
Appendix

A Removable Variables

In this section, we first prove the proposed graphical representation for a removable variable in a
MAG M (Theorem 1). Then, we discuss how this representation reduces to Theorem 5 of [11] in the
case of DAGs.

Throughout our proofs, we say a path between X and Y is blocked by a set W if it is not m-connecting
relative to W. In this case, there exists a non-collider W on the path which is a member of W, or
there exists a collider W on the path such that W /2 Anc({X,Y } [W). In both cases we say W

blocks this path with respect to W, or W blocks the path in short when W is clear from the context.
We say X is a descendant of Y if Y 2 Anc(X), and we denote by DeM(X) the set of descendants
of X in the MAG M, and De(X) whenever the graph is clear from the context.

A.1 Graphical representation

Theorem 1. Vertex X is removable in a MAG M over the variables V, if and only if

1. for any Y 2 Adj(X) and Z 2 Ch(X) [ N(X) \ {Y }, Y and Z are adjacent, and

2. for any collider path u = (X,V1, ..., Vm, Y ) and Z 2 V\{X,Y, V1, ..., Vm} such that
{X,V1, ..., Vm} ✓ Pa(Z), Y and Z are adjacent.

Proof. Let H denote the induced subgraph of M over V\{X}.

only if part: Suppose Y 2 Adj(X) and Z 2 Ch(X)[N(X). For any W ✓ V\{X,Y, Z}, (Z,X, Y )
is an m-connecting path relative to W in M, as X is a non-collider and X /2W. That is, no such
W can m-separate Y and Z. Since X is removable in M, by definition of removability,

(Y ? Z|W)M () (Y ? Z|W)H. (8)

As a result, Y and Z have no m-separating sets in H. Hence, Y is adjacent to Z in H, and therefore,
in M.

Now suppose u = (X,V1, ..., Vm, Y ) is a collider path and {X,V1, ..., Vm} ✓ Pa(Z). Again for
any W ✓ V\{X,Y, Z}, (Z,X, V1, ..., Vm, Y ) is an m-connecting path relative to W in M since I)
every collider on this path is a parent (and therefore an ancestor) of Z, and II) X /2W and X is the
only non-collider on this path. That is, no such W can m-separate Y and Z. Since X is removable in
M, Equation 8 implies that Y and Z have no m-separating sets in H. Hence, Y is adjacent to Z in
H, and therefore, in M.

if part: We need to prove that for any Y, Z 2 V \ {X} and any W ✓ V \ {X,Y, Z},

(Y ? Z|W)M () (Y ? Z|W)H.

): Suppose (Y ? Z|W)M and let u be an arbitrary path in H between Y and Z. Since H is a
subgraph of M, u is also a path in M. As (Y ? Z|W)M, u is not m-connecting relative to W in
M, Lemma 6 implies that u is not m-connecting relative to W in H.

(: Suppose (Y ? Z|W)H, i.e., there is no m-connecting path between Y and Z in H. It suffices
to show that none of the paths between Y and Z in M are m-connecting. Take an arbitrary path
u = (Y, V1, ..., Vm, Z) in M. We will show that u is not m-connecting relative to W in M. We
consider the following cases separately.

1. X /2 u: In this case, u is also a path in H. Since u is not m-connecting relative to W in H,
Lemma 6 implies that u is not m-connecting relative to W in M.

2. X is a non-collider on u: Suppose u = (Y, V1, . . . , Vi�1, Vi = X,Vi+1, . . . , Vm, Z). We claim
that a vertex other than X blocks u in M. Suppose not. Since X is a non-collider, at least one of
Vi�1 and Vi+1 is a child or neighbor of X . From the assumption of the theorem, Vi�1 2 Adj(Vi+1).
Now consider the path u

0 = (Y, V 1, ..., Vi�1, Vi+1, ..., Vm, Z), which is a path in H and must
not be m-connecting relative to W in H. Hence, Lemma 6 implies that u0 is not m-connecting
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relative to W in M. If a vertex other than {Vi�1, Vi+1} blocks u0 in M, the same vertex blocks
u, which is a contradiction. Suppose without loss of generality that Vi�1 blocks u0 in M. If Vi�1

is a collider on both u and u
0 or a non-collider on both of them, Vi�1 blocks u in M which is a

contradiction. So suppose Vi�1 is a collider on one of u and u
0, and a non-collider on the other

one. From Lemma 7, Vi�1, X 2 Pa(Vi+1). Also, Vi�1 is a collider on u in this case, that is,
(Vi�2, Vi�1, X) is a collider path. From the assumption of the theorem, Vi�2 2 Adj(Vi+1). The
edge between Vi�2 and Vi+1 has an arrowhead at Vi+1, as otherwise an (almost) directed cycle is
formed over Vi�2, Vi�1, Vi+1. Now define the path u

00 as u00 = (Y, V 1, ..., Vi�2, Vi+1, ..., Vm, Z).
This path also exists in H, and therefore, u00 is not m-connecting relative to W in H. Hence, u00 is
not m-connecting relative to W in M. If a vertex other than Vi�2 blocks u00 in M, it also blocks
u
0 in M, which is a contradiction, since we assumed that only Vi�1 blocks this path. If Vi�2 is a

collider on both u
0 and u

00, or a non-collider on both of them, Vi�2 blocks u0 in M, which is a
contradiction. Now applying Lemma 7 implies that Vi�2 2 Pa(Vi+1) and (Vi�3, Vi�2, Vi�1, X)
is collider path. Continuing in this manner finally implies that Y 2 Adj(Vi+1) and the edge
between Y and Vi+1 has an arrowhead at Vi+1. Now since the path (Y, Vi+1, ..., Vm, Z) is not
m-connecting relative to W, there exists a vertex T that blocks it in M. The same vertex must
block (Y, V1, Vi+1, ..., Vm, Z), which is a contradiction. Note that now T is either a collider on
both of these paths, or a non-collider on both of them. Also note that the assumption that Vi�1

blocks u0 in M does not violate the generality of the proof as if we assumed that Vi+1 blocks u0,
that would imply the same arguments for the paths (Y, V1, ..., Vi�1, Vj , Vj+1, ..., Vm, Z), with the
only difference that Y and Z would be interchanged throughout the proof.

3. X is a collider on u: Suppose u = (Y, V1, . . . , Vi�1, Vi = X,Vi+1, . . . , Vm, Z). If a vertex other
than X blocks u in M, we are done. Otherwise, we claim that X blocks u in M. Since X /2W,
it suffices to show that DeM(X)\

�
{Y, Z}[W

�
= ?. Assume by contradiction that there exists

a directed path from X to a vertex in {Y, Z} [W, and let T 2 Ch(X) denote the first vertex
next to X on this path. Note that T /2 {Vi�1, Vi+1}. Since (Vi�1, X) and (Vi+1, X) are collider
paths and X 2 Pa(T ), Vi�1, Vi+1 2 Adj(T ) from the assumption. Both of these edges must have
arrows on the side of T , as otherwise, an (almost) directed cycle would occur. Therefore, T is
a collider on (Vi�1, T, Vi+1). Now, consider the path u

0 = (Y, V 1, ..., Vi�1, T, Vi+1, ..., Vm, Z),
which is a path in H and must not be m-connecting relative to W in H. Hence, Lemma 6 implies
that u0 is not m-connecting relative to W in M. If a vertex other than {Vi�1, T, Vi+1} blocks
u
0 in M, the same vertex blocks u, which is a contradiction. T cannot block u

0 in M as it is a
collider on u

0 and it has a descendant in {Y, Z} [W. Thus, suppose without loss of generality
that Vi�1 blocks u

0 in M. If Vi�1 is a collider on both u and u
0 or a non-collider on both of

them, Vi�1 blocks u in M which is a contradiction. So suppose Vi�1 is a non-collider on u
0

and a collider on u. Note that the other case is not possible because an (almost) directed cycle
would occur over the vertices Vi�1, X, T . As a result, Vi�1 2 Pa(T ). Now, consider the collider
path (Vi�2, Vi�1, X) in which Vi�1, X 2 Pa(T ). Therefore, Vi�2 2 Adj(T ). Again, this edge
must have an arrowhead on the side of T , as otherwise an (almost) directed cycle is formed over
(Vi�2, Vi�1, T . Now, consider the path u

00 = (Y, V 1, . . . , Vi�2, T, Vi+1, . . . , Vm, Z), which is a
path in H, and therefore, is not m-connecting relative to W in H. In this case, Lemma 6 implies
that u00 is not m-connecting relative to W in M. We can repeat the arguments above for this path,
implying that either there exists a vertex that blocks u in M, or Vi�2 2 Pa(T ), and therefore,
Vi�3 2 Adj(T ) (or alternatively, Vi+1 2 Pa(T ), and therefore, Vi+2 2 Adj(T ), which does not
alter the proof.) Continuing in the same manner, either there exists a vertex that blocks u in M
which is a contradiction, or Y, Z 2 Adj(T ), where T is a collider on (Z, T, Y ). Finally, (Z, T, Y )
is a path in H and must not be m-connecting relative to W, but this is not possible because
DeM(Y ) \ Anc({Y, Z} [W) 6= ?. This contradiction proves that X cannot have a descendant
in {Y, Z} [W, which implies that X blocks u in M.

In all of the cases, u is not m-connecting relative to W, which completes the proof.

A.2 Reduction to DAGs

The notion of removability is first discussed in [11] for the case of DAGs. Herein, we discuss how
our definition of removability for MAGs (Definition 4) and the provided graphical representation
(Theorem 1) can be reduced to their results when we restrict ourselves to the space of DAGs. Note
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that our removability tests in Theorem 2 do not reduce to what they proposed for DAGs. For instance,
we directly test the removability of a vertex without identifying its so-called co-parents.

• Definition 4: In the case of DAGs, m-separation reduces to d-separation. Hence, Definition 4 is
reduced to what [11] proposed in the case of DAGs.

• Graphical representation: Suppose the ground-truth graph is a DAG. Note that collider paths in
DAGs can be of length at most two and the vertices have no neighbors. In this case, our graphical
representation of a removable variable in Theorem 1 is reduced to what is proposed in Theorem 5
of [11].

The removability test provided in [11] fails in the case that causal sufficiency is violated. Consider
for example the vertex X in Figure 2a. If the proposed tests of [11] are performed for X , then Z and
V1 are identified to be adjacent to X , and then the collider paths X ! Z  V1, X ! Z  V2, and
X ! V1  V2 are identified. Then due to their removability tests, X is decided to be removable since
the pairs (Z, V1), (Z, V2) and (V1, V2) cannot be m-separated. However, we know from Theorem 1
that X is not removable in this MAG.

B Proofs

In this section, we first present fundamental lemmas used throughout our proofs. The proofs for the
results of the main text is provided in Appendix B.2.

B.1 Preliminary lemmas

Lemma 1. Suppose X is a vertex in a MAG M with vertex set V such that if Y 2 Pa(X) and
Z 2 Ch(X), then Y 2 Pa(Z). Let H be the induced subgraph of M over V \ {X}. Note that H is
also a MAG. In this case, for any Y 2 V \ {X},

DeM(Y )\{X} = DeH(Y ).

Proof. Suppose Z 2 DeM(Y )\{X}, i.e., there exists a directed path from Y to Z 6= X in M. If this
path does not pass through X , the same path exists in H, and Z 2 DeH(Y ). Otherwise, suppose this
path is (Y, U1, . . . , Ui, X, Ui+1, . . . , Z). Since Ui 2 Pa(X) and Ui+1 2 Ch(X), Ui 2 Pa(Ui+1).
Hence, (Y, U1, . . . , Ui, Ui+1, . . . , Z) is a directed path in H, and Z 2 DeH(Y ). This implies that

DeM(Y )\{X} ✓ DeH(Y ).

Furthermore, if there exists a directed path from Y to Z in H, the same path exists in M, which
implies that

DeH(Y ) ✓ DeM(Y )\{X}.
This completes the proof.

Lemma 2. Let X and Y be two non-adjacent vertices in a MAG M, where X /2 Anc(Y ). Then

(X ? Y |W\{X,Y })M, where W = N(X) [
�
Pa+(X) \ Anc({X,Y })

�
. (9)

Proof. Let u = (X = V0, V1, . . . , Vm, Y = Vm+1) be an arbitrary path between X and Y . It suffices
to show that W\{X,Y } blocks u. Let i be the largest index such that all the edges on (V0, V1, ..., Vi)
are bidirectional. We consider the following cases separately.

1. i � m: In this case, all the vertices V1, ..., Vm on the path are colliders that belong to Pa+(X).
Since X and Y are non-adjacent, u is not an inducing path. Hence, there exists j such that
Vj /2 Anc({X,Y }) and therefore, Vj /2 Anc(W [ {X,Y }). Hence, Vj blocks u.

2. i = 0: If V1 2 Pa(X) [ N(X), then V1 2 W\{X,Y } is a non-collider on u that blocks u.
Otherwise, V1 2 Ch(X). Continuing the path u from V1, let Vj be the first collider on u. Note that
such a collider exists as X /2 Anc(Y ) and therefore, u is not a directed path. Vj is a descendant of
X and therefore, Vj /2 Anc(X,Y ). Hence, Vj /2 Anc(W [ {X,Y }) blocks u as a collider.
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3. 1  i < m: The edge between Vi and Vi+1 is either Vi ! Vi+1, or Vi  Vi+1 (it cannot be
undirected by definition of MAGs.) Let Z be the parent among these two vertices, and T be the
child, i.e., if Vi ! Vi+1, then Z and T denote Vi and Vi+1, respectively. Note that Z 2 Pa+(X).
If Z 2 Anc({X,Y }), then Z 2 W\{X,Y } blocks u as a non-collider. Suppose otherwise
that Z /2 Anc({X,Y }). Continuing the path u from Z towards the side of T , let Vj be the first
collider. Such a collider exists as Z /2 Anc({X,Y }). Vj is a descendant of Z, and therefore
Vj /2 Anc({X,Y }). Hence, Vj /2 Anc(W [ {X,Y }) blocks u as a collider.

In all of the above cases, W\{X,Y } blocks u, which completes the proof.

Lemma 3. If X 2 V is a removable vertex, then for any Y, Z 2 Mb(X),

Z 2 Mb(Y ) and Y 2 Mb(Z).

Moreover, there exists at least one collider path between Y and Z that passes through only the
vertices in Mb(X) [ {X}.

Proof. Take two arbitrary vertices Y, Z in Mb(X). We will show that there exists a collider path
between Y and Z that passes through only the vertices in Mb(X) [ {X}.

Since Y, Z 2 Mb(X), there exist collider paths (Y, V1, . . . , Vi, X) and (X,W1, . . . ,Wj , Z), where
V1, ..., Vi,W1, ...,Wj 2 Mb(X). Consider the path (Y, V1, . . . , Vi, X,W1, . . . ,Wj , Z). If X is a
collider on this path, we are done. Otherwise, without loss of generality, assume W1 2 Ch(X)[N(X).
Since X is removable, Vi 2 Adj(W1). We now consider the following two cases separately.

1. W1 2 Ch(X): If the edge between Vi and W1 is bidirected, then the path
(Y, V1, . . . , Vi,W1, . . . ,Wj , Z) is a collider path. Otherwise, again without loss of generality
assume Vi is a parent of W1. Note that a child of X cannot be a parent of its spouse since this
would create an almost directed cycle. Now, since X is removable, Vi�1 and W1 are adjacent. If
the edge is bidirected, then (Y, V1, . . . , Vi�1,W1, . . . ,Wj , Z) is a collider path. Otherwise, we
can continue the same argument as before by induction on i and conclude that Y is adjacent to
W1. Since the structure is a MAG, W1 /2 Pa(Y ) and W1 is a collider on (Y,W1, . . . ,Wj , Z).
Therefore, a collider path exists between Y and Z using only the vertices in Mb(X) [ {X}.

2. W1 2 N(X): In this case, W1 = Z, since W1 is not a collider. Also, since X has a neighbor, it
cannot have a parent or a spouse. As a result, Vi 2 Ch(X) [ N(X). If Vi 2 N(X), then by the
same argument, Vi = Y and we already know that Y and Z are adjacent, which is the desired
collider path. Otherwise, Z 2 Pa(Vi). Now, the path (Y, V1, . . . , Vi, Z) is the desired path, which
completes the proof.

Lemma 4. Suppose V ✓ O and let G = GV [V|S]. If X 2 V is removable in G, then for any
Y, Z 2 V\{X} and W ✓ V\{X,Y, Z},

(Y ? Z|W [ {X})G =) (Y ? Z|W)G .

Proof. Suppose (Y ? Z|W [ {X})G . We need to show that (Y ? Z|W)G . To this end, we first
show that (Y ? Z|W)H, where H is the induced subgraph of G over V\{X}.

Note that all the paths between Y and Z are blocked by W [ {X} in G. Now, take an arbitrary path
u between Y and Z in H. This path also exists in G, and X is not on the path. We claim W blocks it
in H. Suppose u is blocked by a vertex T in G (note that T 6= X .) If T is a non-collider on u, then it
also blocks u in H. If it is a collider with no descendants in W [ {X}, then lemma 1 implies that
DeH(T ) \W = ?, and T blocks u in H. Therefore, (Y ? Z|W)H.

Finally, since X is removable in G and (Y ? Z|W)H, Definition 4 implies that (Y ? Z|W)G .

Lemma 5. Suppose (X,V1, ..., Vm, Y ) is a collider path where {X,V1, ..., Vm} 2 Pa(Z) for a
vertex Z. If (Y ? Z|W) for a set W, then X 2W.
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Proof. Since Y and Z are m-separated by W, W blocks all the paths between Y and Z. Now
consider the path u = (Z,X, V1, ..., Vm, Y ) which must be blocked by W. {V1, ..., Vm} ✓ Anc(Z)
are colliders on u. As a result, if X /2 W, then u is m-connecting relative to W, which is a
contradiction.

Lemma 6. Suppose G is a MAG with the vertex set V, and X 2 V is removable in G. Let H denote
the induced subgraph of G over V\{X}. For a path u in H and a set W ✓ V\{X},

u is m-connecting w.r.t. W in M () u is m-connecting w.r.t. W in H. (10)

Proof. The proof of both sides of Equation (10) are the same. Let G1 be M or H, and G2 be the
other one. Suppose W ✓ V\{X} and let u = (Y, V1, . . . , Vm, Z) be a path in H such that u is
m-connecting relative to W in G1. We need to show that u is m-connecting relative to W in G2. Let
T be an arbitrary non-endpoint vertex on u. We need to show that T does not block u in G2. There
are two possibilities.

1. T is non-collider in u: Since T does not block u in G1, T /2W. Hence, T does not block u in G2.

2. T is a collider on u: Since T does not block u in G1, DeG1(T ) \
�
W [ {Y, Z}

�
6= ?. Hence,

Lemma 1 implies that DeG2(T ) \
�
W [ {Y, Z}

�
6= ? and T does not block u in G2.

In both cases T does not block u in G2 and therefore, u is m-connecting relative to W in G2.

Lemma 7. Suppose G is a MAG and u = (Y, ..., V0, V1, X, V2, ..., Z) is a path in G, where X is
a non-collider on u and V1 2 Adj(V2). Define ũ = (Y, ..., V1, V2, ..., Z), which is a path in G. If
V1 is a collider on u and a non-collider on ũ, or a non-collider on u and a collider on ũ, then
X,V1 2 Pa(V2).

Proof. First note that the edge between V0 and V1 must have an arrowhead at V1, since otherwise V1

cannot be a collider on any of the paths. Now, two possibilities may occur.

• The edge between V1 and X has a tail at V1: Since V1 has an arrowhead, it does not have any
neighbors, i.e., X /2 N(V1). Hence, V1 2 Pa(X). As X is not a collider on u, X 2 Pa(V2), i.e.,
V1 ! X ! V2. Now, the edge between V1 and V2 can only be V1 ! V2, as otherwise, an (almost)
directed cycle is formed on V1, X, V2.

• The edge between V1 and X has an arrowhead at V1: Since V1 is a collider on u, it is a non-collider
on ũ. Also, V1 does not have any neighbors by definition of MAGs, which implies that V1 2 Pa(V2).
Consider the edge between X and V2. If this edge has an arrowhead at X , then X 2 Pa(V1) as
X is a non-collider on u. Now, the triple X,V1, V2 forms an (almost) directed cycle, which is
a contradiction. As a result, the edge between X and V2 has a tail at X . Note that V2 has no
neighbors because V1 ! V2. This implies that X 2 Pa(V2), which competes the proof.

B.2 Main Results

Proposition 1. Suppose V ✓ O and X 2 V. GV [V\{X}|S] is equal to the induced subgraph of
GV [V|S] over V\{X} if and only if X is removable in GV [V|S].

Proof. Denote GV [V|S], GV [V\{X}|S] and the induced subgraph of GV [V|S] over V\{X} by G,
M and H, respectively.

only if: Suppose M is equal to H. Let Y and W be arbitrary vertices in V\{X} and Z be an
arbitrary subset of V\{X}. It suffices to show that Equation (4) holds. Since m-separation and
conditional independence are equivalent in latent projections G and M,

(Y ?W |Z)G , (Y ??W |Z) , (Y ?W |Z)M , (Y ?W |Z)H,

where the last equivalence is due to the fact that M and H are equal.
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if: Suppose X is removable. We first prove that the skeleton of M and H are equal. With similar
arguments to the above case, CI relations and m-separation in G and M are equivalent. Therefore,

(Y ?W |Z)M , (Y ??W |Z) , (Y ?W |Z)G , (Y ?W |Z)H,

where the last equivalence follows from Equation (4). Since M and H impose the same set of m-
separations, that is they are Markov equivalent, they must have the same skeleton. Now for the edge
marks, note that the edge marks of H are those of G, as H is an induced subgraph of G. Furthermore,
edges in G and M are oriented by the same rules of Definition 2 as they are the projections of the
same DAG GV . Therefore, both the skeleton and the edge marks of M and H are identical, which
completes the proof.

Theorem 2. Suppose the edge-induced subgraph of M over the undirected edges (i.e., the edges due
to selection bias) is chordal. Let G = GV [V|S] for some V ✓ O. X 2 V is removable in G if and
only if for every Y 2 Adj(X) and Z 2 MbV(X), at least one of the following holds.

Condition 1: 9W ✓ MbV(X)\{Y, Z} : Y ?? Z|W.

Condition 2: 8W ✓ MbV(X)\{Y, Z} : Y 6?? Z|W [ {X}.

Furthermore, the set of removable vertices in G is non-empty.

Proof. We first prove the equivalence of removability and the two conditions.

only if: Suppose X is removable. It suffices to show that if Condition 2 does not hold, then condition
1 holds. Let W1 ✓ MbV(X)\{Y, Z} be such that Y ?? Z|W1 [ {X}. Since m-separation is
equivalent to conditional independence, (Y ? Z|W1[{X})G . Now from lemma 4, (Y ? Z|W1)G ,
which implies (Y ?? Z|W1), that is, Condition 1 holds.

if: We show that the graphical representation of Theorem 1 is satisfied. To this end, we show Y and
Z are adjacent in all of the following cases:

1. u = (X,V1, ..., Vm, Y ) is a collider path such that {X,V1, ..., Vm} ✓ Pa(Z): By definition
of Pa+(·), Pa+(Z) ✓ MbV(X) [ {X}. Lemma 2 indicates that

W1 = (Pa+(Z) \ Anc({Z, Y })\{Z, Y }) ✓ MbV(X) [ {X}
m-separates Y and Z. Note that N(Z) = ? since Z has at least one parent. Since conditional
independence is equivalent to m-separation,

(Y ?? Z|W1),

that is, Condition 2 does not hold. If Y and Z are m-separated by some set W1, from
Lemma 5, X 2W1. As a result, Condition 1 cannot hold for any W ✓ MbV(X) as these
sets do not contain X , which is a contradiction. This proves that Y and Z are adjacent.

2. Y 2 Adj(X) and Z 2 Ch(X): The proof in this case is exactly the same as the previous
one.

3. Z 2 N(X) and Y 2 Adj(X): Since X has a neighbor, by definition of MAG, Y is either
a child or a neighbor of X . If Y 2 Ch(X), this case reduces to case 2 with Y and Z

interchanged. So we only consider the case where Y 2 N(X). Considering the path
(Y,X,Z), no set W can m-separate Y and Z if X /2W, i.e., Condition 1 does not hold. We
claim if Y and Z are not adjacent, Condition 2 does not hold either, which is a contradiction.
To prove this, take W = {X} [N(X)\{Y, Z}. It is enough to show that (Y ? Z|W)G ,
i.e., W blocks all the paths between Y and Z. Let u be an arbitrary path of length at least
2 between Y and Z. If u contains a directed or bidirected edge, it also contains a collider,
since Y and Z do not have any incoming edges incident to them and therefore no ancestors.
This collider blocks the path as it does not have any descendants in W (note that the vertices
in W have at least one neighbor, and therefore by definition of MAG, they do not have any
ancestors.) Otherwise, u is a path with only undirected edges. If X is on u, X itself blocks
this path. Otherwise, consider the cycle formed by adding the path Y �X � Z to u. Since
the edge-induced subgraph of M = GV [O|S] over its undirected edges is chordal, if Y and
Z are not adjacent, there exists a chord which connects X to a non-endpoint vertex on u.
As a result, at least one of the neighbors of X appears on u, and therefore blocks u as a
non-collider, as it belongs to W.
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For a proof of the second part of the theorem, i.e., the set of removable vertices is non-empty, we
refer the reader to Lemma 9 in Appendix D.

Theorem 3. Suppose the distribution PV over V = O [ L [ S is faithful to the DAG GV . If the
conditional independence relations among all variables in O given S is provided to L-MARVEL, the
output of L-MARVEL is the PAG representing the Markov equivalence class of GV [O|S].

Proof. In order to prove this theorem, it is enough to show that the information stored in A, i.e.,
the set of adjacencies and the separating sets for non-adjacent variables, is correct. L-MARVEL
identifies that two variables are not adjacent, only if it finds a separating set for them. In this case,
L-MARVEL adds that separating set to A. Hence, all the separating sets found in A are correct, and
the non-adjacent variables in A are non-adjacent in M. Note that even in the case that two variables
are excluded from each other’s Markov boundary, this is due to a found separating set for these two
variables. It is left to show that L-MARVEL correctly finds all the adjacent variables in M.

Let HV denote the induced subgraph of M over V ✓ O. We claim every time that L-MARVEL is
called over a subset V ✓ O during the execution of the algorithm, HV is equal to GV [V|S]. For
the first time, we call L-MARVEL over O and the claim holds. Now, assume HV = GV [V|S] in
a recursion. We need to show that our claim holds for the next recursion. First, note that Equation
(2) implies that HV satisfies faithfulness with respect to PV|S . Theorem 2 implies that when the if
condition in line 9 holds for the first i = i

⇤, then Xi⇤ is removable in HV. Note that by Lemma 9,
there always exists a variable that satisfies the if condition in line 9. Hence, Proposition 1 implies that
in the next recursion, HV\Xi⇤ = GV [V \Xi⇤ |S], which proves our claim.

So far we have shown that in each recursion, HV = GV [V|S] and HV satisfies faithfulness with re-
spect to PV|S . Hence, Function FindAdjacent and UpdateMb correctly learn the adjacent variables
and update the Markov boundaries, respectively. Hence, L-MARVEL manages to terminate after n
recursion and correctly add all the edges of M to A.

Proposition 2. If X is a removable variable in MAG H with vertices V, then |MbV(X)|  �+
in (H).

Proof. Consider the set of variables Mb(X) [ {X}. Since MAGs are acyclic, there exists a vertex in
this set such that it has no children in Mb(X)[ {X}. Denote this vertex by Z. From Lemma 3, every
vertex in {X} [Mb(X)\{Z} has a collider path to Z such that it passes through only the vertices in
{X} [Mb(X). Since Z has no child in this set, the vertex adjacent to Z on these collider paths is
either a parent, or a spouse, or a neighbor of Z. Therefore, by definition,

{X} [Mb(X)\{Z} ✓ Pa+(Z).

As a result,
|Mb(X)| = |{X} [Mb(X)\{Z}| 

��Pa+(Z)
��  �+

in (H).

Proposition 3. The number of conditional independence tests Algorithm 1 performs on a MAG M
of order n, in the worst case, is upper bounded by

O(n2 + n�+
in (M)

2
2�

+
in (M)). (11)

Proof. Algorithm 1 performs CI tests throughout the following subroutines:

• ComputeMb: This is the initial Markov boundary discovery, that can be performed using any of the
existing quadratic algorithms such as GS, TC, IAMB, etc. as discussed in the main text, that is,
O(n) CI tests are required for this task.

• FindAdjacent(X): The performed CI tests are of the type (X ?? Y |W), where Y 2 MbV(X)
and W ✓ MbV(X)\{Y }. There are |MbV(X)| choices for Y and 2(|MbV(X)|�1) choices for W,
that is, |MbV(X)| 2(|MbV(X)|�1) total tests.

• IsRemovable(X): The performed CI tests are of the type (Y ?? Z|W), where Y 2 Adj(X) \V,
Z 2 MbV(X) \ {Y } and W ✓ {X} [ MbV(X) \ {Y, Z}. There are |N(X)| choices
for Y , at most |MbV(X)| choices for Z and 2(|MbV(X)|�1) choices for W, that is, at most
|MbV(X)| |N(X)| 2(|MbV(X)|�1) total tests.
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• UpdateMb(X): L-MARVEL performs a single CI test for any pair of vertices in MbV(X), that is�
|MbV(X)|

2

�
tests.

Note that due to Proposition 2, the for loop in line 6 of Algorithm 1 only reaches vertices with
maximum Markov boundary size of �+

in (M). Therefore, the number of CI tests performed for a
single vertex X is upper bounded by O(�+

in (M)
2
2�

+
in (M)). We shall next discuss why we do not

need to perform each of the aforementioned tests more than once, which the yields the desired upper
bound.

• FindAdjacent(X): The set of vertices adjacent to X does not change throughout the algorithm.
Therefore, the first time that FindAdjacent is called for X , the variables adjacent to X are identified
and saved in A, and are used in later iterations without requiring further CI tests.

• IsRemovable(X): It might happen that L-MARVEL performs some CI tests to identify that X is
not removable, and therefore, it has to call IsRemovable for X in a later iteration (note that every
variable gets removed throughout the algorithm.) This is due to the fact that the removal of other
variables can render X removable in a later iteration. However, we claim that no duplicate CI tests
are needed in later iterations where L-MARVEL calls IsRemovable. To show this, note that for
any pair Y, Z where Y 2 Adj(X) \V and Z 2 MbV(X)\{Y }, all of the separating sets of Y
and Z in MbV(X) [ {X} are saved in A during the first call to IsRemovable. Since the Markov
boundary of X can only be reduced throughout the algorithm, in all the succeeding iterations, it
suffices for L-MARVEL to query the found separating sets.

• UpdateMb(X): These CI tests are performed only before X is removed from the set of variables,
that is, they are performed exactly once for each variable.

Theorem 4. The number of conditional independence tests of the form (X ?? Y |Z) required by any
constraint-based algorithm on a MAG M of order n, in the worst case, is lower bounded by

⌦(n2 + n�+
in (M)2�

+
in (M)). (12)

Proof. First, suppose an algorithm does not query any CI test of the form (X ?? Y |W) for a pair of
vertices (X,Y ). If all the queried CI tests yield independence, this algorithm cannot tell an empty
graph and a graph where only X and Y are adjacent apart. Therefore, at least one CI test is required
for any pair of vertices, which yields a lower bound of

�n
2

�
.

Furthermore, [11] proposed a lower bound of the form ⌦(n�in(M)2�in(M)) for the case that M is
a DAG, where �in(M) is the maximum number of parents among the variables. Note that in the
case of a DAG, �+

in (M) = �in(M), which proves our claim. However, we briefly discuss how
their worst-case example can be modified in a way that it is no longer a DAG, and also �+

in (M) is
strictly larger than �in(M). The provided example is as follows. The vertices of the ground truth
graph is partitioned into n

�+
in (M)+1

clusters, where each cluster is a complete graph and there is no
edge between the variables of different clusters. They show that if fewer CI tests than the claimed
lower bound are performed, then a CI test of the form (X ?? Y |W1 [W2) is not queried, where
X,Y,W1 belong to a cluster C, whereas W2 does not contain any vertex of C. Then they show
that the graph where W1 are parents of X and Y , and the rest of the graph is exactly the same as M
with the exception that there is no edge between X and Y is consistent with the performed CI tests.
In this example, if the rest of the edges in the cluster C, i.e., the edges other than those between W

and X,Y , as well as all the edges in the other clusters are replaced by bidirectional edges, the same
proof still works. Note that in this example, �+

in (M) = |C|� 1, whereas �in = |W1|. Hence, we
achieve the lower bound of Equation (12).

C Additional experiments

In this section, we provide further experimental results to assess the performance of L-MARVEL
against the state of the art.
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(a) Performance (run time, number of CI tests, and the average conditioning size) of structure learning algorithms
on the insurance network.

(b) Performance (Precision, Recall, and F1 score) of structure learning algorithms on the insurance network.

(c) Performance (run time, number of CI tests, and the average conditioning size) of structure learning algorithms
on the alarm network.

(d) Performance (Precision, Recall, and F1 score) of structure learning algorithms on the alarm network.

Figure 4: Effect of the sample size on the performance of structure learning algorithms on two
benchmark structures, where the sample size varies from = 10|O| to = 60|O|. The parameters of
the experiments are preserved as in Table 1, except for the sample size.

Figure 4 illustrates the effect of the sample size on the performance of various algorithms. It is seen
that L-MARVEL has the lowest run time and the fewest number of performed CI tests, while it
maintains high accuracy in the wide range of the sample size. Also note that on these benchmark
structures, L-MARVEL beats RFCI in terms of the average number of CI tests, which was the only
metric in which RFCI showed advantage on random graphs. The experimental setting in this part is
exactly that of Table 1, except for the sample size, to observe only the effect of the sample size. Each
point of these graphs represents 50 MAGs generated by selecting the latent and selection variables
uniformly at random.

Table 2 extends our experiments to two new benchmark structures, namely mildew and water. The
number of latent and selection variables varies in different columns of this table, where the latent and
selection variables are chosen uniformly at random. The coefficients of the linear SEM are chosen
uniformly at random from the interval ±(1, 1.5), whereas the standard deviation of the noise variables
is chosen uniformly at random from the interval (1,

p
2) to represent a set of parameters different

than that of the main text. The entries of the table represent an average of 20 runs. As observed in
Table 1, L-MARVEL outperforms all the other algorithms in almost every comparison metric, except
for the precision, where it still is competent to the state of the art.
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Table 2: Performance of various algorithms on the benchmark structures, when sample size = 50|O|.

Structure Mildew Mildew Mildew Water Water Water
(|O|, |L|, |S|) (31,4,0) (31,0,4) (29,3,3) (29,3,0) (29,0,3) (26,3,3)

L-
M

A
RV

EL

#CI tests 359 194 426 2365 1130 1368
Runtime 0.06 0.04 0.08 0.32 0.21 0.25
F1-score 0.90 0.92 0.89 0.82 0.87 0.73

Precision 0.95 0.99 0.96 0.97 0.98 0.95
Recall 0.85 0.87 0.83 0.72 0.79 0.60

R
FC

I

#CI tests 896 1085 937 1472 1398 1173
Runtime 0.20 0.23 0.19 0.21 0.29 0.22

F1-score 0.77 0.84 0.79 0.67 0.69 0.60
Precision 0.98 1.00 0.99 0.97 0.98 0.97

Recall 0.64 0.73 0.66 0.51 0.53 0.44

FC
I

#CI tests 1751 7251 10999 149674 12912 78903
Runtime 0.33 1.57 2.26 29.99 2.99 19.00
F1-score 0.72 0.81 0.74 0.57 0.61 0.50
Precision 0.98 1.00 1.00 0.98 0.98 0.98

Recall 0.57 0.69 0.59 0.41 0.45 0.34

M
B

C
S*

#CI tests 1076 336 816 8300 3927 3946
Runtime 0.28 0.12 0.25 1.98 1.07 1.12
F1-score 0.81 0.89 0.82 0.68 0.74 0.61
Precision 0.97 0.99 0.98 1.00 0.99 0.99

Recall 0.70 0.81 0.71 0.52 0.59 0.45

M
3H

C

#CI tests 708 747 808 1591 1501 1285

Runtime 8.41 9.93 17.33 36.65 78.99 61.48
F1-score 0.76 0.79 0.75 0.65 0.63 0.57
Precision 0.98 1.00 0.99 0.97 0.98 0.97

Recall 0.62 0.66 0.61 0.48 0.47 0.40

D Specific excluded structure

In this section, we discuss the specific structure that is excluded from the result of Theorem 2.
Formally, this structure is a MAG M that contains a specific type of cycle, which we call non-chordal:
A cycle (V0, V1, ..., Vm, Vm+1 = V0) such that I) Vi and Vi+1 are neighbors for every 0  i  m,
and II) the inducing subgraph of M over the vertices {V0, ..., Vm} does not contain any other edges.
We show that this certain structure of MAGs represents a very restrictive structure of the DAG GV .
Consider the DAG GV in Figure 5a, where O = {O1, O2, O3, O4} and S = {S12, S23, S34, S41}.
The corresponding MAG is shown in Figure 5b. As seen in Figure 5b, the non-chordal cycle
(O1, O2, O3, O4, O1) appears in the MAG structure. We claim such a cycle can only happen if all of
the following conditions are satisfied:

• Each pair (Oi, Oi+1) have a specific selection variable Si(i+1) such that Oi, Oi+1 2 Anc(Si(i+1)),
and none of the other observed variables of the cycle are ancestors of Si(i+1). Note that if for
instance O1 2 Anc(S23) in the example above, then O1 would be adjacent to O3 in GV [O|S],
since (O1, S23, O3) is an inducing path. So for the resulting MAG to have a non-chordal cycle,
each pair of the observed variables must have their own specific selection variable.

• None of the pairs of variables (Oi, Oj) must be adjacent if j 6= (i�1), (i+1). That is, the induced
subgraph of the DAG GV over Ois must not contain any edges other than the edges of the cycle.
Otherwise, the cycle in MAG GV [O|S] would contain a chord.

• None of the pairs of variables (Oi, Oj) must have common latent confounders if j 6= (i�1), (i+1).
Otherwise, as in the case above, this would form a chord in the cycle.

Not allowing the aforementioned specific structure, the result of Theorem 2 is guaranteed. Note that it
is mandatory to exclude this structure, as such structures have induced sub-graphs with no removable
variables.
Lemma 8. Suppose G is a MAG with non-chordal cycle c = (O0, ..., Om). None of the vertices
{O0, ..., Om} are removable in any induced sub-graph of G that contains the cycle c.
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S12

S23

S34

S41

O1 O2

O3O4

(a) GV

O1 O2

O3O4

(b) GV [O|S]

Figure 5: A structure where every pair of observed vertices have its own specific selection variable,
shared among only the variables of this pair. This results in a non-chordal MAG over the observe
variables, if none of the pairs (O1, O3) and (O2, O4) have neither an edge in the DAG GV , nor a
latent common confounder.

Proof. Suppose H is an induced sub-graph of G that contains the cycle c. Take an arbitrary vertex
Oi. Oi�1, Oi+1 2 N(Oi), and Oi�1 /2 Adj(Oi+1) since c is non-chordal. From Theorem 1, Oi is not
removable, which completes the proof.

The following result indicates that given the aforementioned assumption, that is, if no non-chordal
cycle exists in M = GV [O|S], then a removable variable always exists in any subgraph of M, which
completes our discussion.
Lemma 9. Suppose the edge-induced subgraph of M over the undirected edges is chordal. Let
G = GV [V|S] for some V ✓ O. Then there exists X 2 V such that X is removable in G.

Proof. We consider the following two cases and introduce a removable variable at each case:

1. G has at least one directed or bidirected edge: Take X as a vertex that has at least one
arrowhead incident to it (i.e., it has at least a parent or a spouse), and satisfies the following
property:

DeG(X) \V\{X} = ?.

We first show that such a vertex exists. Suppose not. Start from a vertex with an arrowhead
incident to it and move to one of its children. Since the vertex we are in now has other
descendants, again move to one of its children. Continuing in the same manner, we traverse
over a directed cycle, which is in contradiction with the definition of MAGs.

Now we show that this variable X is removable. Since X has no other descendants,
Ch(X) = ?. Furthermore, N(X) = ? by definition of MAG. Now Theorem 1 implies that
X is removable.

2. G is an undirected graph: Since M is chordal over its undirected edges, G is chordal too.
Chordal graphs have a perfect elimination ordering [7, 1]. Let X be the first vertex in
this ordering. By definition of perfect elimination ordering, all of the neighbors of X are
adjacent. From Theorem 1, X is removable

Lemmas 8 and 9 indicate that the assumption that the induced subgraph of M on the undirected
edges is chordal is the necessary and sufficient condition so that there exists a removable variable at
every subgraph of M.
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