observations at x; does not reduce the (B)
(as py(x¢; &) < pu, (%4; ) with high probability). As a result, the primary difficulty is in bounding
this irreducible part (A).

Fortunately, we select x; € V; such that it satisfies both (OC) equation @ and (UC) equation
conditions, so the irreducible part (B) can be associated with the reducible part (A) as follows.

pu. (X;50) = pu, (%¢5.00)
irreducible (B)
= [pu, (xi750) — p1, (%7 50)] = [pu, (xe50) — p1, (x5 0)]
< [pu (575 0) = pu, (%7 50)] = A [pu, (%7750) = pi, (x750)] - from (OC) equation (6)
=1 =N [pu, (x"50) = p1, (x5 )]
<n(l-2X) [put (%45 0) — pr, (%43 a)} from (UC) equation (7) and A < 1. (19)
reducible (A)
Plug equation (T9) into equation (T8),
r(xe) < n(1 = A) [pu, (xe50) = pr, (X5 Q)] + [pu, (365 ) = pr, (345 )]
= (1 =) +1) [pu, (%45 @) = p1, (%45 )]
<2(p(l—X)+1) ﬂt Ut(xt,zt) from equation :

O

Remark D.2. The reader may observe that one intention behind of (OC) and (UC) is to ensure the
relationship between the irreducible part (B) and the reducible part (A) in equation (I9). Then,
instead of imposing 2 conditions (OC) and (UC), he/she may suggest we directly define an alternative

versatile query set Q; by imposing this relationship, e.g.,

Qi 2 {x € X[ pu, (x30) = pu, (x50) < pu, (x50) = p1, (x;))} (20)
for v > 0. However, the above~ definition equation of @t is insufficient for the goal of optimiz-
ing pr(x; a). This is because Q; contains those inputs x € X that do not satisfies (OC) equation @),

14
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ie., pu, (X; @) < pi, (x5 ; @), which are unlikely to be the maximizer of ps(x; o). Hence, sampling at
these inputs is inefficient as they may not provide any information on the maximizer x,. Furthermore,

while (OC) and (UC) are interpretable as described in Sec. interpreting the definition of @t
in equation (20) is more challenging. As a result, the versatile query set V; is defined based on (OC)
and (UC) conditions which naturally lead to the relationship in equation (I9).

Given Lemma D.1] with probability > 1 — 4, the cumulative regret Ry is bounded by
T
Rp £ r(xy)
t=1
T
=2(n(l-=X)+1) Zﬁtl/2ot(xt, Zt) (from Lemma[D.T)
t=1

T
<2(m(1—A)+1) ;/2 Z o1 (X, Z¢t) (from the monotonicity of 5;) .
t=1

To prove Theorem [3.2] it remains to show that

T
261>y o1(x1,21) < VO TBrr 1)
t=1

where C; = 8/log(1 + o,,2), which follows directly from the work of |Srinivas et al. (2010).
Specifically, using Cauchy-Schwarz inequality,

T 2 T
487 <Z Ut(Xt, Zt)) < 45TTZU§(Xt,Zt) .
t=1

= t=1

Following Lemma 5.4 in (Srinivas et al., [2010), ZZ;I 4Br0%(x4,2) < C1Bryr where C; £
8/1og(1 + o,,2). Hence,

- 2
46T <Z Ut(Xt,Zt)> < CiTBryr
=1

T
26;/° > or(xi,2i) < /L1 TBrr -

t=1

As aresult,

Ry < (n(1 = X))+ 1)/CiTBevr -

E PROOF OF THEOREM [3.7]

Recall that x, £ arg max, v o1, (X; @) and at iteration ¢, we recommend X} = x 0 where

¢(t) £ argmax pr, (X5 ) . (22)
t'e{l,... t}

We need to prove that with probability > 1 — 4,

r(xy) = T(XZ@) <V C1Bive/t .

Proof. From the definition of ¢(t) in equation (22)),

plgm(x&t);a) >, (Xp;a) V1<t <t.
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Hence,

Pre (e 7tht/ X5 0) (23)

t'=1
(X)) = pp(xaa) = Ps(Xe(pyi @)
< pp(xesa) = pzw) (X¢(eyi @)

<p X*, -7 Z Pl Xt,, 24)

t’l

n Z pf Xx; ) = 1, (Xt’ ) Oz))

t' 1
1 t
<2 (puy (xi0) = i, (x5 )
t'=1
S " Z put/ Xt/7 plt/ (Xt/ ’ O{))
t' 1
1< 1
< > min (77 (Puy (o273 ) = pu, (x03@)) 5 5 (P, (X3 @) = 1, (%75 a))) (25)
t'=1
1
< Z min <77 Pu, (Xe50) — pr, (X5 @) 3 (pu, (xe50) — pu,, (Xt’Qa))) (26)
t' 1
= Z 1 (Pu,, (x5.0) = pu, (%075 ) (27)
t' 1
<= Z (2,5; oy (Xyr, zt/)) (28)
t' 1
< - Z (2515 op (X, zt/)) (from the monotonicity of §;/)
t/ 1
< gv C1tBye (29)

Clﬁt’}’t/t~

where equatlon 12}} is from equation (23); equation (23) is from OC e uation (6) and UC equa-
tion (7); equation (26) is because p;,, (x;,; @) > pu,, (Xu; @); equation (27) is because 7 € [1,1/A];

equatlon (28) is from equation (T5); equation (29) is from equation (]2;1'[)
O

F META-VBO FOR VANILLA BO

F.1 BO WITH V-SET
In this section, we consider the vanilla Bayesian optimization (BO) of a blackbox function. The
setting is similar to Sec. [2.T]except that there are not any environmental random variables.

In particular, let the blackbox function be denoted as f : X — R. The evaluation of f is expensive
and we can only observe noisy evaluation y(x) = f(x) + €(x) where ¢(x) ~ N(0,52). We would
like to find the maximizer

X, £ argmax f(x) . (30)
XEX
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BO is about designing a sequential strategy of selecting input query x; at iteration ¢, considering
observations in the previous ¢ — 1 iterations, denoted as yp, = (y(xs))5_}; where D; £ (x4)5

to quickly discovery x..

To obtain the posterior belief of f given observations yp,, the blackbox function f is often mod-
elled with a GP (Rasmussen and Williams| [2006). Let the posterior belief of f(x) be denoted as

N (p(x), 07 (x)).

Under the assumption that f belonging to the RKHS space with a norm bounded by B, we adopt
the well-known confidence bound of f(x) from the work of |(Chowdhury and Gopalan|(2017). Let -,
denote the maximum information gain about f that can be obtained from any set of ¢ — 1 observations.

Choosing 6 € (0,1), B; = (B + 0,,1/2(7 + 1 + log 1/5))?, then the event that

YVt > 1,Vx € X, I;(x) < f(x) < up(x) (31)
holds with probability > 1 — § where the lower and upper confidence bounds are defined as
(%) £ g (x) — tl/QUt(x) and  wuy(x) = pe(x) + Btl/zat(x) , resp. (32)
It follows that
VE > 1 f(x) € (k) u (k)] (33)

— A A
where x; £ arg max, ¢ y [;(x) and x;” £ arg max, ¢ y us(x).

The versatile query set (V-set), denoted as V;, consists of those inputs x € X that satisfies the
following overlapping condition (OC) and uncertainty condition (UC)

(%) = max (1(x0) + M) = L(x7)), (%) + % () ~Lix0)) (34

overlapping condition

uncertainty condition

where A € [0,1] and 7y € [1,1/A]. Similar to the proof of Theorem [3.2] we can obtain the following
theorem on the cumulative regret of selecting the input query in V-set V;.

Theorem F.1. Given the selection of x; as any input in Vy, the algorithm achieves a sublinear
cumulative regret:

VI'>1,Rr < (n(1 = X) +1)CiTBryr (35)

holds with probability > 1— 6§ where Cy = 8/log(1+0,2); vr, Br, 6 are defined in equation ,' A
and n are defined in equation .

F.2 META-VBO

Adopting the meta-BO setting in Sec. [3] we consider additional prior tasks 7 € 7. The blackbox
function of any prior task 7, denoted as f, : X — R, is assumed to belong to an RKHS with a norm
bounded by B. The optimization result of a prior task 7 includes the GP posterior mean and variance
of f,, denoted as i, : X — Rand 62 : X — R™, respectively. We denote the lower and upper

~

bound of the function evaluation f,(x) as [I-(x), &, (x)] where

> N 1/2 4 ~ N 1/2 4
(%) 2 fir(x) = B 260 (x) (%) 2 i (%) + B/ 61 (x) (36
and ¢, is the iteration where the BO procedure on prior task 7 stops.

From Sec.[3.2] we utilize the prior tasks to assign different priorities to inputs in ;. We can approach
this in two distinct ways.

1. We assume that the global maximizer of the current task is close to a local maximizer of
a prior task. In particular, we assign higher priorities to inputs that have a higher chance
of being a local maximizer (restricted to V) of prior tasks. Under this assumption, we
introduce the notion of the probable local maximizer set, denoted as Py, , in a similar
manner to that in Sec.[3.2}

Py, 2 {x € V| r(x) > max -(x)} . (37

17
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2. We assume that the global maximizer of the current task is close to a global maximizer of a
prior task. In particular, we assign higher priorities to inputs that have a higher chance of
being a global maximizer of prior tasks. Under this assumption, we introduce the notion of
the probable global maximizer set, denoted as PT| x,in a similar manner to that in Sec. @

Prx 2 {x € X| U (x) > glg;;l:(x/)} : (38)

Let us denote the probable maximizer set as P, which is either the probable local maximizer set Py,
or the probable global maximizer set P depending on the assumption one may adopt. Then, the
priority of an input x € V;, denoted as m;(x), is measured by the number of the probable maximizer
sets that x belongs to, i.e.,

Vx €V, m(x) £ ) Lyep, - (39)
TET

The higher 7;(x) is, the more likely that x is in the probable maximizer set of a prior task. Hence,
we select the input query x; as

X; 2 max  u(x) where Vi max = {x € Vi| m(x) = max 7, (x')} . (40)
XEV¢ max x' €V

Following Sec. we propose to recommend x} = Xy asan approximation to the optimal solution

Theorem F.2. Let ((t) = arg maxy ey, 4l (X;), then, by recommending x; = X, () the
instantaneous regret at X; is bounded: r(x}) < n+/C1B:y: /t with probability > 1 — 4.

G META-VBO FOR ADVERSARIALLY ROBUST BAYESIAN OPTIMIZATION

Let us consider the adversarially robust BO problem from the work of |Bogunovic et al.| (2018)
that is reformulated in the work of [Nguyen et al|(2021b). It is to find the maximizer x, =
arg max, ¢ y Minzc z f(x, z). Furthermore, Nguyen et al{(2021b) casts this problem as a BO of VaR

problem for o — 0% and a uniform distribution of Z. Let us denote vs(x;0") £ mingez f(x, z).
Then, by replacing pf(x; a) with v¢(x;07), equivalently, min,e z f(x,z), we obtain a meta-BO
solution to the adversarially robust BO.

Specifically, from the following confidence bounds of min,c = f(x, z)

. < mi < mi
min li(x,2z) < min f(x,2) < min ui(x,2) ,

we obtain the confidence bounds of minge z f(xx, z):

. - < . < . +
min [y (x;", ) < min f(x.,2) < min i (x/,2)

where x; £ arg max,c y minge z l¢(x,2) and x;” £ arg max, . y u¢(x, z).
The V-set V; is defined as the set of inputs x € X that satisfy:
* Overlapping condition (OC):
. > . — . + _ . —
min up(x,2) > min li(x; ,2) + )‘(2%12 us(x),2) min li(x;,2))

where \ € [0, 1].
* Uncertainty condition (UC):
1
. _ . l > - . + _ . l -
Izrélgut(x,z) min +(x,2) > n(gélgut(xt ,Z) min +(x; ,2))

where n € [1,1/)].
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Algorithm 1 Meta-BO of Risk Measure p and risk level o
ReqUire: X’ «, A’ m, (Dla YD, )? (pf,r P pﬂT)TET
1: Compute GP posterior given (D1,yp, ): pt1,01.
2: fortinl,2,...,7T do
3: Compute ¢, = py,(x; ;@) and ¢ £ py,, (% ).
Compute the uncertainty of ps(x.;a): CL, £ ¢ — ¢; .
Find V; £ {x € X| py,(x;2) > ¢; + ACL A py, (x;0) — pi, (x;0) > n~1CL }.
For 7 € T, compute ¢, £ maxyey, pp (x;a).

Select x; = argmax, ¢y, (ZTGT ]lpa () > 7,7 Pus (x; 04))-

Select z; as a lacing value w.r.t. Xy, l;, uy, and a’(Nguyen et al., |2021bgal).
9: Dt+1 = Dt U {(Xta Zt)} and yDt+1 =YD, U {yt(xtv Zt)}'

10:  Compute GP posterior given (D;1,yD,,,): fte4+1 and ;4 1.

11: end for

A

Given x; chosen as any input from V;, we select z; = arg min, . z l¢(x¢,z) (Bogunovic et al.,[2018).
This choice of z; is a lacing value (LV) w.r.t. X¢, l;, us, and o — 0 since it satisfies the definition of
LV (Nguyen et al.,|2021b):

ly(x¢,2¢) = rzréig li(x¢,2) < gglzlut(xtaz) < uy(X¢,2¢)

The priorities assigned to inputs V), follow our discussion in Sec. In particular, the probable local
maximizer set is constructed as follows.

_ .o~ > T 12 )
Pry, = {x € V| grélguT(x,z) 2 max Eéléll.r(x ,2)}

Then, the input query x; is selected as

X = max minu(x,2z)
XGVt,max z€Z

where V; 1ax is defined in Sec.

Regarding the recommended input, we follow the recommendation strategy in Sec.[3.3]to choose x} =
X, () Where ((t) = argmaxy gy 4y mingez ly(x,,2).

H PSEUDOCODE

The pseudocode of our proposed algorithm is shown in Algorithm E} It is noted that p; and pg.
represent functions for calculating the lower and upper bounds of the risk measure, respectively. In

line 7, the comparison between tuples (> .1 pas (i) 27 2 P (x; a)) is executed elementwise.

This comparison involves assessing the second position if the first position results in a tie, akin to the
comparison operations in Python.

We demonstrate that the additional computational complexity of our proposed algorithm is not
significant when compared to V-UCB, which does not utilize any prior tasks. Assuming finite domains
X and Z to leverage the computational complexity presented in Nguyen et al.| (2021b), each iteration
of V-UCB has a complexity of O(| Z||X|(|D¢|* +1og | Z|)) (Nguyen et al.,[2021b). Both lines 3 and 5
in our proposed Algorithm|I|share the same computational complexity of O(|Z][X'|(|D¢|2 +log | Z]))
as it requires the computation of VaR as in V-UCB. Line 6, involving iteration over prior tasks, incurs
an additional O(|T||Z||X|(|D¢|* + log|Z|)). Consequently, compared to V-UCB, our algorithm
introduces only an extra linear dependence on the number of prior tasks.

I ADDITIONAL EXPERIMENTS

I.1 TLLUSTRATION OF VERSATILE QUERY SET AND PROBABLE LOCAL MAXIMIZER SET

We visualize the versatile query set (V-set) V; and the probable local maximizer sets P, |y, when we
maximizer VaR of a blackbox function given a set of prior tasks in 3 different scenarios.
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(a) Iteration 1 (b) Iteration 2 (c) Iteration 5 (d) Iteration 10

Figure 5: Visualization of the V-set V; and the probable local maximizer sets Py, when the prior
task has poorly-estimated VaR. The figures in each column share the same x-axis. The top figure
displays the GP posterior mean (the orange line) along with the lower and upper bounds (the orange
shaded area) for the blackbox function of the current task. The bottom figure displays the same
information for the prior tasks. In both figures, the blue line indicates the maximum lower bound,
while the pink shaded area represents V;. Although V, is defined based on the bounds of the blackbox
function of the current task, it is also plotted in the bottom figures to aid the visualization of the
probable local maximizer set P;|y,. While the green shaded area in the bottom figure shows the
probable local maximizer set PPy, for the prior task, in the top figure, it shows the count of probable
local maximizer sets to which an input belongs (a higher green area corresponds to a larger number
of probable local maximizer sets). The red dot shows the input query x;.

1. Figure 5} Prior task with poorly-estimated VaR. There is a single task that differs from
the current task. Furthermore, VaR of the prior task is not well-estimated due to sparse
observations in the prior task, as shown by the considerable gap between the lower and upper
bounds of VaR in the bottom figures. During the initial BO iterations, when VaR of the
current task remains uncertain across the input domain, the prior task steers the input query
towards the region where VaR of prior tasks is likely to attain high evaluations. However,
as the posterior distribution of VaR in the current task refines (e.g., see iteration 10), the
influence of the prior task on the input query diminishes. Hence, we observe that as V;
reduces, the estimation of VaR in the prior task becomes inaccurate to pinpoint promising
inputs within V;. It is noted that at iteration 2 (Figure [3p), the gap between pink shaded
regions is due to the uncertainty condition in Equation equation (7).

2. Figure @: Prior task with well-estimated VaR. In this scenario, the blackbox function in
the prior task is similar to that in Figure[5}] However, the estimation of VaR for the prior task
is more accurate, indicated by a smaller gap between lower and upper bounds of VaR in the
bottom figures. This is due to an increased number of observations in the prior task. With
a well-estimated VaR in the prior task, the probable local maximizer sets Py, (the green
shaded areas) are small even at the first BO iteration. However, as the V-set V; reduces, the
influence of the prior task on the current optimization task reduces (e.g., see iteration 15).

3. Figure[7; Multiple prior tasks. There are 3 prior tasks: both prior tasks 1 & 3 differ from
the current task while prior task 2 shares similarites in a local region around the maximizer;
prior task 3 bears similarity to the current task. The varying heights of the green shaded
areas in the top figures demonstrate the different priorities assigned to inputs within V;. In
particular, this illustration shows that a substantial proportion of useful prior tasks leads to a
priority assignment that identifies promising inputs within V;.

1.2 EXPERIMENTS WITH 9-DIMENSIONAL INPUTS

In this experiment, we empirically demonstrate the effectiveness of our algorithm in optimizing VaR
and CVaR for a blackbox function with 9-dimensional inputs. The blackbox function is a sum of
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Figure 6: Visualization of the query set V; and the probable local maximizer sets Py, when the
prior task has well-estimated VaR. The plot notations are similar to those in Figure 5] In this context,
there exists a single prior task where the VaR maximizer is positioned around x = 0.75, contrasting
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Figure 7: Visualization of the query set V; and the probable local maximizer sets Py, when there
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Figure 8: Plots of the regret at the recommended input against the BO iteration in optimizing (a) VaR
and (b) CVaR of a blackbox function with 9-dimensional inputs.

three instances of the Hartmann-3D function. Our experiments involve a diverse set 7 of prior tasks,
incorporating transformations such as positive and negative scaling, horizontal and vertical shifting,
as detailed in Section[d] The outcomes are illustrated in Figure[8] When 7" comprises only useful
tasks from Tisetui-pos-scale aNd Tyserui-nshise, our proposed meta-VBO outperforms V-UCB (in
Figure[8h) and CV-UCB (in Figure[8p). In the extreme scenario when 7 contains harmful tasks from
Tharmful-neg-scale a0d Tnarmsul-nshist, our algorithm may not surpass V-UCB or CV-UCB.

1.3 CONDITIONAL VALUE-AT-RISK EXPERIMENTS

The Gaussian curve fGaussian(Z, 2) is defined as follows.

T
fGaussian (.T, Z) =5 exp < (z) (085 005) <§) ) (41)

where X' x Z consists of 10000 data points in [0, 1]2. The distribution of Z is N(0.5,0.09).

Other synthetic functions are obtained from https://www.sfu.ca/~ssurjano. The do-
mains X x Z of the Branin-Hoo, the Goldstein-Price, the six-hump camel consist of 10000 data points
in [0, 1]%. The distributions of Z in these experiments are A/(0.1,0.2), N'(0.1,0.4), and (0.1, 0.2),
respectively. The domain X x Z of the Hartmann-3D function consists of 20000 data points in [0, 1]?,
and that of the Hartmann-6D function consists of 40000 data points in [0, 1]°. The distributions of Z
in the Hartmann-3D and Hartmann-6D experiments are A/(0.9,0.2) and (0.5, 0.4), respectively.
The portfolio optimization and the yacht hydrodynamics experiments are adopted from the works
of [Cakmak et al (2020); Nguyen et al| (2021d). The domains X x Z of the two experiments
consist of 30000 and 40000 data points, respectively. While the distribution of Z is uniform in
the portfolio optimization experiment, it is N'(0.5,0.1) in the yacht hydrodynamics experiment.
Figs. [9{T4] show the current task and several prior tasks in the experiments with the Branin-Hoo, the
Goldstein-Price, and the six-hump camel functions. While prior tasks in Toserui-vsnice (i.€., vertical
shifting) and Tisefu1-pos-scale (i-€., positive scaling) share common maximizers of VaR and CVaR
of the current task, those in Tharmeu1-nsnise (i.€., horizontal-x-shifting) and Trarmru1-neg-scate (-€.,
negative scaling) differ that of the current task.

Fig. [15|shows the average the standard error of (x}) over 30 random repetitions of the BO of CVaR
experiments. These experiments share the same sets of prior tasks with the BO of VaR experiments
in Sec. E 7:1sefulfposfscale’ ﬂlsefulfvshift’ 7;Aameful—neq—scale, ﬁlarmful—hshift, and 7;11- The
risk level is set at & = 0.1 for all experiments. We choose A = 0 and = 1 as explained in
Sec. @ In Fig. @ we observe that when 7 contains only prior useful tasks in Tisefu1-pos-scale
and T serul-vshire, our proposed meta-VBO outperforms CV-UCB (Nguyen et al.l [2021a) which
does not utilize any prior tasks. Furthermore, when 7 contains both harmful and useful tasks
in 7311, our meta-BO of CVaR is still able to exploit prior useful tasks and is robust against prior
harmful tasks to outperforms CV-UCB. When 7 consists of only harmful tasks in Tharmrui-neg-scale
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Figure 9: Current and prior BO of VaR tasks in Branin-Hoo experiments. The heatmaps show the
blackbox function f(x, z).
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Figure 15: Meta-BO of CVaR experiments on (a) a Gaussian curve, (b) the Branin-Hoo function, (c)
the Goldstein-Price function, (d) the six-hump camel function, (e) the Hartmann-3D function, (f)
the Hartmann-6D function, (g) the yacht hydrodynamics dataset, and (h) the portfolio optimization
dataset.

and Tramrrul-nsenic, meta-VBO does not outperform CV-UCB, but it still converges to a low-regret
solution except for the experiment with the Hartmann-6D function. It is noted that the curves
of useful-pos-scale,useful-vshift, and all overlap each other in most of the plots in

Fig.[13]
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