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Abstract

Actor-critic methods are widely used in offline reinforcement learning practice,
but are not so well-understood theoretically. We propose a new offline actor-critic
algorithm that naturally incorporates the pessimism principle, leading to several
key advantages compared to the state of the art. The algorithm can operate when
the Bellman evaluation operator is closed with respect to the action value func-
tion of the actor’s policies; this is a more general setting than the low-rank MDP
model. Despite the added generality, the procedure is computationally tractable
as it involves the solution of a sequence of second-order programs. We prove an
upper bound on the suboptimality gap of the policy returned by the procedure that
depends on the data coverage of any arbitrary, possibly data dependent comparator
policy. The achievable guarantee is complemented with a minimax lower bound
that is matching up to logarithmic factors.

1 Introduction

The problem of learning a near-optimal policy is a core challenge in reinforcement learning (RL).
In many settings, it is beneficial to be able to learn a good policy using only a pre-collected set of
data, without further exploration with the environment; this problem is known as offline or batch
policy learning. The offline setting has unique challenges due to the incomplete information about
the Markov decision process (MDP) encoded in the available dataset. For example, due to maxi-
mization bias, a naive offline algorithm can return a policy with a severely overestimated value. In
order to avoid such undesirable behavior, researchers have introduced the idea of pessimism under
uncertainty, and there is now a growing literature (e.g., Liu et al. (2020); Jin et al. (2020b); Buck-
man et al. (2020); Kumar et al. (2019); Kidambi et al. (2020); Yu et al. (2020)) on different ways in
which pessimism can be incorporated. See Appendix B for additional references and discussion of
this body of work.

At a high level, incorporating pessimism prevents algorithms from settling down on uncertain poli-
cies whose value might be misleadingly high under the current dataset due to statistical errors. By
using pessimism, uncertain policies are penalized in such a way that only those policies robust to
statistical errors are returned. The principle can be implemented in at least two different ways: (a)
by penalizing policies that are far from the one that generated the dataset; or (b) by penalizing the
value functions of policies not well covered by the dataset. In this paper, we take the latter avenue.

∗This work was fully completed while Andrea Zanette was a PhD candidate at Stanford University. Future
updates of this work will be available at https://arxiv.org/abs/2108.08812

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



1.1 Overview and our contributions

Implementing pessimism with function approximation is challenging for several reasons. First, un-
certainty must be estimated with particular care. On one hand, underestimating it can fail to correct
the coverage problem. On the other hand, overestimating it leads to policies that are too conserva-
tive and thus underperform. Second, the incorporation of pessimism may introduce complex, higher
order perturbations into the value function class handled by the algorithm. Similar issues can arise
when adding optimistic bonuses in the exploration. The increased complexity of the function class
often requires additional assumptions on the model, because the new class needs to interact “nicely”
with the Bellman operator. Prior art on pessimism with function approximation has by-passed this
problem by making strong model assumptions, such as low-rank transitions Jin et al. (2020b) or
algorithm-specific assumptions Liu et al. (2020).

Actor-critic methods: Most past theoretical work on offline reinforcement learning on finding
with high probability the policy with the highest performance has focused on algorithms that are
either model or value-based2 Liu et al. (2020); Jin et al. (2020b); Buckman et al. (2020); Kidambi
et al. (2020); Yu et al. (2020); these often incorporate pessimism into the estimates of the policy
performance. Actor-critic methods are a hybrid class of methods that mitigate some deficiencies
of methods that are either purely policy or purely value-based Konda and Tsitsiklis (2000, 2003);
Heess et al. (2015); Haarnoja et al. (2017, 2018); in modern RL, they are widely used in practice
(e.g., Levine et al. (2020); Wu et al. (2019, 2021); Kumar et al. (2019, 2020)). An actor-critic method
generally consists of an actor that changes the policy in order to maximize its value as estimated by
the critic. Given their popularity, it is natural to ask the following question: do actor-critic methods
provably offer any advantage in offline RL? The main contribution of this paper is to give a positive
answer to this question: by separating the policy optimization from the policy evaluation, both tasks
become simpler to design and the pessimism principle can be incorporated more naturally.

Contributions: More specifically, we study the problem of policy learning using linear function
approximation in the offline setting. We assume that we are given a batch data set D, in which each
sample consists of a quadruple. The first two components are the state-action pair, corresponding
to the state in which a given action was taken, and the last two components correspond to a noisy
observation of the reward, and a successor state drawn from the appropriate transition function.
Our theory allows for a very general dependence structure among the the state-action pairs in these
samples; when the data set is ordered according to how the samples were collected (which need
not be related to a trajectory), we allow the state-action pair at any given instant to depend on all
past samples. This set-up allows from data collected from arbitrary policies, mixtures of policies,
generative models or even in adversarial manner.

Given such a data set, our objective is to find the policy that performs best in the face of uncertainty.
In particular, we need to account for the fact that the optimal policy π∗ for the underlying MDP may
not be well covered by the dataset D, in which case the associated uncertainty would be prohibitive.
In order to achieve this goal, we design an actor-critic procedure that iteratively optimizes a lower
bound on the value of the optimal policy. Suppose that we are interested in optimizing the value
function at some given initial s1. Our strategy works as follows: for any given policy π, we construct
a family M(π) of “statistically plausible” MDPs, and use them to define a simple second-order
cone program. By solving this convex program, we obtain value function estimate V πM (s1) =
arg minM∈M(π) V

π
M (s1) that—for an appropriately constructed familyM(π)—is guaranteed to be

a lower bound on the true value function of π in the unknown MDP that generated the dataset. Given
a procedure for producing such lower bounds, it is then natural to maximize these lower bounds over
some family Π of policies. This combination leads to the saddle-point problem

max
π∈Π

min
M∈M(π)

V πM (s1). (1)

Note that actor-critic methods fit naturally in this framework: the critic provides a pessimistic eval-
uation of any given policy π, and the actor solves the outer maximization problem over policies.

2Exceptions to this include importance-sampling based approaches to selecting among a finite set of policies
(e.g. Mandel et al. (2014); Thomas et al. (2015, 2019)); however, such approaches have focused on operating
without a Markov assumption and inherently provide much looser guarantees than the ones we and others
consider for the Markov setting.
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This decoupling lends itself to a computationally tractable implementation, along with an analysis
of the procedure. In particular, we show that the actor’s sequence of estimated policies enjoys online
learning-style guarantees with respect to a sequence of pessimistic MDPs implicitly identified by
the critic.

The way in which we introduce pessimism is a second key component of the algorithmic framework.
In particular, in line with our previous paper Zanette et al. (2020b), we do so without enlarging the
prescribed classes of functions and policies. We do so by a direct perturbation of the value functions
examined by the critic; there is no addition of pessimistic bonuses or absorbing states. Since the class
of value functions is not altered, this method has two main advantages. First, there are no additional
model assumptions compared to the standard—that is non-pessimistic—version of the actor-critic
method. Second, the complexity of the underlying classes is not increased, thereby allowing us
to construct tight confidence intervals and estimation error bounds that are minimax optimal up to
logarithmic factors.

The remainder of this paper is organized as follows. We begin in Section 2 with background on
MDPS, and then introduce the modeling assumptions that underlie the analysis of this paper. In
Section 3, we introduce the algorithm studied in this paper, namely the Pessimistic Actor Critic
for Learning without Exploration (for short, PACLE) algorithm. Section 4 provides statements of
our main results and discussion of their consequences, including an upper bound on the PACLE
algorithm in Theorem 1, and a minimax lower bound in Theorem 2. In Section A, we provide an
outline of the proof of Theorem 1, with various technical details as well as the proof of Theorem 2
deferred to the appendices. We conclude with a discussion in Section 5.

1.2 Notation

For the reader’s convenience, we summarize here some notation used throughout the paper. We let
Bd(r) = {x ∈ Rd | ‖x‖2 ≤ r} denote the Euclidean ball of radius r ∈ R in dimension d; we simply
write B when there is no possibility of confusion. For a vector x ∈ Rd, we use [x]i to denote its
ith component. We use the Õ notation to denote an upper bound that holds up to constants and log
factors in the input parameters ( 1

δ , d,H). The notation . means an upper bound that holds up to a
constant, with an analogous definition for &.

2 Background and problem formulation

We begin by providing some background, before introducing the assumptions that underlie our
problem formulation.

2.1 Markov decision processes

In this paper, we focus on finite-horizon Markov decision processes, for which we provide a very
brief introduction here. See the books Puterman (1994); Bertsekas and Tsitsiklis (1996); Bertsekas
(1995); Sutton and Barto (2018) for more background and detail. A finite-horizon MDP is specified
by a positive integer H , and events take place over a sequence of stages indexed by the time step

h ∈ [H]
def
= {1, . . . ,H}. The underlying dynamics involve a state space S, and are controlled by

actions that take values in some action set A. In this paper, we allow the state space to be arbitrary
(continous or discrete), whereas our analysis applies to discrete action spaces. For each time step
h ∈ [H], there is a reward function rh : S × A → R, and for every time step h and state-action
pair (s, a), there is a transition function Ph(· | s, a). When at horizon h, if the agent takes action a
in state s, it receives a random reward drawn from a distribution Rh(s, a) with mean rh(s, a), and it
then transitions randomly to a next state s+ drawn from the transition function Ph(· | s, a).

A policy πh at stage h is a mapping from the state space S to the action spaceA. Given a full policy
π = (π1, . . . , πH), the state-action value function at time step h is given by

Qπh(s, a) = rh(s, a) + ES`∼π|(s,a)

H∑
`=h+1

r`(S`, π`(S`)), (2)

where the expectation is over the trajectories induced by π upon starting from the pair (s, a). When
we omit the starting state-action pair (s, a), the expectation is intended to start from a fixed state
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denoted by s1. The value function associated to π is V πh (s) = Qπh(s, πh(s)). For a given policy π,
we define the Bellman evaluation operator

T πh (Qh+1)(s, a) = rh(s, a) + ES′∼Ph(s,a)EA′∼πQh+1(S′, A′).

Under some regularity conditions Puterman (1994); Shreve and Bertsekas (1978), there always exists
an optimal policy π? whose value and action-value functions are defined as

V ?h (s) = V π
?

h (s) = sup
π
V πh (s), and Q?h(s, a) = Qπ

?

h (s, a) = sup
π
Qπh(s, a).

2.2 Assumptions on data generation

In this paper, we study a model in which we observe a dataset of the formD = {(si, ai, ri, s+
i )}ni=1,

where n is the total sample size. For each i ∈ [n] = {1, 2, . . . , n}, the tuple (si, ai) corresponds
to a state-action pair associated with some time step hi. We let Fi be the σ-field generated by the
samples {(sj , aj , rj , s+

j )}i−1
j=1 that are in the “past” relative to index i. With this notation, we impose

the following condition:

Assumption 1 (Data generation). For each i ∈ [n], the pair (si, ai) is measurable with respect toFi.
Conditionally on a given pair (si, ai), the random variable ri is drawn from a reward distribution
Rhi(si, ai) that is 1-sub-Gaussian; and the next state s+

i is drawn from the distribution Phi(si, ai).

Note that the measurability condition allows the choice of (si, ai) to depend arbitrarily on any of the
past data with indices j < i. The mild assumption allows for considerable freedom. For example, the
state-action pairs may be chosen from (mixture) policies, or they can be generated by an adversarial
procedure that changes the data acquisition strategy as feedback is received.

For each h ∈ [H], we let Ih denote the subset of observation indices i ∈ [n] such that hi = h. These
index sets define the sub-datasets Dh = {(si, ai, ri, s+

i ), i ∈ Ih} associated with all samples that
are based on state-action pairs at time step h. We define nh = |Dh|, so that our total sample size can
be written as n =

∑H
h=1 nh.

2.3 Policy and function classes

Next we define the policy space Π and the action value function space Q over which we seek
solutions. Let φ : S ×A 7→ Rd be a d-dimensional feature mapping. We assume throughout that
these feature mappings are normalized such that ‖φ(s, a)‖2 ≤ 1 uniformly for all (s, a)-pairs. We
consider action-value functions that are linear in φ, and families of the form

Q(ρw)
def
= {(s, a) 7→ 〈φ(s, a), w〉 | ‖w‖2 ≤ ρw}, (3a)

where ρw ∈ (0, 1] is a user-defined radius. For policies, we consider the associated soft-max class

Πsoft(ρ
θ)

def
=

 e〈φ(s,a), θ〉∑
a′∈A

e〈φ(s,a′), θ〉 | ‖θ‖2 ≤ ρ
θ

 , (3b)

where ρθ > 0 is a second radius.

In the context of our actor-critic algorithm, the weight radius ρw remains fixed for all updates. On the
other hand, the actor produces a sequence of soft-max radii {ρθt }Tt=1, indexed by the iterations t of
the actor. This sequence is produced via the update rule in Line 5 of Algorithm 1. The policy radius
can be large ρθ � 1 but we constrain ρw ≤ 1 so that the critic’s estimate Qw(s, a) = 〈φ(s, a), w〉
is bounded by one, i.e., sup(s,a,w) |Qw(s, a)| ≤ 1.

Recall that our MDP consists of sequence of H distinct stages. Our algorithm and theory allows
for the possibility of different feature extractors at each step h ∈ [H], even with possibly differ-
ent dimensions. Consequently, in implementing and analyzing the algorithm, there are actually H
(possibly different) functional spaces {Qh}Hh=1, along with the associated soft-max policy classes
{Πh}Hh=1. So as to simplify notation, we drop the dependence on the radii when referring to the
functional spaces, and implicitly assume that the terminal value function is zero.
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2.4 A range of function class assumptions

In this section, we discuss a range of assumptions that might be imposed on the class of action-value
functions. This discussion serves as motivation for the particular assumption (Bellman restricted
closedness—cf. Assumption 3) that underlies our analysis.

We begin with the least restrictive condition, which is a very natural starting point in our given
set-up. If we seek to find the policy π ∈ Π with the highest value function, it seems reasonable to
require that the following representation condition (approximately) holds.

Assumption 2 (Linear action-value functions Qπ). The MDP admits a linear action-value function
representation for all policies in Π, meaning that for each policy π ∈ Π and time step h ∈ [H],
there exists a vector wπh such that

Qπh(s, a) = 〈φh(s, a), wπh〉 . (4)

This assumption alone turns out to be inadequate to ensure that effective learning is possible;
indeed, the recent papers Zanette (2020); Weisz et al. (2020) establish that even under this con-
dition, there are instances that require exponentially many samples to do better than a random policy.

Given this fact, if one is interested in procedures with polynomial complexity (in both sample size
and running time), stronger conditions need to be imposed. In general, the Bellman evaluation
operator, even when applied to a linear action-value function, will return a nonlinear value function.
The analysis of this paper is based on bounding the Bellman error in the sense of sup-norm deviation
from linearity:

Assumption 3 (Bellman Restricted Closedness). The policy and value function spaces (Π,Q) are
closed up to ν ∈ RH error in the sup-norm if there is a non-negative sequence {νh}Hh=1 such that
for each h ∈ [H], we have

sup
Qh+1∈Qh+1

πh+1∈Πh+1

inf
Qh∈Qh

‖Qh − T
πh+1

h Qh+1‖∞ ≤ νh. (5)

The restricted closedness assumption measures how well we can fit the action-value function
resulting from the application of the Bellman evaluation operator to an action value function in Q
and for a policy in Π. It enables the analysis of least-squares policy evaluation (e.g., Nedić and
Bertsekas (2003)), which will be our starting point when constructing the critic.

Finally, for understanding connections to past work, it is relevant to compare to the low-rank MDP
assumption that has been analyzed in recent work Jin et al. (2020a); Yang and Wang (2020), in-
cluding in offline RL with pessimismistic guarantees Jin et al. (2020b), as well as in various online
settings Agarwal et al. (2020a); Modi et al. (2021); Zanette et al. (2020a).

Assumption 4 (Low-Rank MDP). An MDP is low-rank if for all h ∈ [H], there exists a reward
parameterwh ∈ Rd and a component-wise positive mapping ψh : S → Rd+ such that ‖ψh(s)‖1 = 1
for all s ∈ S, and

rh(s, a) = 〈φh(s, a), wh〉 , Ph(s′ | s, a) = 〈φh(s, a), ψh(s′)〉 , ∀(s, a, h, s′). (6)

The following proposition explicates the nested relationship between these three conditions,
showing that the low-rank MDP condition is the most restrictive:

Proposition 1 (Low Rank⊂ Restricted Closedness⊂ Linear Qπ). For any fixed state-action space,
horizon, and feature extractor:

(a) The class of low-rank MDPs is a strict subset of the class of MDPs that satisfy Bellman
restricted closedness.

(b) The class of MDPs that satisfy Bellman restricted closedness is a strict subset of the linear
Qπ MDP class.
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See Appendix C for the proof of this claim.

Based on Proposition 1, we see that any analysis based on assuming Bellman restricted closedness
also a fortiori applies to MDPs that satisfy the more stringent low-rank MDP condition.

3 The Pessimistic Actor-Critic

Given the set-up thus far, we are now ready to describe the actor-critic algorithm that we analyze in
this paper. We refer to it as the Pessimistic Actor Critic for Learning without Exploration, or PACLE
for short. We first describe the critic in Section 3.1, and then the actor in Section 3.2. We summarize
the actor and critic algorithms, respectively, in pseudocode form in Algorithm 1 and Algorithm 2.

3.1 The Critic: Pessimistic Least Square Policy Evaluation

The purpose of the critic is to provide pessimistic value function estimates corresponding to the
policy π under consideration by the actor. Monte Carlo with importance sampling (IS) is not desir-
able in this setting, as the policy or distribution that generated the dataset might be unknown and
estimation errors on the distribution can accumulate exponentially with the horizon in IS estima-
tors (see e.g. Liu et al. (2018b)). Instead, we use a least-squares temporal difference method for
policy evaluation, but suitably perturbed to return pessimistic estimates—i.e., lower bounds on the
true value function of the given policy π. Our method is based on directly perturbing the regression
parameters in the least-square estimate. In contrast to bonus-based approaches, this method has the
important advantage of ensuring that the action-value function remains linear. The purpose of the
perturbations is to compensate for possible statistical errors in estimating the regression parameter
due to poor coverage of the given dataset.

Let us now give a precise description of the critic. Given a policy π = (π1, . . . , πH), the goal of the
critic is to minimize the quantity

EA′∼π1 〈φ(s1, A
′), w1〉 =

∑
a∈A

π1(a | s1) 〈φ1(s1, a), w1〉 , (7)

which is an estimate of the value function V π(s1) for the policy π at the initial state s1. The
parameter w1 ∈ Rd is a vector to be adjusted, one that is determined by a backwards-running
sequence of regression problems from h = H down to h = 1.

We introduce the pessimistic perturbations directly to the solution of these regression problems.
They involve a norm defined by the cumulative covariance matrix. Recall that Ih indexes the subset
of observations associated with state-action pairs at time step h. For each h ∈ [H] and i ∈ Ih,
let us write the associated sample as the quadruple (shi, ahi, rhi, sh+1,i). Introducing the shorthand
notation φhi = φh(shi, ahi), we define the cumulative covariance matrix

Σh
def
=
( ∑
i∈Ih

φhiφ
>
hi

)
+ Id×d, (8)

where Id×d denotes the d-dimensional identity matrix. Notice that the cumulative covariance grows
as the number of samples in Ih increases; we do not normalize it by the local sample size nh = |Ih|,
so that Σh effectively represents the amount of information contained in the sub-dataset Dh at time
step h.

Since Σh is strictly positive definite by construction, it defines a pair of norms

‖u‖Σh
def
=
√
u>Σhu, and ‖u‖Σ−1

h

def
=
√
u>(Σh)−1u. (9)

Consider the regression problem that is solved in moving backward from time step h+1 to h. Given
the weight vector wh+1 at time step h+ 1, the regularized least-squares estimate of wh is given by

ŵh
def
= Σ−1

h

∑
k∈Ih

φhk

[
rhk +

∑
a∈A

πh+1(a | sh+1,k) 〈φh+1(sh+1,k, a), wh+1〉
]
.
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We introduce pessimism by directly perturbing the weight vectors themselves—that is, we search
for weight vector wh such that wh = ξh + ŵh, where the pessimism vector ξh ∈ Rd satisfies a
bound of the form ‖ξh‖Σh ≤ αh, for a user-defined parameter αh.

In detail, the critic takes as input the dataset D, a policy π, a sequence of tolerance parameters
α = (α1, . . . , αH), weight radii ρw = (ρw1 , . . . , ρ

w
H) with each ρwh ∈ (0, 1]. The optimization

variables consist of the regression vectors w = (w1, . . . , wH) ∈ (Rd)H and the pessimism vectors
ξ = (ξ1, . . . , ξH) ∈ (Rd)H . The critic then solves the convex program

(ξπ, wπ)
def
= arg min

ξ∈(Rd)H

w∈(Rd)H

∑
a∈A

π1(a | s1) 〈φ1(s1, a), w1〉 (10a)

with the terminal condition wH+1 = 0, and subject to the constraints

wh = ξh + Σ−1
h

∑
k∈Ih

φhk

[
rhk +

∑
a∈A

πh+1(a | sh+1,k) 〈φh+1(sh+1,k, a), wh+1〉
]
, and

(10b)

‖ξh‖2Σh ≤ α
2
h, ‖wh‖22 ≤ (ρwh )2 (10c)

for all h ∈ [H]. Here the matrices Σh were previously defined in equation (8).

The convex program (10) consists of a linear objective subject to quadratic constraints; it is a special
case of a second order cone program, and can be efficiently solved with standard convex solvers.

Algorithm 1 ACTOR (MIRROR DESCENT)
1: Input: Dataset D, starting state s1,

learning rate η
2: Set θ1 = (~0, . . . ,~0)
3: for t = 1, 2, . . . , T do
4: wt ← CRITIC(D, πθt , s1)
5: θt+1 = θt + ηwt
6: end for
7: Return: Mixture policy πθ1 , . . . , πθT

Algorithm 2 CRITIC (PLSPE)
1: Input: Dataset D, target policy π, start-

ing state s1, critic radii {ρwh }h=1,...,H ,
and parameters {αh}h=1,...,H

2: Solve the optimization program (10)
3: Return: Optimal weight vector w

3.2 The Actor: Mirror Descent

We now turn to the behavior of the actor. It applies the mirror descent algorithm based on the
Kullback Leibler (KL) divergence Bubeck (2014). This combination leads to the exponentiated
gradient update rule in every timestep h ∈ [H], so that the soft-max policy in moving from iteration
t to t+ 1 is updated as

πt+1,h(a | s) ∝ πt,h(a | s)eηQh(s,a) for each (s, a) ∈ S ×A. (11)

Here η > 0 is a stepsize parameter, and our theory specifies a suitable choice.

If the Q-value above from the critic lives in Q, then it is possible to show that πt+1,h ∈ Πh and
the update rule takes a much simpler and computationally more efficient form (cf. Line 5 of Algo-
rithm 1), where wt is the gradient of the value function on the pessimistic MDP implicitly identified
by the critic. In this case, the spaces (Q,Π) are said to be compatible Sutton et al. (1999); Kakade
(2001); Agarwal et al. (2020b); Raskutti and Mukherjee (2015) and the resulting algorithm is often
called the Natural Policy Gradient (NPG) (see also Geist et al. (2019); Shani et al. (2020)). By
construction, the critic maintains a linear action value function even after pessimistic perturbations.
As a consequence, the actor policy space is the simple softmax policy class Π and the easier update
rule can be used. As we explain in the analysis, this has important statistical benefits.

After T rounds of updates, the mirror descent algorithm that we use here readily achieves online
regret rates (in the optimization setting with exact feedback) ∼ 1/T or ∼ 1/

√
T depending on the

analysis Agarwal et al. (2020b) and the learning rate, although we mention that these rates could
potentially be improved Khodadadian et al. (2021); Lan (2021); Bhandari and Russo (2020).
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4 Main results

We now turn to the statement of a bound on the performance of the policy πALG returned by PACLE.
This upper bound involves three terms: an optimization error, an uncertainty term, and a model

mis-specification term. The optimization error is given by C(T )
def
= 4H

√
log |A|
T ; it captures the

rate at which the error decreases as a function of the iterations of the actor. The mis-specification

error Emsp(ν)
def
=
∑H
h=1 νh is simply the sum of all the stage-wise mis-specification errors; notice

that the mis-specification error does depend on the choice of the radii for the critic ρw1 , . . . , ρ
w
H

in a problem dependent way (cf. Assumption 3). Finally, for each h, define the vector φ̄πh
def
=

E(Sh,Ah)∼π[φh(Sh, Ah)], where the expectation is over the state-action (Sh, Ah) encountered at
timestep h upon following policy π. In terms of these vectors, the uncertainty error is given by

U(π;α)
def
= 2

H∑
h=1

αh‖φ̄πh‖Σ−1
h

= 2

H∑
h=1

αh

√
(φ̄πh)>Σ−1

h φ̄πh, (12)

where the cumulative covariance matrix Σh was defined in equation (8).

The amount of information from the datasetD is fully encoded in the uncertainty function U through
the sequence of cumulative covariance matrices {Σh}Hh=1 and parameters {αh}Hh=1. The more data
are available, the more positive definite Σh is and the smaller the uncertainty function U(π;α)
becomes for a fixed policy π. If the sampling distribution that generates the dataset is fixed, then we
can write U(π;α) / c/

√
n where c does not depend on n and can be interpreted as the coverage of

the sampling distribution with respect to policy π.

4.1 A guarantee for PACLE

Our main result holds under Assumption 1 on the data collection process. It is based on radii
{ρwh }Hh=1 for the action value function3 that lie in the interval (0, 1], and it provides a guarantee
relative to the class Πall of all stochastic policies.
Theorem 1 (An achievable guarantee). Suppose that we are given a data set D collected in a way
that respects Assumption 1. Then there are pessimism vectors bounded as αh = Õ(

√
d log(1/δ))+

νh
√
nh such that, after running T ≥ log |A| rounds of the actor with stepsize η =

√
log |A|
T , the

PACLE procedure returns a policy πALG for which

V π1 (s1)− V πALG

1 (s1) ≤ U(π;α) +

H∑
h=1

νh︸ ︷︷ ︸
Emsp(ν)

+ 4H

√
log |A|
T︸ ︷︷ ︸

C(T )

uniformly over all π ∈ Πall (13)

with probability exceeding 1− δ.

The result provides a family of upper bounds on the sub-optimality of the learned policy πALG,
indexed by the choice of comparator policy π, and embodies a tradeoff between the sub-optimality
of the comparator π and its uncertainty U(π;α). Note that the optimization error C(T ) can be
reduced arbitrarily, while α (and thus U(π;α)) increase only logarithmically with T . As a special
case, if we set π = π? and assume that there is no mis-specification error, then we obtain that the
learned policy satisfies a bound of the form

V π
?

1 (s1)− V πALG
1 (s1) ≤ U(π?;α) + C(T ) (14)

with probability at least 1 − δ. Since C(T ) is well-controlled, this guarantee is satisfied whenever
the uncertainty term U(π?;α) is small.

More generally, the guarantee (13) is significantly stronger than most prior work as PACLE competes
not just with the optimal policy π?, but with all comparator policies simultaneously. Such compara-
tor policies need not necessarily be in the prescribed policy class Π. To highlight the strength of this

3This represents a setting where both the reward and the value function can be as large as 1 in absolute
value. One easily recovers the setting with value functions in [0, H] using a rescaling argument.
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generality, suppose that the uncertainty U(π?;α) of the optimal π? is not small—it could in fact be
infinite. In this case, the bound (14) would not be useful.

However, suppose that there exists a near-optimal policy—meaning a policy π+ such that
V π

+

1 (s1) ≥ V ?1 (s1) − ε for some small ε—that is well-covered by the dataset (i.e., for which
U(π+;α) ≈ 0). In this case, Theorem 1 ensures with high probability V ALG

1 (s1) & V ?1 (s1) − ε.
In contrast, traditional analyses that use only the optimal policy π? as a comparator—as opposed
to also allowing near-optimal policies—cannot return meaningful guarantees. We note also that the
papers Yu et al. (2020); Liu et al. (2020); Kidambi et al. (2020) provide results of a similar flavor.
These types of guarantees are also provided by some concurrent works Uehara and Sun (2021); Xie
et al. (2021).

It should also be noted that Theorem 1 provides a family of results indexed by the choice of the
critic’s radii {ρwh }Hh=1. This choice is a modeling decision: increasing the radii increases both the
approximation power of the function classQh used for regression, but also increases the complexity
of the function class Qh+1 to represent (cf. Assumption 3); thus, the choice of the radii affects the
approximation error Emsp(ν) in a problem dependent way.

4.2 A lower bound

Thus far, we have stated an upper bound on the quality of the returned policy for a given procedure.
Central to this upper bound is the uncertainty function U(π;α). In this section, we show that a
term of this form is unavoidable for any procedure. In particular, working within the well-specified
setting, we prove a lower bound in terms of the quantity U(π;

√
d) =

√
d
∑H
h=1 ‖φ̄πh‖Σ−1

h
. Recalling

that our choice of α scales with
√
d (along with other logarithmic factors), this lower bound shows

that our result is tight up to logarithmic factors.

We show that the lower bound actually holds in a setting that is easier for the learner, in the sense that
(1) we restrict to low-rank MDPs, where there is no mis-specification error; and (2) the mechanism
that generates the dataset is non-adaptive, and so certainly satisfies Assumption 1.
Theorem 2 (Information-theoretic lower bound). For a given horizon H and dimension d, consider
a sample size n ≥ 2d3H3. There is a classM of low-rank MDPs and a data generating procedure
satisfying Assumption 1 such that for any policy π̂ALG, we have

sup
M∈M

EM
[
V π1M (s1)− V π̂ALG

1M (s1)
]
≥ c U(π;

√
d) uniformly over all π ∈ Πall, (15)

where c > 0 is a universal constant.

When H = 1 the above result gives a sample complexity lower bound for learning a near optimal
policy from batch data in a linear bandit instance.

4.3 Comparison to related work

Theorem 1 automatically implies the typical bound P[V πALG

1 (s1) ≥ V ?1 (s1)− U(π?;α)] ≥ 1− δ
when the comparator policy is the optimal policy π?, e.g., Jin et al. (2020b); Rashidinejad et al.
(2021); Kidambi et al. (2020); Kumar et al. (2019); Buckman et al. (2020). The guarantee can
be written as V πALG

1 (s1) & V ?1 (s1) − C/
√
n where n is the number of samples and C is the

(scaled) condition number of Σ−1
h . One could interpret C as a concentrability coefficient that ex-

presses the coverage of dataset—through Σh—with respect to the average direction in feature space
E(Sh,Ah)∼π?h [φ(Sh, Ah)] of the optimal policy π?. As in the paper Jin et al. (2020b), such a factor
can be small even when traditional concentrability coefficients are large because they depend on
state-action visit ratios (see the literature in Appendix B, e.g., Chen and Jiang (2019)).

With reference to the results in the paper Jin et al. (2020b), our work provides improvements in two
distinct ways. First, their upper and lower bounds exhibit a gap of the order dH , which our analysis
closes. Second, our analysis holds under the more permissive Assumption 3 (Bellman Restricted
Closedness) which includes low-rank MDPs. Of this improvement, a factor of

√
d is due to the

algorithm that we use, and the remainder is due to a more refined construction to certify optimality
in Theorem 2. To be clear, our upper and lower bounds differ from theirs by a factor of H due to
a different normalization in the value function). We also note that the result of Liu et al.Liu et al.
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(2020) can be specialized to the low-rank MDP setting; however, even in this simpler setting, the
results would be sub-optimal and also require additional density estimates.

Deriving a computationally tractable model-free algorithm without low-rank dynamics but subject
to value function perturbations (e.g., optimistic or pessimistic perturbations) is an open problem
even in the more heavily studied online exploration setting: there the current state-of-the art Zanette
et al. (2020b); Jin et al. (2021); Du et al. (2021); Jiang et al. (2017) only present computationally
intractable algorithms with the exception of Zanette et al. (2020c) for a PAC setting with low in-
herent Bellman error which however requires an additional “explorability” condition. Due to space
constraints, the proof outline is deferred to Appendix A.

5 Discussion

In this paper, we have developed and analyzed an actor-critic method procedure, designed for find-
ing near-optimal policies in the offline setting. The PACLE procedure introduces pessimism into the
critic’s evaluation of a given policy’s value function, thereby ensuring that, under suitable parameter
choices and assumptions, it maintains (with high probability) a lower bound on the true value func-
tion. The actor then performs a form of mirror ascent so as to maximize the value of these lower
bounds.

An important feature of our method is that it introduces pessimism via direct perturbations of the pa-
rameter vectors in a linear function approximation scheme. In this way, we avoid having to impose
additional model assumptions; moreover, the pessimism does not substantially increase the com-
plexity of our under value/policy classes, which allows us to provide minimax-optimal guarantees.
We note that similar approaches have appeared before in the exploration setting; for example, see the
recent papers Zanette et al. (2020b); Jin et al. (2021); Du et al. (2021). These methods enjoy similar
advantages in terms of theoretical guarantees, but at the expense of computational tractability. In
contrast, the method of this paper entails solving a low-dimensional second-order cone program, a
simple class of convex programs for which there exist many polynomial-time algorithms. We enjoy
this advantage due to some key differences between the offline and online settings of RL. In the
offline setting, it is possible to keep the actor’s update cleanly separated from the evaluation step of
the critic, as we have done here; this separation underlies the computational tractability.

Our work leaves open a number of interesting questions for future work. First, it would be interesting
to provide some numerical studies of the PACLE’s performance, so as to understand its practical
behavior relative to the theoretical guarantees provided here. Also, our analysis here has focused
purely on approximation using linear basis expansions; extension to more general function classes
is an important next step. Finally, it will be interesting to see to what extent these ideas can be
translated to the more challenging setting of exploration.
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A Proof Outline

In this section, we provide an outline of the proof of Theorem 1. The main components of the proof
are guarantees for the pessimistic estimates produced by the critic, and online learning guarantees
for the updates taken by the actor. These two guarantees are coupled together via the notion of an
induced MDP.

The proof outline given here follows a bottom-up approach: (a) starting with the critic in Section A.1,
we first introduce the notion of induced MDP that links the critic’s output to the actor’s input (see
Section A.1.1), and then discuss how suitable choices of the pessimism parameters α allow us to
guarantee that the critic underestimates the true value function (see Sections A.1.2 and A.1.3); (b)
next in Section A.2, we provide online-style learning guarantees for the actor, again using the notion
of induced MDP to link these guarantees back to the critic; and (c) in Section A.3, we put together
the pieces to prove the theorem itself.

A.1 Critic’s Analysis

Given a policy π and pessimism parameters α for which the convex program (10) is feasible, the
critic returns the pair (ξπ, wπ) = {(ξπ

h
, wπh)}Hh=1. These weight vectors induce the estimated value

functions

Qπ
h
(s, a)

def
= 〈φ(s, a), wπh〉 , and V πh(s)

def
= EA′∼πh(·|s)Q

π

h
(s,A′). (16)

Our goal in analyzing the critic is to relate these critic-estimated value functions to the true value
functions {Qπh}Hh=1.

A.1.1 Induced MDP

Essential to our analysis is an object that provides the essential link between the critic’s output and
the actor’s input. In particular, it is helpful to understand the critic in the following way: when given
a policy π as input, the critic computes the estimates {Qπ

h
}Hh=1, and uses them form a new MDP

M̂(π), which we refer to as the induced MDP. This new MDP shares the same state/action space
and transition dynamics with the original MDP M , differing only in the perturbation of the reward
function. In particular, for each h ∈ [H], we define the perturbed reward function

r̂πh(s, a)
def
= rh(s, a) +Qπ

h
(s, a)− T πh (Qπ

h+1
)(s, a). (17)

The induced MDP M̂(π) is simply the original MDP that uses this perturbed reward function.

One important property of the induced MDP—which motivates the definition (17)—is that the esti-
mates (16) returned by the critic correspond to the exact value functions of policy π in the induced
MDP. We summarize in the following:
Lemma 1 (Critic exactness in induced MDP). Given a policy π as input, the critic returns a se-
quence {V πh}Hh=1 such that

Qπ
h

= Qπ
h,M̂(π)

, and (18a)

V πh = V π
h,M̂(π)

for all h ∈ [H], (18b)

where V π
h,M̂(π)

is the exact value function of policy π in the induced MDP M̂(π).

See Section D.1 for the proof of this claim.

Moreover, since the induced MDP differs from the original MDP only in terms of the reward pertur-
bation (17), we have the following convenient property: for any policy π̃—which need not be of the
soft-max form—the definition of value functions ensures that

V π̃
1,M̂(π)

(s1)− V π̃1 (s1) =

H∑
h=1

E(Sh,Ah)∼π̃

[
r̂πh(Sh, Ah)− rh(Sh, Ah)

]
, (19)

where V π̃
1,M̂(π)

is the value function of π̃ in the induced MDP. This simple relation allows us to use
the induced MDP to relate arbitrary policies to their exact value functions.
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A.1.2 Critic’s guarantee under a “good” event

We now show that there is a “good event”—call it G(α)—under which the critic’s value function
estimates have some additional desirable properties. Once this event is defined, the core of our
proof involves determining the smallest choice of pessimism parameters under which it holds with
probability at least 1− δ.

We begin with some notation required to define the good event. Let F denote the space of all
real-valued functions on S ×A. The regression operator is a mapping from F to Rd, given by

Rπh(F )
def
= Σ−1

h

T∑
k=1

φhk
{
rhk + EA′∼π(·|shk)F (sh+1,k, A

′)
}
, (20a)

where F ∈ F . To appreciate the relevance of the regression operator, note that by definition of the
critic, we have the equivalence

wπh = ξπ
h

+ Rπh(Qπ
h+1

). (20b)

We also define the sup-norm projection operator (for the definition of B please see Section 1.2)

Pπh(F )
def
= arg min

wh∈B(ρwh )
sup
(s,a)

∣∣∣ 〈φ(s, a), wh〉 − (T πh F ) (s, a)
∣∣∣. (20c)

Note that Pπh is a mapping fromF to Rd; it returns the weight vector of the best-fitting linear function
to the Bellman update T πh (F ).

Our good event is defined in terms of the parameter error operators Eπh : F → Rd given by

Eπh(F )
def
= Rπh(F )− Pπh(F ). (21)

For a given sequence α = (α1, . . . , αH) of pessimism parameters, we define the good event

G(α)
def
=
{

sup
Qh+1∈Qh+1

πh+1∈Πh+1

‖Eπh+1

h (Qh+1)‖Σh ≤ αh for all h ∈ [H]
}
. (22)

Some intuition: Why is this event relevant for guaranteeing good performance of the critic? In
order to gain intuition, let us consider the special case in which there is no approximation error,
so that the exact state-action value functions are actually linear. Letting wπh denote the parameter
associated with the linear action-value function at step h, when the good event holds, our choice of
α allows us to set

ξπ
h

= −Eπh+1

h (Qπh+1) = wπh − Rπh(Qπh+1) for each h ∈ [H],

in the constraints (10b). In this way, at each step h the vector ξπ
h

can perfectly compensate the noise
error Eπh+1

h (Qπh+1) ensuring that the action-value functionQπh (compactly encoded in the parameter
wπh ) can be perfectly represented. In other words, our choice guarantees that the feasible set for
(10) contains the ‘true’ solution wπh . Since the convex program involves minimizing over value
functions, this feasibility underlies showing the critic returns an underestimate of the true value
function for π along with some approximation error in the general setting; see equation (23a) below
for a precise statement. We highlight that such underestimates is only guaranteed at the initial state
s1 and timestep h = 1 as encoded in the objective of the program in equation (10).

On the other hand, for other policies π̃, we can use the relation (19) to control the difference between
the value function V π̃

1,M̂(π)
in the induced MDP, and the exact value function V π̃1 ; see equation (23b)

for a precise statement of our conclusion. We summarize all of our findings thus far in the following:
Proposition 2. Conditionally on the event G(α), when given as input any policy π in the soft-max
class Πsoft(R), the critic returns an induced MDP M̂(π) such that:

(a) For the given policy π, we have

V π
1,M̂(π)

(s1) ≤ V π1 (s1) +

H∑
h=1

νh. (23a)
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(b) For any policy π̃, not necessarily in the soft-max class Π, we have∣∣∣V π̃
1,M̂(π)

(s1)− V π̃1 (s1)
∣∣∣ ≤ 2

H∑
h=1

αh ‖φ̄π̃h‖Σ−1
h

+

H∑
h=1

νh, (23b)

where φ̄π̃h
def
= E(Sh,Ah)∼π̃[φh(Sh, Ah)].

See Appendix D.2 for the proof.

A.1.3 Choice of pessimism parameters

Based on Proposition 2, our problem is now reduced to determining a choice of α for which the
good event (22) holds with probability at least 1− δ. The bulk of our effort in analyzing the critic is
devoted to the technical details of this step; we provide only a high-level summary here.

The event (22) needs to hold uniformly over the value function and policy classes used by the
algorithm. Our analysis involves deriving an upper bound R on the `2-radius of the actor parameter
over all T iterations of the algorithm, as follows:

ρθ = ‖θT ‖2 = ‖
T∑
t=1

ηwt‖2 ≤
T∑
t=1

η‖wt‖2 ≤ Tη
def
= R.

For such choice of R and failure probability δ ∈ (0, 1), suppose that we set

αh(δ)
def
= 1+

√
nhνh+c

{
1 + d log

(
1 + T

d

)
+ d log

(
1 + 8

√
T
)

+ d log
(

1 + 16R
√
T
)

+ log H
δ

}1/2

(24)

for a suitably large universal constant c. Central to our analysis is the following lemma:
Lemma 2. For any δ ∈ (0, 1), given the choice of pessimism vector α(δ) in equation (24), we have

P
[
G(α(δ))

]
≥ 1− δ. (25)

See Section D.3 for the proof of this claim.

In our proof of Lemma 2, we benefit from the fact that our procedure injects its pessimism by direct
perturbations of the parameter vectors. Indeed, one key step in the proof is bounding certain metric
entropies defined by classesQ of linear action-value functions, and policy classes Πsoft(R) used in
the actor’s iterations.

First, for any fixed policy π, since the agent’s action value function Qπ is enforced to be linear
Qπ ∈ Q even after perturbations, the relevant action-value class Q is also linear. Thus, we need
only control metric entropy (and perform union bounds over the resulting covering) for a linear
function class; in this way, we avoid a potentially more costly union bound over the much larger
function class obtained by adding complex bonuses to linear functions, as in past work Jin et al.
(2020b). In this way, we achieve a guarantee that is sharper by a factor of

√
d.

Second, the union bound needs to be extended to all policies that the actor can use to invoke the
critic. Recall that the critic returns a linear action-value function Q, which is compatible Kakade
(2001); Agarwal et al. (2020b) with the soft-max policy class Πsoft. Consequently, the actor’s
updates take the simple form (5) of Algorithm 1. If the action-value function Q were perturbed by
bonuses, then linearity of the critic’s value function would be lost.

A.2 Actor’s Analysis

In this section, we analyze the mirror descent algorithm—that is, the actor in Algorithm 1. Our anal-
ysis exploits the methods in the paper Agarwal et al. (2020b), with some small changes to accom-
modate our framework; in particular, while our analysis assumes no error in the critic’s evaluation,
it does involve a sequence of time-varying MDPs.

Given a sequence of MDPs {Mt}Tt=1, let V πt be the value function associated with policy π on
MDP Mt. Given the initialization θ1 = 0, let {θt}Tt=1 be parameter sequence generated by the
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actor, and let πt = πθt be the policy associated with parameter θt. For each t, there is a sequence
wt = {wht}Hh=1 such that ‖wht‖2 ≤ ρwh for all h ∈ [H], and

Qπth,Mt
(s, a)

def
= 〈φh(s, a), wht〉 , for all (s, a) and h ∈ [H]. (26a)

In particular, the value ofwht is the value wht identified by the critic (see equation (16)) correspond-
ing to policy πt, so that QπtMt

= Qπt . Define the value function V πth,Mt
(s) = EA′∼πt

[
Qπth,Mt

(s,A′)
]

along with the advantage function

Gπth,Mt
(s, a)

def
= Qπth,Mt

(s, a)− V πth,Mt
(s). (26b)

Proposition 3 (Actor’s Analysis). Suppose that the actor takes T ≥ log |A| steps using a stepsize
η ∈ (0, 1), and the advantage function at each iteration t is uniformly bounded as |Gπth,Mt

(s, a)| ≤ 2

for all (s, a). Then for any fixed policy π, we have

1

T

T∑
t=1

{
V π1,Mt

(s1)− V πt1,Mt
(s1)

}
≤ H

[
log |A|
ηT

+ η

]
. (27a)

In particular, setting η =
√

log |A|
T yields the bound

1

T

T∑
t=1

{
V π1,Mt

(s1)− V πt1,Mt
(s1)

}
≤ 2H

√
log |A|
T︸ ︷︷ ︸

=C(T )

. (27b)

To be clear, the fixed comparator policy π in the above bounds need not be in Π. This fact is
important, as it allows us to derive bounds relative to an arbitrary comparator.

A.3 Combining the pieces

We are now ready to combine the pieces so as to prove Theorem 1. For each iteration t ∈ [T ], let

πt
def
= πθt be the policy chosen by the actor, and let Mt = Mπt be the corresponding induced MDP.

Recall that Lemma 2, stated in Section D.2, guarantees that the “good” event G from equation (22)
occurs with probability at least 1−δ. Conditioned on the occurrence of G, the bounds (23a) and (23b)
ensure that for any comparator π̃, we have

V π̃1 (s1)− V πt1 (s1) ≤ V π̃1,Mt
(s1)− V πt1,Mt

(s1) + 2

H∑
h=1

[
νh + αh‖E(Sh,Ah)∼π̃φ(Sh, Ah)‖Σ−1

h

]
= V π̃1,Mt

(s1)− V πt1,Mt
(s1) + Emsp(ν) + U(π̃;α).

We now average over the iterations t ∈ [T ]. The equality (18a) from Lemma 1 ensures for each
iteration t, the actor receives as an input a vector wt such that

Qπth,Mt
(s, a)

Lem.1
= Qπt

h
(s, a) = 〈φh(s, a), whk〉 . (28)

Consequently, the action-value function Qπt that provided as input to the actor via wt is the action-
value function of πt on the associated induced MDP Mt, i.e., QπtMt

. Applying the bound (27b) from

Proposition 3 yields 1
T

∑T
t=1

[
V π̃1,Mt

(s1) − V πt1,Mt
(s1)

]
≤ C(T ). Combining with the prior display

yields

V π̃1 (s1)− 1

T

T∑
t=1

V πt1 (s1) ≤ C(T ) + Emsp(ν) + U(π̃;α). (29)

Notice that the policy returned by the agent πALG is the mixture policy of the policies π1, . . . , πT
and its value function is V πALG = 1

T

∑T
t=1 V

πt .

Note that under the good event G, the bound (29) holds for any comparator policy π̃, which was the
claim of the theorem.
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B Additional Literature

For empirical studies on offline RL, see the papers Laroche et al. (2019); Jaques et al. (2019); Wu
et al. (2019); Agarwal et al. (2020c); Wang et al. (2020); Siegel et al. (2020); Nair et al. (2020) in
addition to those presented in the main text. Several works have investigated offline policy learn-
ing, where concentrability coefficients are introduced to account for the non-uniform error propa-
gation Munos (2003, 2005); Antos et al. (2007, 2008); Farahmand et al. (2010, 2016); Chen and
Jiang (2019); Xie and Jiang (2020a,b); Duan et al. (2021). For additional literature, see also the
papers Zhang et al. (2020a); Liao et al. (2020); Fan et al. (2020); Fu et al. (2020); Wang et al.
(2019). Concentrability coefficients or density ratios also appears in the off-policy evaluation prob-
lem, which is distinct from the policy learning problem that we consider here Zhang et al. (2020b);
Thomas and Brunskill (2016); Farajtabar et al. (2018); Liu et al. (2018a); Xie et al. (2019); Yang
et al. (2020); Nachum et al. (2019b); Yin et al. (2020); Yin and Wang (2020); Duan and Wang
(2020); Uehara et al. (2020); Jiang and Huang (2020); Kallus and Uehara (2019); Tang et al. (2019);
Nachum and Dai (2020); Nachum et al. (2019a); Jiang and Li (2016); Uehara et al. (2020); Voloshin
et al. (2021); Jiang and Huang (2020); Hao et al. (2021).

C Proof of Proposition 1

First, let us define an MDP class indexed by N ; we will use this MDP class to show that each
inclusion is strict. At a high level, this MDP class has a starting state 0 where the agent can choose
to go left (action−1) or right (action +1); after that, it will keep going left or right until the leftmost
or rightmost terminal state is reached. The reward is non-zero only at the terminal states.

For a fixed N , let the horizon be H = N + 1 and consider the following chain MDP, where the state
space is

S = {N,−(N − 1), . . . ,−1, 0,+1, . . . , N − 1, N}.
The starting state is 0, and there the agent can choose among two actions (−1 and +1). In states
s 6= 0 only one action is available. Formally, we define

As =


{−1} if s < 0

{−1,+1} if s = 0

{+1} if s > 0.

(30)

The reward is everywhere zero except in the terminal states −N and +N , for which it takes the
values −1 and +1, respectively, for the only action available there. The transition function is deter-
ministic, and the successor state is always s′ = s+ a (e.g., action +1 in state +2 leads to state +3).
In other words, if the agent is a state s with positive value, it will move to s+1, and if s has negative
value it will move to s− 1.

C.1 Proof of part (a): Low Rank ⊂ Restricted Closed

We first prove that a low-rank MDP must satisfy the restricted closedness assumption. Assume the
MDP is low rank. Then for any Qh+1 ∈ Qh+1 and π ∈ Π, we have

T πh Qh+1 =
〈
φh(s, a), wRh

〉
+

〈
φh(s, a),

∫
s′
Ea′∼πQh+1(s′, a′)dψ(s′)

〉
=

〈
φh(s, a), wRh +

∫
s′
Ea′∼πQh+1(s′, a′)dψ(s′)

〉
= 〈φh(s, a), w〉

for some w ∈ Rd. Thus, we have (T πh Qh+1) ∈ Qh for all Qh+1 ∈ Qh+1 and π ∈ Π—i.e., if the
MDP is low rank then it satisfies the restricted closedness condition.

In order to establish the strict inclusion, consider the MDP described at the beginning of the proof
with the following feature extractor:

φ(s, a) =

{
+1 if a = +1

−1 if a = −1.
(31)
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The MDP with this feature map is not low rank. For example, we must have

1 = P(N | N − 1,+1) = φ(N − 1,+1)>ψ(N) = ψ(N)

which implies ψ(−N) = 0 for ψ to be a measure. However, this means we won’t be able to represent
all transitions correctly, as we would need to have

1 = P(−N | −(N − 1),−1) = φ(−(N − 1),−1)>ψ(−N) = −ψ(−N) = 0.

This means the MDP is not low rank. However, we show that it still satisfies the restricted closedness
assumption. Notice that it is enough to verify the condition in the reachable space, which is |s|+1 =
h at timestep h. If the reward is zero it suffices to verify that for all choices of θh+1 we can find θh
such that

〈φ(h− 1,+1), θh〉 = 〈φ(h,+1), θh+1〉 (32)
〈φ(−(h− 1),−1), θh〉 = 〈φ(−h,−1), θh+1〉 . (33)

Notice that in all cases there is only one policy available at the successor states; for any choice of
θh+1, just set θh = θh+1. It is easy to verify that at the last step h = H = N+1 the reward function
is either +1 or −1, depending on the state, and can be represented by θh = +1:

〈φ(H − 1,+1), θH〉 = +1 (34)
〈φ(−(H − 1),−1), θH〉 = −1. (35)

C.2 Proof of part (b): Restricted Closedness ⊂ Linear Qπ

We first show that every MDP that satisfies restricted closedness satisfies the linear Qπ assumption.
For any time step h ∈ H , and for a given policy π ∈ Π, if restricted closedness holds, choose
Qh+1 = Qπh+1 in the definition of restricted closedness and use the Bellman equations to obtain

Qπh
def
= T πh Qπh+1 ∈ Qh.

Thus, the linear Qπ assumption is automatically satisfied.

In order to show the strict inclusion, consider again the MDP described at the beginning of the proof,
but with a different feature map. The map reads

φ(s, a) =

{
[+1, 0] if a = +1, s 6= 0

[0,+1] if a = −1, s 6= 0,

and at the start state

φ(0, a) =

{
+1 if a = +1

−1 if a = −1.

Notice that we only need to verify that restricted closedness does not hold at some timestep. When
θ2 = [+1,+1], there is no θ1 such that

+θ1 = 〈φ(0,+1), θ1〉 = 〈φ(1, 1), θ2〉 = 1

−θ1 = 〈φ(0,−1), θ1〉 = 〈φ(−1,−1), θ2〉 = 1.

The MDP however satisfies the linear Qπ assumption with θ1 = 1 and θh = [+1,−1] for h ≥ 2.

D Proofs for the critic

In this section, we collect together the statements and proofs of various technical results that underlie
the critic’s analysis in Section A.1. In Section D.1, we prove Lemma 1 that guarantees exactness of
the critic on the induced MDP, whereas Section D.2 is devoted to proving our main guarantee for
the critic, namely Proposition 2.

Let us introduce some additional notation that plays an important role in the proof. Recall the
regression operator Rπh and sup-norm projection operator Pπh that were previously defined in equa-
tions (20a) and (20c), respectively. In addition to these two operators, our proof also makes use of
the approximation error operator

Aπh(F )(s, a)
def
= 〈φ(s, a), Pπh(F )〉 − (T πh F ) (s, a), (36)

which is a mapping from F to itself.
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D.1 Proof of Lemma 1

By definition, the induced MDP differs from the original MDP only by the perturbation of the reward
function. Thus, by definition of value functions, we can write

Qπ
h,M̂(π)

(s, a)−Qπh(s, a) =

H∑
`=h

E(S`,A`)∼π|(s,a) [r̂πh(S`, A`)− rh(S`, A`)] . (37a)

On the other hand, using the definition of Qπ
h

and the Bellman conditions, we have

Qπ
h
(s, a)−Qπh(s, a) = 〈φ(s, a), wπh〉 − T πh (Qπh+1)(s, a)

=
{
〈φ(s, a), wπh〉 − T πh (Qπ

h+1
)(s, a)

}
+
{
T πh (Qπ

h+1
)(s, a) + T πh (Qπh+1)(s, a)

}
= r̂πh(s, a)− rh(s, a) + ES′∼Ph(s,a)EA′∼π(·|S′)(Q

π

h+1
−Qπh+1)(S′, A′)

Applying this argument recursively to ` = h+ 1, . . . ,H , we find that

Qπ
h
(s, a)−Qπh(s, a) =

H∑
`=h

E(S`,A`)∼π|(s,a)

[
r̂πh(S`, A`)− rh(S`, A`)

]
(37b)

Subtracting equation (37b) from equation (37a) yields the claim.

D.2 Proof of Proposition 2

We split the proof into two parts, corresponding to the two bounds.

D.2.1 Proof of the bound (23a)

We begin by proving the bound on the critic’s estimate for the value function of the input policy π.

High-level roadmap: We begin by outlining the main steps in the proof. Our first step is to define

a sequence of weight vectors ŵ
def
= {ŵπh}Hh=1 such that∣∣∣ ∑

a1∈A
π(a1 | s1) 〈φ1(s1, a1), ŵπ1 〉 − V π1 (s1)

∣∣∣ ≤ H∑
h=1

νh. (38a)

Our second step is to show that conditioned on the good event G(α) from equation (22), the sequence
ŵ is feasible for the critic’s convex program; this feasibility, combined with the optimality of w,
implies that

V π
1,M̂(π)

(s1)
(i)
=
∑
a1∈A

π(a1 | s1) 〈φ1(s1, a1), wπ1 〉 ≤
∑
a1∈A

π(a1 | s1) 〈φ1(s1, a1), ŵπ1 〉 . (38b)

Here step (i) follows from Lemma 1, which guarantees that the estimated value functions V πh
of the critic are exact in the induced MDP. Combining the two bounds (38a) and (38b) yields
V π

1,M̂(π)
(s1) ≤ V π1 (s1) +

∑H
h=1 νh, as claimed in equation (23a).

It remains to prove our two auxiliary claims (38a) and (38b).

Proof of claim (38a): Given a policy π, we use backwards induction to define the sequence
{ŵπ}Hh=1 by first setting ŵπH+1 = 0, and then defining

ŵπh
def
= Pπh(Q̂πh+1) for h = H,H − 1, . . . , 1, (39)

where Q̂πh+1(s, a)
def
=
〈
φh+1(s, a), ŵπh+1

〉
. By construction, we have the bound ‖ŵπh‖2 ≤ ρwh for

all h ∈ [H]. The following lemma bounds the sup-norm distance between the induced linearQ-value
function estimate, and the actual Qπ-value function.
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Lemma 3. The functions {Q̂πh}Hh=1 defined by the best-predictor sequence {ŵπh}Hh=1 from equa-
tion (39) satisfy the bound

∣∣Q̂πh(s, a)−Qπh(s, a)
∣∣ ≤ H∑

`=h

ν` for all h ∈ [H]. (40)

Proof. Introduce the shorthand ∆h(s, a)
def
= Q̂πh(s, a)−Qπh(s, a) for the error at stage h to be

bounded. Since Qπh = T πh (Qπh+1), we can write

∆h(s, a) = Q̂πh(s, a)−Qπh(s, a)

= Q̂πh(s, a)− (T πh Q̂πh+1)(s, a) + (T πh Q̂πh+1)(s, a)− T πh (Qπh+1)(s, a)

= Q̂πh(s, a)− (T πh Q̂πh+1)(s, a) + ES′∼Ph(s,a)EA′∼π(·|S′)

[
Q̂πh+1(S′, A′)−Qπh+1(S′, A′)

]
=

H∑
`=h

E(S`,A`)∼π|(s,a)

[
Q̂π` (S`, A`)− T π` (Q̂π`+1)(S`, A`)

]
,

where the final equality follows by induction.

From the definition (39) of ŵ and the function estimate Q̂π` (s, a) = 〈φ`(s, a), ŵπ` 〉, combined with
the Bellman approximation condition, we have∣∣∣Q̂π` (s, a)− (T π` Q̂π`+1)(s, a)

∣∣∣ ≤ Aπ` (Q̂π`+1) ≤ ν`,

uniformly over all `, and over all state-action pairs (s, a). Summing these bounds completes the
proof.

Proof of claim (38b): In order to prove this claim, we need to exhibit a sequence ξ = (ξ̂1, . . . , ξ̂H)

such that the pair (ξ̂, ŵ) are feasible for the critic’s convex program (10). In particular, we need to
ensure the following three conditions:

(a) ‖ŵπh‖2 ≤ ρwh for all h ∈ [H]

(b) ‖ξ̂h‖Σh ≤ αh for all h ∈ [H].

(c) We have ŵπh = ξ̂πh + Rπh(Q̂πh+1) for all h ∈ [h].

Note that condition (a) is automatically satisfied by the definition (39) of ŵ, since the projection Pπh
imposes this Euclidean norm bound.

It remains to exhibit a choice of ξ̂ such that conditions (b) and (c) hold. Since ŵπh = Pπh(Q̂πh) by
definition, condition (c) forces us to set

ξ̂πh = Pπh(Q̂πh+1)− Rπh(Q̂πh+1) = −Eπh(Q̂πh+1).

But since the event G(α) holds by assumption, we have

‖ξ̂πh‖Σh = ‖Eπh(Q̂πh+1)‖Σh ≤ αh,

showing that this choice of ξ̂ satisfies condition (b).

D.2.2 Proof of part (b)

Here we prove the bound (23b) stated in part (b) of the lemma, which provides an inequality on the
value function error for an arbitrary policy.

Our proof is based on establishing an auxiliary result that implies the claim. In particular, we first
show that for any policy π̃, we have∣∣∣V π̃

1,M̂(π)
(s1)− V π̃1 (s1)

∣∣∣ ≤ H∑
h=1

‖φ̄π̃h‖Σ−1
h

{
αh + ‖Eπh(Qπ

h+1
)‖Σh

}
+

H∑
h=1

νh, (41)
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where φ̄π̃h
def
= E(Sh,Ah)∼π̃[φ(Sh, Ah)]. Since ‖Eπh(Qπ

h+1
)‖Σh ≤ αh conditioned on G(α), this

implies the claim.

Let us now prove the auxiliary claim (41). First, we observe that by definition, the perturbation in
the reward can be written as

r̂πh(s, a)− rh(s, a)
(i)
= 〈φh(s, a), wπh〉 − T πh (Qπ

h+1
)(s, a)

(ii)
=
〈
φh(s, a), ξπ

h

〉
+
〈
φh(s, a), Rπh(Qπ

h+1
)
〉
− T πh (Qπ

h+1
)(s, a)

(iii)
=
〈
φh(s, a), ξπ

h

〉
+
〈
φh(s, a), Eπh(Qπ

h+1
)
〉

+ Aπh(Qπ
h+1

)(s, a),

where step (i) uses the definition Qπ
h
(s, a) = 〈φh(s, a), wπh〉; step (ii) uses the relation

wπh = ξπ
h

+ Rπh(Qπ
h+1

); and step (iii) involves adding and subtracting
〈
φh(s, a), Pπh(Qπ

h+1
)
〉

, and
using the definitions of the approximation error (36) and the error operator (21).

Since the induced MDP differs from the original only by the reward perturbation, we have∣∣∣V π̃
1,M̂(π)

(s1)− V π̃1 (s1)
∣∣∣ =

∣∣∣ H∑
h=1

E(Sh,Ah)∼π̃

[
r̂πh(Sh, Ah)− rh(Sh, Ah)

]∣∣∣
=
∣∣∣ H∑
h=1

E(Sh,Ah)∼π̃

[ 〈
φh(Sh, Ah), ξπ

h
+ Eπh(Qπ

h+1
)
〉

+ Aπh(Qπ
h+1

)(Sh, Ah)
]∣∣∣.

We now observe that |Aπh(Qπ
h+1

)(Sh, Ah)| ≤ νh by the Bellman closure assumption. As for the

first term, introducing the shorthand φ̄π̃h
def
= E(Sh,Ah)∼π̃

[
φh(Sh, Ah)

]
, we have

E(Sh,Ah)∼π̃

[ 〈
φh(Sh, Ah), ξπ

h
+ Eπh(Qπ

h+1
)
〉 ]
≤ ‖φ̄π̃h‖Σ−1

h
‖ξπ
h

+ Eπh(Qπ
h+1

)‖Σh

≤ ‖φ̄π̃h‖Σ−1
h

{
αh + ‖Eπh(Qπ

h+1
)‖Σh

}
,

where the final step combines the triangle inequality, with the fact that ‖ξπ
h
‖Σh ≤ αh, since ξπ

h
must

be feasible for the critic’s convex program (10). Putting together the pieces yields the claim (41).

D.3 Proof of Lemma 2

We now prove Lemma 2, which asserts that the good event G(δ), as defined in equation (22), holds
with high probability when the pessimism parameters are chosen according to equation (24).

Recall from equation (21) that for any pair (Q, π), the associated parameter error is given by the
difference Eπh(Q) = Rπh(Q)− Pπh(Q). We begin with a simple lemma that decomposes this error
into three terms. In order to state the lemma, we introduce two forms of error variables: statistical
and approximation-theoretic.

Recall that Ih denotes the subset of indices associated with time step h. The first noise variables
take the form

ηhk(Q, π)
def
= rhk + EA′∼π(·|shk)Q(sh+1,k, A

′)− (T πh Q)(shk, ahk), (42a)

defined for each h ∈ [H] and k ∈ Ih. Note that conditionally on the pair (shk, ahk), our sampling
model and the definition of the Bellman operator T πh ensures that each ηhk is zero-mean random
variable, corresponding to a form of statistical error. Our analysis also involves some approximation
error terms, in particular via the quantities

∆hk(Q, π)
def
= −Aπh(Q)(shk, ahk) = (T πh Q)(shk, ahk)− 〈φh(shk, ahk), Pπh(Q)〉 (42b)

With these definitions, we have the following guarantee:
Lemma 4 (Decomposition of Eπh(Q)). For any pair (Q, π), we have the decomposition

Eπh(Q) = eηh(Q, π) + eλh(Q, π) + e∆
h (Q, π), (43)
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where the three error terms are given by

eηh(Q, π)
def
= Σ−1

h

∑
k∈Ih

φhkηhk(Q, π), (Statistical estimation error) (44a)

eλh(Q, π)
def
= −λΣ−1

h Pπh(Q), (Regularization error), and (44b)

e∆
h (Q, π)

def
= Σ−1

h

∑
k∈Ih

φhk∆hk(Q;π) (Approximation error). (44c)

See Section D.3.1 for the proof of this claim.

The remainder of our analysis is focused on bounding these three terms. Analysis of the regu-
larization error and approximation error terms is straightforward, whereas bounding the statistical
estimation error requires more technical effort. We begin with the two easy terms.

Regularization error: Beginning with the definition (44b), we have

‖eλh(Q, π)‖Σh = λ‖Pπh(Q)‖Σ−1
h

(i)

≤
√
λ‖Pπh(Q)‖2

(ii)

≤
√
λ, (45)

where step (i) follows since Σh � λI; and inequality (ii) follows from the bound
‖Pπh(Q)‖2 ≤ ρwh ≤ 1, guaranteed by the definition of Pπh.

Approximation error: By definition, we have ‖e∆
h (Q, π)‖Σh = ‖

∑
k∈Ih φhk∆hk(Q, π)‖Σ−1

h
.

By the Bellman approximation condition, we have |∆hk(Q, π)| ≤ νh uniformly over all k. Con-
sequently, applying Lemma 8 (Projection Bound) from the paper Zanette et al. (2020b) guarantees
that

‖e∆
h (Q, π)‖Σh ≤

√
nhνh. (46)

Statistical estimation error: Lastly, we turn to the analysis of the statistical estimation error. In
particular, we prove the following guarantee:

Lemma 5. There is a universal constant c > 0 such that

‖eηh(Q, π)‖2Σh ≤ c
{

1 + dh log
(
1 + T

dhλ

)
+ dh log

(
1 + 8

√
T
)

+ dh log
(

1 + 16R
√
T
)

+ log
H

δ

}
(47)

uniformly over all Q ∈ Qh, π ∈ Πsoft(R) and h ∈ [H] with probability at least 1− δ.

See Section D.3.2 for the proof of this claim.

Putting together the pieces: By combining our three bounds—namely, equations (45), (46)
and (47), we conclude that with the choice

αh(δ)
def
=
√
λ+
√
nhνh+

c

{
1 + dh log

(
1 + T

dhλ

)
+ dh log

(
1 + 8

√
T
)

+ dh log
(

1 + 16R
√
T
)

+ log
H

δ

}1/2

,

the good event G(δ) holds with probability at least 1− δ. This completes the proof of Lemma 2.

It remains to prove the two auxiliary lemmas that we stated: namely, Lemma 4 that gave a de-
composition of the parameter error, and Lemma 5 that bounded the statistical error. We do so in
Sections D.3.1 and D.3.2, respectively.
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D.3.1 Proof of Lemma 4

Starting with the definition (20a) of the regression operator Rπh, we have

Rπh(Q)
def
= Σ−1

h

∑
k∈Ih

φhk[rhk + EA′∼π(·|shk)Q(sh+1,k, A
′)]

(i)
= Σ−1

h

∑
k∈Ih

φhk[(T πh Q)(shk, ahk)] + Σ−1
h

∑
k∈Ih

φhkηhk(Q, π)︸ ︷︷ ︸
=eηh(Q,π)

where equality (i) follows by adding and subtracting terms, and using the definition (42a) of ηhk.

Next we use the definition (42b) of the approximation error terms ∆hk to find that

Rπh(Q) = ξh + Σ−1
h

(∑
k∈Ih

φhk
[
〈φhk, Pπh(Q)〉+ ∆hk(Q, π)

])
+ eηh(Q, π)

Since Σh =
∑
k∈Ih φhkφ

>
hk + λI , we can write

wh(Q, π, ξh) = ξh + Σ−1
h

{
Σhw

?
h(Q, π) +

∑
k∈Ih

φhk∆hk(Q, π)− λw?h(Q, π)
}

+ eηh

= ξh + w?h(Q, π) + Σ−1
h

(∑
k∈Ih

φhk∆hk(Q, π)− λw?h(Q, π)

)
+ eηh

= ξh + w?h(Q, π) + eηh + eλh + e∆
h ,

which completes the proof.

D.3.2 Proof of Lemma 5

From the definition (3a), we need to study the constrained class of linear action-value functions
based on radii ρwh ∈ (0, 1] for all h ∈ [H]. As for the constraint defining the soft-max policy
class (3b), let us upper bound how large the `2-norm of the actor’s parameter vector can be over T
iterations.

Based on the actor’s updates, we have the bound

‖θt,h‖2 = ‖
T∑
t=1

ηwt,h‖2 ≤ η
T∑
t=1

‖wt,h‖2
(i)

≤ ηTρwh
(ii)

≤ ηT,

where step (i) follows from the definition of the critic’s program (10), and step (ii) follows from the
assumption ρwh ∈ (0, 1]. Thus, we are assured that R = ηT is an upper bound on this `2-norm.

We make use of a discretization argument to control the associated empirical process. LetN∞(ε;Q)
denote the cardinality of the smallest ε-covering ofQ in the sup-norm—that is, a collection {Qi}Ni=1
such that for all Q ∈ Q, we can find some i ∈ [N ] such that

‖Q−Qi‖∞ = sup
(s,a)

|Q(s, a)−Qi(s, a)| ≤ ε.

Similarly, we let N∞,1(ε; Π(R)) denote an ε-cover of Π(R) when measuring distances with the
norm

‖π − π′‖∞,1
def
= sup

s

∑
a∈A

∣∣π(a | s)− π′(a | s)
∣∣. (48)

We have the following bounds on these covering numbers:
Lemma 6 (Covering number bounds). For any ε ∈ (0, 1), we have

logN∞(ε;Q) ≤ d log
(
1 + 2

ε

)
and (49a)

logN∞,1 (ε; Π(R)) ≤ d log
(
1 + 16R

ε

)
. (49b)
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See Section D.3.3 for the proofs of these claims.

For any ε ∈ (0, 1), we define

β(ε)
def
= d log

(
1 + T

dλ

)
+ logN∞(ε;Q) + logN∞,1(ε; Πsoft) + log

H

δ
(50)

Given this definition and the bounds from Lemma 6, the proof of Lemma 5 is reduced to showing
that for any ε ∈ (0, 1), there is a universal constant c such that

max
h∈[H]

sup
Q∈Qh
π∈Πsoft

‖eηh(Q, π)‖Σh ≤ c
√
β(ε) + 4

√
Tε (51)

with probability at least 1− δ. The claim stated in Lemma 5 follows from the choice ε = 1
4
√
T

. The
remainder of our proof is devoted to the proof of this claim.

Proof of the claim (51): Let us recall the definition

ηhk(Q, π) = rhk + EA′∼πh(·|shk)Q(sh+1,k, A
′)− (T πh Q)(shk, ahk).

Consequently, by starting with the definition of eηh and applying the triangle inequality, we obtain
the upper bound ‖eηh(Q, π)‖Σh = ‖

∑
k∈Ih φhkηhk(Q, π)‖Σ−1

h
≤ Z1 + Z2(Q, π), where

Z1
def
= ‖

∑
k∈Ih

φhk[rhk − r(shk, ahk)︸ ︷︷ ︸
def
= Yhk

]‖Σ−1
h

and

Z2(Q, π)
def
=
∥∥∥ ∑
k∈Ih

φhk[Q(sh+1,k, π)− ES′∼P(·|shk,ahk)Q(S′, π)]
∥∥∥

Σ−1
h

For a fixed (π,Q) and conditioned on the sampling history, both Z1 and Z2 are mean zero. Note that
Z1 is independent of the pair (Q, π), so that its analysis does not require discretization techniques.
On the other hand, analyzing Z2(Q, π) does require a reduction step via discretization, with which
we begin.

Introducing the shorthand N = N(ε,Q), let {Qi}Ni=1 be an ε-cover of the set Q in the sup-norm.
Similarly, with the shorthand J = N(ε,Π), let {πj}Jj=1 be an ε-cover of Π in the norm (48). For
a given Q, let Qi denote the member of the cover such that ‖Q − Qi‖∞ ≤ ε. With this choice, we
have

Z2(Q, π) = Z2(Qi, π) + {Z2(Q, π)− Z2(Qi, π)}.

Similarly, let πm be a member of the cover such that ‖π(· | s)− πm(· | s)‖1 ≤ ε for all s. With this
choice, we have

Z2(Q, π) ≤ Z2(Qi, πm) + {Z2(Qi, π)− Z2(Qi, πm)}︸ ︷︷ ︸
Dπ

+ {Z2(Q, π)− Z2(Qi, π)}︸ ︷︷ ︸
DQ

.

We begin by bounding the two discretization errors. By the triangle inequality, we have

DQ ≤
∥∥∥ ∑
k∈Ih

φhk[Q(sh+1,k, π)−Qi(sh+1,k, π) + ES′∼p(shk,ahk)(Q(S′, π)−Qi(S′, π))︸ ︷︷ ︸
def
= Eihk(Q,π)

]
∥∥∥

Σ−1
h

.

Our choice of discretization ensures that |Eihk(Q, π)| ≤ 2ε uniformly for all (h, k) and (Q, π). Ap-
plying Lemma 8 (Projection Bound) from the paper Zanette et al. (2020b) ensures thatDQ ≤ 2ε

√
T .

To be clear, this is a deterministic claim; it holds uniformly over the choices of Q, Qi, and π. A
similar argument yields that Dπ ≤ 2ε

√
T .

Putting togther the pieces yields that for any (Q, π), we have the bound

Z2(Q, π) ≤ max
i∈[N ]
j∈[M ]

Z2(Qi, πj) + 4
√
Tε. (52)
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We now need to bound Z1 along with Z2(Qi, πj) for a fixed pair (Qi, πj). In order to do so, we
apply known self-normalized tail bounds de la Pena et al. (2009), which apply to sums of the form
‖
∑
k∈Ih φhkVhk‖Σ−1

h
, where the Vhk form a martingale difference sequence with conditionally

sub-Gaussian tails. Note that Z1 is of this general form with Vhk = Yhk, which is a 1-sub-Gaussian
variable by assumption. On the other hand, the variable Z2(Qi, πj) is of this form with

Vhk = Qi(sh+1,k, π
j)− ES′∼p(shk,ahk)Q

i(S′, πj).

Since |Vhk| ≤ 1 due to the uniform boundedness of Qi, this is a 1-sub-Gaussian variable as well.

Consequently, Theorem 1 from the paper Abbasi-Yadkori et al. (2011) ensures that

P
(

max{Z1, Z2(Qi, πj)} ≥ log
det Σh
detλI

+ 2 log
1

δ

)
≤ δ.

Note that detλI = λdh . Moreover, Lemma 10 (Determinant-Trace Inequality) in Abbasi-Yadkori
et al. (2011) yields log det Σh ≤ dh log

(
λ+ T

dh

)
.

Putting together the pieces, taking a union bound over the two covers yields that, for each fixed
h ∈ [H], we have

‖eηh(Q, π)‖Σ−1
h
≤ dh log

(
1 + T

dhλ

)
+ logN∞(ε;Q) + logN∞,1(ε; Π) + log

(
1
δ

)
+ 4
√
Tε

with probability at least 1 − δ. Finally, we take a union bound over all h ∈ [H], which forces us to
redefine δ to δ

H in the above bound. This completes the proof of the uniform bound (51).

D.3.3 Proof of Lemma 6

Since ‖φ(s, a)‖2 ≤ 1, for any pair of weight vectors w,w′ ∈ Rd, we have
sup(s,a) | 〈φ(s, a), w − w′〉 ‖2 ≤ ‖w − w′‖2. Thus, the bound (49a) follows from standard results
on coverings of Euclidean balls (cf. Example 5.8 in the book Wainwright (2019)).

As for the bound (49b), we claim that∑
a∈A

∣∣πθ′(a | s)− πθ(a | s)| ≤ 8‖θ − θ′‖2, for all s ∈ S. (53)

Taking this claim as given for the moment, it suffices to obtain an ε/8-cover of the ball B(R) in the
`2-norm, and applying the same standard results yields the claimed bound (49b).

It remains to prove the claim (53).

Proof of the claim (53): Let us state and prove the claim (53) more formally as a lemma. It applies
to the softmax policy πθ(a | s) = exp{〈φ(s,a), θ〉}∑

a′∈A exp(〈φ(s,a′), θ〉) .

Lemma 7 (Nearby Policies). Consider a feature mapping φ : S×A → Rd such that ‖φ(s, a)‖2 ≤ 1
uniformly for all pairs (s, a). Then for all s ∈ S, we have∑

a∈A

∣∣πθ′(a | s)− πθ(a | s)| ≤ 8‖θ − θ′‖2, (54)

valid for any pair θ, θ′ ∈ Rd such that ‖θ − θ′‖2 ≤ 1
2 .

Proof. Dividing πθ′(s, a) by πθ(s, a) yields

T
def
=

πθ′(a | s)
πθ(a | s)

=
e〈φ(s,a), θ′〉

e〈φ(s,a), θ〉 ×
∑
a′′ e
〈φ(s,a′′), θ〉∑

ã e
〈φ(s,ã), θ′〉

= e〈φ(s,a), θ′−θ〉 ×
∑
a′′

(
e〈φ(s,a′′), θ−θ′〉 × e〈φ(s,a′′), θ′〉∑

ã e
〈φ(s,ã), θ′〉

)
= e〈φ(s,a), θ′−θ〉 ×

∑
a′′

πθ′(a
′′ | s)e〈φ(s,a′′), θ−θ′〉.
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By Cauchy-Schwarz and the assumption on φ, we have the bound | 〈θ(s, a), γ〉 | ≤ ‖γ‖2, valid for
any vector γ. Monotonicity of the exponential allows us to exponentiate this inequality. Combined
with the fact that πθ′(a′′ | s) ≥ 0, we find that

T ≤ e‖θ
′−θ‖2

∑
a′′∈A

πθ′(a
′′ | s)e‖θ−θ

′‖2 (i)
= e2‖θ−θ′‖2

(ii)

≤ 1 + 4‖θ − θ′‖2, (55)

where step (i) uses the fact that πθ is a probability distribution over the action space; and step (ii)
follows by combining the elementary inequality ex ≤ 1 + 2x, valid for all x ∈ [0, 1], with our
assumption that ‖θ − θ′‖2 ≤ 1/2.

Recalling that T = πθ′ (a|s)
πθ(a|s) , re-arranging the inequality (55) yields the bound

πθ′(a | s)− πθ(a | s) ≤ 4πθ(a | s) ‖θ − θ′‖2,
valid uniformly over all pairs (s, a). We can apply the same argument with the roles of θ and θ′
reversed, and combining the two bounds yields

|πθ′(a | s)− πθ(a | s)| ≤ 4‖θ − θ′‖2 max{πθ(a | s), πθ′(a | s)},
again uniformly over all pairs (s, a). Now summing over the actions a, we find that∑

a∈A

∣∣πθ′(a | s)− πθ(a | s)∣∣ ≤ 4
∑
a∈A

max
{
πθ(a | s), πθ′(a | s)

}
‖θ − θ′‖2

≤ 4
∑
a∈A

{
πθ(a | s) + πθ′(a | s)

}
‖θ − θ′‖2

= 8‖θ − θ′‖2,
where the last step uses the fact that πθ and πθ′ are probability distributions over the action space.
Note that this inequality holds for all states s, as claimed.

E Actor’s analysis: Proof of Proposition 3

In order to prove this claim, we require an auxiliary result that re-expresses the mirror update rule.

Given the Q-value function Q(s, a)
def
= 〈φ(s, a), w〉, consider the linear update θ+ def

= θ+ ηw, and
the induced soft-max policy πθ+ . The following auxiliary result extracts a useful property of this
update:
Lemma 8 (Update in Natural Policy Gradient). For any function F : S → R, we have

Q(s, a)− F (s) =
1

η

[
log

πθ+(s, a)

πθ(s, a)
+ log

(∑
a′∈A

πθ(s, a
′)eη(Q(s,a′)−F (s))

)]
, (56)

valid for all pairs (s, a).

See Section E.1 for the proof of this claim.

Turning to the proof of the proposition, we have

V π1,Mt
(s1)− V πt1,Mt

(s1)
(i)
=

H∑
h=1

E(Sh,Ah)∼π

[
Gπth,Mt

(Sh, Ah)
]

(ii)
=

1

η

H∑
h=1

Xh,t, (57)

where we have introduced the shorthand

Xh,t
def
= E(Sh,Ah)∼π

[
log

πθt+1
(Sh, Ah)

πθt(Sh, Ah)
+ log

(
EA′h∼πt(·|Sh)

[
eηG

πt
h,Mt

(Sh,A
′
h)
])]

. (58)

Here step (i) follows from the simulation lemma (e.g., Kakade et al. (2003)), and step (ii) makes use
of Lemma 8 with F (s) = V πth,Mt

(s), along with the definition of the advantage function—namely,
Gπth,Mt

(s, a) = Qπth,Mt
(s, a)− V πth,Mt

(s).

For each h ∈ [H] and t ∈ [T ], we now bound the two terms within the definition (58) of Xh,t

separately. In particular, we derive a telescoping relationship for the first term, and a uniform bound
on the second term.
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First term: For any pair of policies π, π̃ and s, we introduce the shorthand

Ds(π; π̃)
def
= KL (π(· | s)‖π̃(· | s)) .

From the definition of KL divergence, for each sh, we have∑
ah∈A

π(ah | sh) log
πt+1(sh, ah)

πt(sh, ah)
=
∑
ah

π(ah | sh)
[

log
πt+1(sh, ah)

π(sh, ah)
− log

πt(sh, ah)

π(sh, ah)

]
= −Dsh(π;πt+1) +Dsh(π;πt). (59)

Second term: We begin with the elementary inequality ex ≤ 1 + x + x2 valid for all x ∈ [0, 1].
By assumption, we have |ηGπth,Mt

(s, a)| ≤ 2η ≤ 1 for any pair (s, a), and hence

eηG
πt
h,Mt

(s,a) ≤ 1 +
(
ηGπth,Mt

(s, a)
)

+
(
ηGπth,Mt

(s, a)
)2

≤ 1 +
(
ηGπth,Mt

(s, a)
)

+ 4η2.

By definition of the advantage function, we have EA′h∼πt
[
Gπth,Mt

(sh, A
′
h)
]

= 0, so that we have

log
(
EA′h∼πte

ηG
πt
h,Mt

(sh,A
′
h)
)
≤ log

(
1 + 4η2

)
≤ 4η2. (60)

Combining the pieces: Combining the bounds (59) and (60) yields
1

η
Xh,t ≤

1

η
E(Sh)∼π [−DSh(π;πt+1) +DSh(π;πt)] + 4η.

Averaging this bound over all t ∈ [T ] and exploiting the telescoping of the terms yields

1

ηT

T∑
t=1

Xh,t ≤
1

ηT
ESh∼π [−DSh(π;πt+1) +DSh(π;π1)] + 4η

(i)

≤ 1

ηT
E(Sh)∼πDSh(π;π1) + 4η

(ii)

≤ 1

ηT
log(|A|) + 4η,

where step (i) follows by non-negativity of the KL divergence; and step (ii) uses the fact that the KL
divergence is at most log(|A|). Summing these bounds over h ∈ [H] yields

1

T

T∑
t=1

{
V π1,Mt

(s1)− V πt1,Mt
(s1)

}
=

1

ηT

T∑
t=1

H∑
h=1

Xh,t ≤ H

{
1

ηT
log(|A|) + 4η

}
,

thereby establishing the claim (27a).

Finally, the bound (27b) follows by making the particular stepsize choice η =
√

log |A|
T . Note that

the assumed lower bound T ≥ log |A| ensures that η ≤ 1, as required to apply the bound (27a).

E.1 Proof of Lemma 8

By definition of the soft-max policy, we have πθ+(s, a) =
exp(〈φ(s,a), θ+〉)∑
a′∈A e

〈φ(s,a′), θ+〉 . Since θ+ = θ + ηw,

we can write

πθ+(s, a) =
e〈φ(s,a), θ+ηw〉∑

a′∈A e
〈φ(s,a′), θ+ηw〉 =

e〈φ(s,a), θ〉eη〈φ(s,a), w〉∑
a′∈A e

〈φ(s,a′), θ〉eη〈φ(s,a′), w〉

=
e〈φ(s,a), θ〉∑
ã∈A e

〈φ(s,ã), θ〉 ×
eη〈φ(s,a), w〉∑

a′∈A
e〈φ(s,a′), θ〉∑
ã∈A e

〈φ(s,ã), θ〉 eη〈φ(s,a′), w〉

= πθ(s, a)× eη〈φ(s,a), w〉∑
a′∈A πθ(s, a

′)eη〈φ(s,a′), w〉

= πθ(s, a)× eηQ(s,a)∑
a′∈A πθ(s, a

′)eηQ(s,a′)
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where the last step uses the definition of Q. Multiplying both sides by e−F (s) and re-arranging
yields

πθ+(s, a)

πθ(s, a)

∑
a′∈A

πθ(s, a
′)eη[Q(s,a′)−F (s)] = eη[Q(s,a)−F (s)],

which is equivalent to the claim.

F Proof of Theorem 2

We now turn to the proof of the lower bound stated in Theorem 2. In Section F.1, we describe
the class of MDPs used in the construction, along with the data generating procedure. Section F.2
provides the core argument, which involves three auxiliary lemmas. These lemmas are proved in
Sections F.3, F.4 and F.5, respectively.

F.1 MDP class and data collection

For a given horizon H and dimension d, we define a family of MDPs that are parameterized by
a Boolean vector u = (u1, . . . , uH) ∈ {−1,+1}dH , where each uh ∈ {−1,+1}d. For a given
Boolean vector u, the associated MDP Mu has the following structure:

State space and transition: At each time step h, there is only one state—viz. S = {s}. Since
there is a single state, the transition is deterministic into the same state.

Action space: At each time step h, the action space is given by A = {−1, 0,+1}d.

Feature map: At each time step h, the feature map φ : S ×A → Rd+1 takes the form

φ(s, a) =
[

a√
2d
, 1√

2

]
. (61)

Notice that by construction, we have the bound ‖φ(s, a)‖2 =

√
‖a‖22
2d + 1

2 ≤ 1 for any state-
action pair.

Reward mean: The mean reward at time step h is proportional to the inner product 〈a, uh〉, where
uh ∈ {−1, 1}d is the sub-vector associated with time step h. More precisely, we have

rh(s, a) = 〈φh(s, a), [δuh 0]〉 = δ
2
√
d
〈a, uh〉 , (62)

where δ > 0 is a parameter to be specified in the proof.
Low-rank MDP model: It is easy to verify that the MDP so defined is low-rank; here we only

verify explicitly the regularity conditions about the size of the radii so that the setting for
the lower bound matches the setting that PACLE can handle. We need to verify explicitly
that we can represent the action value function for any policy π, namely that there exists
wπh such that the action value function Qπh(s, a) = 〈φh(s, a), wπh〉 with ‖wπh‖2 ≤ (H −
h+ 1)/(2H). One can verify that for any policy π we have

wπh = [δuh,
√

2V πh+1], ∀h ∈ [H]. (63)
A sufficient condition for the regularity conditions to be satisfied is when

δ‖uh‖2 ≤ 1/(2H)→ δ ≤ 1

2
√
dH

, (64)

which implies |V πh | ≤ (H − h+ 1)/(2H) and hence

‖wπh‖2 ≤ δ2‖uh‖2 +
√

2|V πh+1| ≤ (H − h+ 1)/(2H), ∀h ∈ [H]. (65)

In Lemma 10 we choose δ = d
√
H√

2n
which implies the lemma holds when

d
√
H√

2n
≤ 1

2
√
dH
→ n ≥ 2d3H3. (66)

Reward observations: We observe the mean reward contaminated by additive Gaussian noise, so
that the reward distribution has the form

Rh(s, a) ∼ N
(

δ√
2d
〈a, uh〉 , 1

)
. (67)
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Data collection: We assume that the n samples are collected according to the following non-
adaptive process.

• Each time step h ∈ [H] is allocated nH
def
= n/H samples (assumed to be an integer for

simplicity).
• For each h, the dataset Dh is generated by playing each action a ∈ {e1, . . . , ed, 0} exactly
nH/(d+ 1) times, where ej ∈ {0, 1}d denotes the standard basis vector with a single one
in index j.

F.2 Main argument

With this set-up, we now introduce the three lemmas that form the core of the proof. For any given
u ∈ {−1,+1}dH , let Qu denote the distribution of the data D when the sampling process is applied
to the MDP Mu, and let Eu denote expectations under this distribution. Our first lemma exploits
the Assouad construction so as to reduce the problem of finding a good policy to a family of testing
problems.
Lemma 9 (Reduction to testing). For any estimated policy πALG, we have

sup
u∈U

Eu[V ?u − V πALG
u ] ≥ δ√

2d

dH

2
min
u,u′∈U

DH(u;u′)=1

inf
ψ

[
Qu(ψ(D) 6= u) + Qu′(ψ(D) 6= u′)

]
, (68)

where a test function ψ is a measurable function of the data taking values in {u, u′}.

See Section F.3 for the proof.

Our second lemma involves further lower bounding the testing error in the bound (69). In particular,
we prove the following:
Lemma 10 (Lower bound on testing error). For the given family of distributions {Qu, u ∈ U}, we
have

min
u,u′∈U

DH(u;u′)=1

inf
ψ

[
Qu(ψ(D) 6= u) + Qu′(ψ(D) 6= u′)

]
≥

(
1−

√
1

2

nHδ2

d2

)
. (69)

Thus, the testing error is lower bounded by 1
2 with the choice δ = d√

2nH
.

See Section F.4 for the proof.

Combining the claims of Lemmas 9 and 10, along with the choice δ = d√
2nH

, yields the lower
bound

sup
u∈U

Eu[V ?u − V πALG
u ] ≥ δ√

2d

dH

2

1

2
≥ 1

8
dH

√
d

nH
. (70)

Thus, the only remaining step is to relate this lower bound to the uncertainty function U(π;
√
d)

associated with our family of MDPs. More precisely, we prove the following:
Lemma 11. There is a universal constant such that

sup
π
U(π;

√
d) ≤ cdH

√
d

nH
(71)

See Section F.5 for the proof.

Combining Lemma 11 with the lower bound (70) concludes the proof of the theorem.

It remains to prove our auxiliary lemmas, and we do so in the following subsections.
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F.3 Proof of Lemma 9

For a given u ∈ U , let π?u be the optimal policy on Mu and let V ?u the optimal value function.
For any estimated policy π, we define the estimated sign vector uπ ∈ {−1, 1}dH with entries

[uπ]hi
def
= sign(Ea∼πhai).

With this set-up, we prove the lemma in two steps:

(a) First, we show that the value function gap V ?u − V πu can be lower bounded in terms of the
Hamming distance

V ?u − V πu ≥
δ√
2d
DH(uπ;u). (72)

(b) We use Assaoud’s method to lower bound the estimation error in the Hamming distance.

Step (a): Since the optimal action at timestep h on Mu is uh, by inspection, the associated subop-
timality of π on Mu compared to the optimal policy on Mu is

V ?u − V πu =
1√
2d

H∑
h=1

[
〈uh, δuh〉 − Ea∼πh 〈a, δuh〉

]
=

δ√
2d

H∑
h=1

d∑
i=1

[
[u]hi[u]hi − [Ea∼πha]i[u]hi

]
=

δ√
2d

H∑
h=1

d∑
i=1

(
[u]hi − [Ea∼πha]i

)
[u]hi

=
δ√
2d

H∑
h=1

d∑
i=1

∣∣∣[u]hi − [Ea∼πha]i

∣∣∣.
Now recalling that [uπ]hi

def
= sign(Ea∼πhai), we have the lower bound

V ?u − V πu ≥
δ√
2d

H∑
h=1

d∑
i=1

∣∣∣[u]hi − [Ea∼πha]i

∣∣∣1{uπhi 6= [u]hi}

≥ δ√
2d

H∑
h=1

d∑
i=1

1{uπhi 6= [u]hi}

=
δ√
2d
DH(uπ;u),

which establishes the lower bound (72).

Step (b): We can now apply Assouad’s method (cf. Lemma 2.12 in the book Tsybakov (2009)),
so as to conclude that for any estimated policy π, we have

sup
u∈U

Eu
[
DH(uπ;u)

]
≥ dH

2
min

u,u′|DH(u;u′)=1
inf
ψ

[
Pu(ψ 6= u) + Pu′(ψ 6= u′)

]
(73)

where infψ denotes the minimum over all test functions taking values in {u, u′}.

F.4 Proof of Lemma 10

We begin by observing that the testing error can be lower bounded in terms of the KL divergence as

min
u,u′∈U

DH(u;u′)=1

inf
ψ

[
Pu(ψ 6= u) + Pu′(ψ 6= u′)

]
≥ 1−

(
1
2 max

u,u′∈U
DH(u;u′)=1

DKL(Qu‖Qu′)
)1/2

. (74)
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For instance, see Theorem 2.12 in Tsybakov (2009).

Thus, in order to prove Lemma 10, it remains to bound the Kullback-Leibler divergence of the
distributions Qu and Qu′ for pairs u, u′ ∈ {−1,+1}dH that differ only in a single coordinate.

By construction, the only stochasticity in the dataset lies in the rewards. For any given u, equa-
tion (67) implies that the distribution over rewards has the product form

Qu =

H∏
h=1

d∏
i=1

nh
d∏
j=1

N
(

e>i√
2dh

(δuh), 1

)
.

Notice that each normal distribution in the above display for Qu is identical to the corresponding
factor in Qu′ except for the single index in which the vectors u and u′ differ. Thus, applying the
chain rule for KL divergence yields

DKL(Qu‖Qu′) =

nH
d∑

k=1

DKL(N
(

δ√
2d
, 1

)
‖N

(
−δ√
2d
, 1

)
) =

nH
2d

(
2

δ√
2d

)2

=
nHδ

2

d2
,

valid for any pair u, u′ differing in a single coordinate. Substituting back into the lower bound (74)
yields the claim.

F.5 Proof of Lemma 11

Recall that by definition, we have U(π;
√
d) =

√
d
∑H
h=1 ‖φπh‖Σ−1

h
. Consequently, in order to es-

tablish the claim, it suffices to show there is a universal constant c such that

sup
π∈Π
‖φπh‖Σ−1

h
≤ c d
√
nH

for each h ∈ [H]. (75)

Now denote with [x]1:p the first p components of the vector x, and with [x]p the p component of x.
Using the triangle inequality we can write

‖φπh‖Σ−1
h
≤ ‖
[
[φπh]1:d, 0

]
‖Σ−1

h
+ ‖
[
0, [φπh]d+1

]
‖Σ−1

h
.

Next, we use a technical lemma to compute the inverse of Σh. By construction Σh is an arrowhead
matrix, i.e., can be written as

Σh =

[
D v
v> b

]
where we let the normalization constants inside of φ in Eq. (61) to be

γ =
1√
2dh

, c =
1√
2

to define D ∈ Rd×d as a diagonal matrix with entries

[D]ii = γ2nH
d

+ λ

and v ∈ Rd is a vector with entries

[v]i = γc
nH
d

and b ∈ R is a scalar

b = c2
(
nH +

nH
d

)
+ λ.

The inverse of Σh can then be computed explicitly using known formulas for block matrices or
arrowhead matrices. We arrive to

Σ−1
h =

[
D′ v′

v′> b′

]
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where we define the entries in a second. First, the inverse of the Schur complement is

b′
def
= (b− v>D−1v)−1 =

(
c2
(
nH +

nH
d

)
+ λ−

d∑
i=1

(
γcnHd

)2
γ2 nH

d + λ

)−1

.

Our goal is to show that this is positive, which helps in simplifying the final expression. Notice that
d∑
i=1

(
γcnHd

)2
γ2 nH

d + λ
<

d∑
i=1

(
γcnHd

)2
γ2 nH

d

= dc2
nH
d

= c2nH .

Thus

(b′)−1 =

(
c2
(
nH +

nH
d

)
+ λ−

d∑
i=1

(
γcnHd

)2
γ2 nH

d + λ

)
> c2

nH
d

+ λ > 0.

These facts imply that the inverse of the above quantity is bounded as

b′ <
d

c2nH + dλ
<

d

c2nH
.

Continuing the construction of the inverse, we obtain
D′ = D−1︸︷︷︸

def
= D′1

+D−1vb′v>D−1︸ ︷︷ ︸
def
= D′2

Noice that D′1 is symmetric positive definite with positive diagonal elements and D′2 is also sym-
metric positive semidefinite:

0 ≺ D′1 = D−1 =
(
γ2nH

d
+ λ
)−1

I ≺ d

γ2nH
I

D′2 = b′︸︷︷︸
≥0

D−1v︸ ︷︷ ︸
y

v>D−1︸ ︷︷ ︸
y>

= b′yy> < 0.

We now use the above block expressions for Σ−1
h to bound

‖φπh‖Σ−1
h
≤ ‖
[
[φπh]1:d, 0

]
‖Σ−1

h
+ ‖
[
~0, [φπh]d+1

]
‖Σ−1

h
.

By construction, [φπh]1:d only interacts with the D′ block in Σ−1
h ; using this and

‖x‖2D′ = x>(D′1 +D′2)x ≤ ‖x‖2 (‖D′1‖2 + ‖D′2‖2) ‖x‖2
we can write

‖
[
[φπh]1:d, 0

]
‖Σ−1

h
= ‖[φπh]1:d‖D′ ≤ ‖[φπh]1:d‖2

√
‖D′1‖2 + ‖D′2‖2

Likewise,

‖
[
0, [φπh]d+1

]
‖Σ−1

h
= ‖[φπh]d+1‖b′ .

We now bound all norms:

‖[φπh]1:d‖2 ≤
‖1 ‖2√

2d
≤ 1√

2

‖D′1‖2 = ‖D−1‖2 .
2d2

nH

‖D′2‖2 ≤ b′‖D−1‖2‖v‖2‖v‖2‖D−1‖2 .
d

nH︸︷︷︸
b′

(
γ
nH
d

)2

‖1 ‖22︸ ︷︷ ︸
‖v‖22

d4

n2
h︸︷︷︸

‖D−1‖22

.
d2

nH

Substituting back yields the bound

‖
[
[φπh]1:d, 0

]
‖Σ−1

h
.

d
√
nH

Similarly, we have

‖[φπh]d+1‖b′ =

√
1√
2
b′

1√
2
≤
√

1

2

d

c2nH
.

√
d

√
nH

.

Putting together the pieces yields the claim (75).
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