
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Learning Large Graph Property Prediction via Graph Segment Training

A. Proofs and Derivations
Theorem A.1. Under proper a condition that W · h̃(i)

j ≈ 0 and W · h(i)
j ≈ 0, where W is the first linear transformation

in F ′, SED with a keep ratio p ensures to reduce bias term introduced by historical embeddings by a factor of p, while
introducing another regularization term.

Proof. Let δ(i) ≜ h
(i)
s
⊕

h̃
(i)
j −

⊕
h
(i)
j be the perturbation on the graph embedding. We use ET to denote using the

embedding table without applying SED. For GST+E, we have

δ
(i)ET

j =

{
0 with prob. S(i)

J(i)

h̃
(i)
j − h

(i)
j with prob. J(i)−S(i)

J(i)

The randomness above comes from the fact that each segment G(i)j is selected for backpropagation with probability S(i)

J(i) .

For SED, there are two folds of randomness when training on graph G(i): randomly selecting S(i) segments to train and
randomly select stale embedding h̃

(i)
j to drop. Thus we can rewrite δ

(i)
j as

δ
(i)SED

j =


(1−p)(J(i)−S(i))

S(i) h
(i)
j with prob. S(i)

J(i)

−h(i)
j with prob. (1−p)(J(i)−S(i))

J(i)

h̃
(i)
j − h

(i)
j with prob. p(J(i)−S(i))

J(i)

We apply Taylor expansion around δ
(i)
j = 0 on the final loss to analyze the effect of this perturbation. In Section A.2 of Wei

et al. (2020), when W · h̃(i)
j ≈ 0 and W · h(i)

j ≈ 0, the perturbation of δ(i) to the loss function might not be too large, so it
supports the use of Taylor Expansion.

L(F ′(h(i)
s

⊕
h̃
(i)
j ))− L(F ′(

⊕
h
(i)
j ))

=L(F ′(
⊕

(h
(i)
j + δ

(i)
j )))− L(F ′(

⊕
h
(i)
j ))

≈
∑
j

D
h

(i)
j
(L ◦ F ′)[h

(i)
j ]δ

(i)
j +

1

2
δ
(i)
j

⊤
(D2

h
(i)
j

(L ◦ F ′)[h
(i)
j ])δ

(i)
j

Note that we randomly select segments with index s during training, we can then derive an approximation of the expected
difference during training as

EsL(F ′(h(i)
s

⊕
h̃
(i)
j ))− L(F ′(

⊕
h
(i)
j )) (2)

≈
∑
j

E
δ
(i)
j

D
h

(i)
j
(L ◦ F ′)[h

(i)
j ]δ

(i)
j︸ ︷︷ ︸

B

+
1

2
δ
(i)
j

⊤
(D2

h
(i)
j

(L ◦ F ′)[h
(i)
j ])δ

(i)
j︸ ︷︷ ︸

R

We can then compare the effect of SED by substituting the two versions of δ(i)j into Eq. 2.

So for the first term, we have

E
δ
(i)ET
j

[B] = ⟨D
h

(i)
j
(L ◦ F ′)[h

(i)
j ],Eδ(i)j ⟩

= ⟨D
h

(i)
j
(L ◦ F ′)[h

(i)
j ],

J (i) − S(i)

J (i)
E(h̃(i)

j − h
(i)
j )⟩

E
δ
(i)SED
j

[B] = ⟨D
h

(i)
j
(L ◦ F ′)[h

(i)
j ],Eδ(i)j ⟩

= ⟨D
h

(i)
j
(L ◦ F ′)[h

(i)
j ],

J (i) − S(i)

J (i)
E(h̃(i)

j − h
(i)
j ) ∗ p⟩



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Learning Large Graph Property Prediction via Graph Segment Training

whereas for the second term, we have

E
δ
(i)ET
j

[R] =⟨D2

h
(i)
j

(L ◦ F ′)[h
(i)
j ],

Eδ(i)j δ
(i)⊤

j

2
⟩

=⟨D2

h
(i)
j

(L ◦ F ′)[h
(i)
j ],

J (i) − S(i)

2J (i)
(h̃

(i)
j − h

(i)
j )

⊙
2⟩

E
δ
(i)SED
j

[R] = ⟨D2

h
(i)
j

(L ◦ F ′)[h
(i)
j ],

Eδ(i)j δ
(i)⊤

j

2
⟩

=⟨D2

h
(i)
j

(L ◦ F ′)[h
(i)
j ], (

(J (i) − S(i))p

2J (i)
(h̃

(i)
j − h

(i)
j )

⊙
2

+
(J (i) − S(i))(1− p)(J (i) − pJ (i) + pS(i))

2J (i)S(i)
h
(i)
j

⊙
2
)⟩

It is easy to check that the statement satisfies given the value calculated.

B. Implementation Details

Datasets. MalNet (Freitas et al., 2021) is a large-scale graph representation learning dataset, with the goal to predict the
category of a function call graph. MalNet is the largest public graph database constructed to date in terms of average
graph size. Its widely-used split is called MalNet-Tiny, containing 5,000 graphs across balanced 5 types, with each graph
containing at most 5,000 nodes. To evaluate our approach on the regime where the graph size is large, we construct an
alternative split from the original MalNet dataset, which we named MalNet-Large. MalNet-Large also contains 5,000 graphs
across balanced 5 types. MalNet-Large’s average graph size reaches 47k with the largest graph containing 541k nodes. We
will release our experimental split for MalNet-Large to promote future research.

Methods. We test combinations of the following proposed techniques and some baselines. (1) Full Graph Training: we
train on all graphs in their original scale without applying any partitioning beforehand. (2) GST-One: we partition the
original graph into a collection of graph segments G(i) ≈

⊕
G(i)j , but we randomly select only one segment G(i)j for

each graph to train every iteration. (3) GST: following the general GST framework described in Algorithm 1, we replace
ProduceEmedding(·) by using the same feature encoder F to forward all the segments in {G(i)j }j /∈S(⟩) without storing any

intermediate activation. We set S(i) = 1 in our experiments. (4) E: we introduce an embedding table h̃(i)
j = T (i, j) to store

the historical embedding of each graph segment, and we fetch the embedding from T if we do not need to calculate gradient
for the corresponding segment. (5) F: in addition to introducing the embedding table T , we finetune the prediction head F ′

with all up-to-date segment embeddings at the end of training. (6) D: we apply SED defined in Eq. 1 during training.

When these techniques are combined, we concatenate the acronyms with a “+” to GST as an abbreviation. We conduct
all the experiments on MalNet with a single NVIDIA-V100 GPU with 16GB of memory. Please refer to Appendix B for
additional implementation details.

Table 3. Overview of the graph datasets used in this study.

Avg. # nodes Min. # nodes Max. # nodes Avg. # edges Min. # edges Max. # edges

MalNet-Tiny 1,410 5 4,994 2,860 4 20,096
MalNet-Large 47,838 3,374 541,571 225,474 20,597 3,278,318

We follow GraphGym (You et al., 2020) to represent design spaces of GNN as (message passing layer type, number of
pre-process layers, number of message passing layers, number of post-process layers, activation, aggregation). Our code is
implemented in PyTorch (Paszke et al., 2017). We will make source code public at the time of publication.

Implementation details for MalNet-Large. We consider three model variations for the MalNet-Large dataset. Please
refer to their hyperparameters in Table 4. We use Adam optimizer (Kingma & Ba, 2014) with the base learning rate of 0.01
for GCN and SAGE. For GraphGPS, we use AdamW optimizer (Loshchilov & Hutter, 2017) with the cosine scheduler



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Learning Large Graph Property Prediction via Graph Segment Training

0 200 400 600
Epoch

20

30

40

50

60

70

80

90

A
cc

ur
ac

y

Train
Test

Figure 2. Accuracy curve on MalNet-Large
of GST+EFD with SAGE backbone. We
start Prediction Head Finetuning at epoch
600.

0.0 0.25 0.5 0.75 1.0
p

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y
Figure 3. Ablation study on the keep ra-
tio p in SED. We report test accuracy
of GST+EFD with SAGE backbone on
MalNet-Large for 5 runs.

1000 3000 5000 7000 9000
Max Segment Size

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y

Figure 4. Ablation study on maximum seg-
ment size. We report test accuracy
of GST+EFD with SAGE backbone on
MalNet-Large for 5 runs.

and the base learning rate of 0.0005. We use L2 regularization with a weight decay of 1e-4. We train for 600 epochs until
convergence. For Prediction Head Finetuning, we finetune for another 100 epochs. We limit the maximum segment size to
5,000 nodes, and use a keep probability p = 0.5 if not otherwise specified. We train with CrossEntropy loss.

Table 4. Detailed GNN/Graph Transformer designs used in MalNet-Tiny and MalNet-Large.

model GCN SAGE GraphGPS

message passing layer type GCNConv SAGEConv GatedGCN+Performer
pre-process layer num. 1 1 0
message passing layer num. 2 2 5
post-process layer num. 1 1 3
hidden dimension 300 300 64
activation PReLU PReLU ReLU
aggregation mean mean mean

Implementation details for MalNet-Tiny. We use the same model architectures/training schedules as in the MalNet-Large
dataset. The only difference is that as graphs in MalNet-Tiny have no more than 5000 nodes, so we limit maximum segment
size to 500 here.

C. Additional Results
C.1. Ablation Studies

Effect of finetuning. We visualize the training/test accuracy curve of GST+EFD over time in Figure 2. The staleness
introduced by historical embeddings drastically hurts generalization, as shown for the first 600 epochs. We start finetuning
at epoch 600, and the gap between training and test accuracy decreases by a large margin instantly.

Ablation study on segment dropout ratio. To analyze the effect of the keep ratio p in SED, we vary its value from 0 to 1
and visualize the results in Figure 3. When p = 1, GST+EFD degrades back to using the historical embedding table without
SED, as the performance decreases due to staleness. When p = 0, GST+EFD becomes GST-One, where we drop all the
stale historical embeddings. This extreme case introduces too heavy regularization that impedes the model from fitting the
training data, leading to a decrease in test performance ultimately. We found that p = 0.5 achieves a satisfactory tradeoff
between fitting the training data and adding a proper amount of regularization.

Ablation study on segment size. We also alter the maximum segment size and visualize the results in Figure 4. A smaller
maximum segment size will result in much more number of segments. Interestingly, we found that the proposed GST+EFD



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Learning Large Graph Property Prediction via Graph Segment Training

is very robust to the choice of the maximum segment size, as long as the segment size is reasonally large.

C.2. Runtime Analysis

Next, we empirically compare runtime of different variants under the proposed GST framework. We summarize an average
time for one forward-backward pass during training on MalNet-Large dataset in Table 2. Since GST runs inference for
the graph segments that do not require gradients, the runtime of GST is significantly higher than others’. We also found
that GST+E’s and GST+EFD’s runtime are very close to GST-One’s; this means the overhead of fetching embeddings
from the embedding table T is minimal. Moreover, GST+EFD’s runtime is slightly lower than GST+E’s because in the
implementation, we can skip the fetching process if an embedding is set to be dropped. This result demonstrates that our
proposed GST+EFD not only is efficient in terms of memory usage but also reduces training time significantly.


