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A PROOFS FOR ANALYSIS OF GRADIENT DESCENT

In order to highlight our main contribution conceptually, we simplified the statements of the theorems
and lemmas stated in the main body for exposition. Hence, in this section, we shall restate Theorem
1.1 and the key lemmas formally and present the complete proof for our main theorem. The formal
statement of the main theorem is as follows

Theorem 1.1 (Formal version of the main theorem) For any absolute constants C1 � 1, C2 > 0,

there exists absolute constants c3 > 0, c⌘ > 0 such that the following holds. Suppose eDx be a

distribution over (ex, y) 2 Rd ⇥ R where the marginal over ex is the standard Gaussian N (0, I),
H := {( ew, bw) : k ewk 2 [1/C1, C1], |bw|  C2}, and consider population gradient descent iterates

wt+1 = wt � ⌘rL(w), with the initializer w0 = ( ew0, 0) where ew0 is drawn from the radially

symmetric distribution in Section 5. For any " > 0 and learning rate ⌘ = c⌘d�1
, with at least

constant probability c3 > 0, one of the iterates wT of population gradient descent after poly(d, 1/")
steps satisfies L(wT ) = O(OPT ) + ".

Note that without loss of generality, we can assume "  O(OPT ). If we cannot make such
assumption (e.g. when OPT ⇡ 0), we can use an upper bound on OPT of O("), and carry out the
same analysis.

Recall that v = (ṽ, bv) 2 Rd+1 is any minimizer of the loss L(w) i.e., v := argminw2H L(w).
Hence L(v) = OPT . We will assume in the rest of the analysis that kṽk2 = 1 for simplifying our
exposition. But this is not necessary; when kṽk2 2 [1/C1, C1], we can carry out the same analysis
incurring some extra constant factors. Finally recall that the realizable loss

F (w) :=
1

2
E
h
(�(w>x)� �(v>x))2

i
.

Our goal is to prove that for some iterate T , we have F (wT )  O(OPT ). This implies that
L(wT )  2F (wT ) + 2OPT = O(OPT ).

To prove Theorem 1.1, we first formally establish the following useful lemmas.

Lemma 4.1 (Lower bound on the measure of the intersection). Suppose the marginal distribution

eDx over ex is O(1)-regular. There exists an absolute constant c > 0 such that for all � > 0, if

F (w)  F (0)� � then

P[w>x � 0, v>x � 0] � �2

ckwk42kvk42
=

�2

ckwk42(1 + |bv|2)2
. (8)

Proof. Recall that F (x) is the realizable loss i.e., the loss compared to the optimal solution v. Since
F (w)  F (0)� �, we have

F (0)� � � F (w) :=
1

2
E[(�(w>x)� �(v>x))2]

=
1

2
E[�(w>x)2]� E[�(w>x)�(v>x)] +

1

2
E[�(v>x)2]

� �E[�(w>x)�(v>x)] + F (0)

Hence �  E[�(w>x)�(v>x)]. (12)
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Moreover we can also get an upper bound on E[�(w>x)�(v>x)] using Cauchy-Schwartz inequality
and repeated applications of Young’s inequality.

E[�(w>x) · �(v>x)] = E
h
1[w>x � 0, v>x � 0](w>x)(v>x)

i


q
P[w>x � 0, v>x � 0] ·

q
E[(w>x)2(v>x)2]


q
P[w>x � 0, v>x � 0] ·

q
2E[(w>x)4] + 2E[(v>x)4]

 8
q
P[w>x � 0, v>x � 0] ·

r
E

ex⇠N(0,I)
[(w̃>ex)4] + b4

w
·
r

E
ex⇠N(0,I)

[(ṽ>ex)4] + b4
v

 8
q
P[w>x � 0, v>x � 0] ·

q
(�4kw̃k42 + b4

w
) · (�4kṽk42 + b4

v
)

 c0
q
P[w>x � 0, v>x � 0] · kwk22kvk22. (13)

for some constant c0 > 0, where the last but one line follows from the standard bounds on the
fourth-moment of an O(1)-regular distribution. Combining (12) and (13) concludes the lemma.

Lemma 4.2 (Improvement from the first order term) Suppose the marginal over ex is O(1)-regular.

There exists absolute constant c1 > 0 such that for any � > 0, if kvk2, kwk2  B and F (w) 
F (0)� � then

hrF (w), w � vi � �kw � vk2, where � =
c1�9

B28
. (14)

The constant c1 depend on the constants �1,�0
2,�2,�4 etc. in the regularity assumption of eDx.

We remark that for our setting of parameters � = ⌦(1) and B = O(1), and hence we will conclude
that hrF,w � vi � ⌦(kw � vk22).

Proof. This lemma only concerns the “realizable portion” of the loss function F (w).

Let u = (ũ, bu) 2 Rd+1 be the unit vector along w � v. We have

hrF (w), w � vi = E
h�
�(w>x)� �(v>x)

�
�0(w>x)(w>x� v>x)

i

= E
h�
w>x� v>x

�2
1[w>x � 0, v>x � 0]

i

+ E
h
w>x

�
w>x� v>x

�
1[w>x � 0, v>x < 0]

i

� E
h�
w>x� v>x

�2
1[w>x � 0, v>x � 0]

i

= kw � vk22 · E
h
(u>x)21[w>x � 0, v>x � 0]

i
(15)

Let q := c�2/B8 and ⌧ := c0 �
4

B16 for some sufficiently small absolute constant c0 > 0 that will be
chosen later. We will now lower bound the contribution from just the samples that achieve a value
(u>x)2 > ⌧2 using Lemma 4.1, that lower bounds P[w>x � 0, v>x � 0] � c�2/B8 = q:

E
h
(u>x)21[w>x � 0, v>x � 0]

i

� ⌧2 · P
x

h
w>x � 0, v>x � 0, (u>x)2 � ⌧2

i

� ⌧2 ·
⇣
P
x

⇥
w>x � 0, v>x � 0

⇤
� P

x

⇥
(u>x)2 < ⌧2

⇤⌘

� ⌧2 ·
⇣
q � P

ex
[|ũ>x+ bu| < ⌧ ]

⌘
. (16)

Now we just need to upper bound Pex[|ũ>ex + bu| < ⌧ ]. Let � = kũk2. If � = kũk2 ⌧ |bu|, then
|bu| is itself large, and ũ>ex is too small in comparison to bring down |ũ>ex+ bu|. On the other hand,
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if � = kũk2 is not too small, then the anti-concentration (or spread out density) of the distribution
eDx ensures that |ũ>ex+ bu| is small with very low probability. We now formalize this intuition.

Suppose � = kũk2  1
4�4

(q/2)1/4. Then |bu| > 1/2, since kuk2 = 1. Also from our choice,
⌧ < 1/4. Hence by the bounded fourth moments property of eDx and Markov’s inequality,

P
ex⇠ eDx

[|ũ>ex+ bu| < ⌧ ]  P
ex⇠ eDx

[|ũ>ex| > 1
4 ] 

Eex⇠ eDx
[hũ, exi4]

(1/4)4
 �4(4kũk2)4  q

2
.

On the other hand, if � = kũk2 > 1
4�4

(q/2)1/4. Suppose û is the unit vector along ũ. Then using
the fact that û>ex = ũ>ex/kũk is anti-concentrated by the properties of eDx. Hence we have for some
constant �3 > 0

P
ex⇠ eDx

h
|ũ>ex+ bu| < ⌧

i
= P

ex⇠ eDx

h
û>ex 2 ( bu�⌧

kũk � bu+⌧

kũk )
i
 �3⌧

kũk  32�3�4

⇣2
q

⌘1/4
⌧ <

q

2
,

from our choice of parameters since ⌧ = c0�5/2/(B10�3�4) for a sufficiently small c0 > 0. Substitut-
ing back in (16) and (15) we have

hrF (w), w � vi � ⌧2 · q
2
� c1kw � vk22 ·

�5

B20�2
3�

2
4

· �2

B8
� c1kw � vk22 ·

�9

B28
.

Lemma 4.3 (Success if krFk  O(
p
OPT + ")) Suppose B, � > 0 are constants such that

kvk2, kwk2  B and F (w)  F (0)��, and ex follows a O(1)-regular distribution. Then there exists

a constant CG > 0, such that if krF (w)k  CG

p
OPT + " for some " > 0, then kw � vk2 

O(
p
OPT + ").

Proof. We can first apply Lemma 4.2 to conclude that
hrF (w), w � vi � �kw � vk2,

for some constant � > 0 (since B, � > 0 are constants). Hence
krF (w)kkw � vk � hrF (w), w � vi � �kw � vk2,

Thus kw � vk2  O(
p
OPT + ") which implies the lemma.

Lemma 4.4 (Small kwt�vk implies small F (wt)) If kwt�vk2  O(
p
OPT + ") for some " > 0,

then F (wt)  O(OPT + ").

Proof. Since ReLU function is 1-Lipschitz (i.e. |�(z)� �(z0)|  |z � z0|),

F (wt) =
1

2
E
h
(�(w>

t
x)� �(v>x))2

i
 1

2
E
h
(w>

t
x� v>x)2

i
=

kwt � vk2

2
E
h
(u>x)2

i

where we defined u = wt�v

kwt�vk , hence the last equation. Now, notice by using Young’s inequality, we
get

E
h
(u>x)2

i
= E

h
(eu>ex+ bu)

2
i
 2E

h
(eu>ex)2

i
+ 2b2

u
= 2keuk2 + 2b2

u
= 2

due to standard properties of Gaussian distributions. Hence

F (wt) 
kwt � vk2

2
· 2 = kwt � vk22  O(OPT + ")

which concludes the proof.

At a high level, we follow a similar approach as in Frei et al. (2020). We aim to show that for every t,
either (a) kwt � vk2 � kwt+1 � vk2 � ⌘C 0(OPT + ") is true for some ⌘ > 0 we will specify later,
or (b) kwt � vk2  O(��1(OPT + ")) holds. Since when kwt � vk2  O(OPT ), Lemma 4.4
indicates that F (wt) is O(OPT ), hence L(wt) is also O(OPT ); this gives the required iterate wT of
gradient descent to complete the theorem when (b) holds. Hence we shall assume at time t (b) does
not hold yet, and it suffices showing (a) is true. In the next lemma, we argue that throughout gradient
descent, the distance between the current iterate wt and the target weight v, kwt � vk2 continues to
decrease as long as wt is not too close to v.
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Lemma 4.5 (Decrease in kwt � vk: formal version) Assume at time t, F (wt)  F (0)� � where

� > 0 is a constant and eDx is O(1)-regular. For constants ⌘ = 0.05·�
d�2

, Cp = 1
9 (
q

100�2
2/�

2+90
�2/�

+

10
q

�2

�
), C 0 = 19.8�/�2 where � is defined as in Lemma 4.2, if for some " > 0 kwt � vk2 >

��1C2
p
(OPT + "), then kwt+1 � vk2  kwt � vk2 � ⌘C 0(OPT + ").

Proof. Note at each timestep t,
wt+1 = wt � ⌘rL(wt) (17)

wt+1 � v = wt � v � ⌘rL(wt) (18)

=) kwt � vk2 � kwt+1 � vk2 = 2⌘hrL(wt), wt � vi � ⌘2krL(wt)k2 (19)

therefore to lower-bound kwt�vk2�kwt+1�vk2, we will give a lower bound for hrL(wt), wt�vi
and an upper bound for krL(wt)k2.

Lower bounding hrL(wt), wt�vi: Recall that rL(wt) = rF (wt)+E[(�(v>x)�y)�0(w>
t
x)x],

implying hrL(wt), wt � vi = hrF (wt), wt � vi+ hE[(�(v>x)� y)�0(w>
t
x)x], wt � vi.

Since a direct application of Lemma 4.2 already gives a lower bound on hrF (wt), wt � vi, we need
only focus on upper bounding

��hE[(�(v>x) � y)�0(w>
t
x)x], wt � vi

��. By Cauchy–Schwarz and
Young’s inequality, we get

hE[(�(v>x)� y)�0(w>
t
x)x], wt � vi = E[(�(v>x)� y)�0(w>x)(w>

t
x� v>x)]

� �
q
E[(�(v>x)� y)2] ·

q
E[(w>

t
x� v>x)2�0(w>

t
x)]

� �
p
2OPT

q
E[((wt � v)>x)2]

� �
p
2OPT ·

p
2�2kwt � vk = �2

p
�2 ·

p
OPT · kwt � vk

Putting these bounds together we get

rL(wt) = rF (wt) + E[(�(v>x)� y)�0(w>
t
x)x] � �kwt � vk22 � 2

p
�2

p
OPT · kwt � vk2

Upper bounding krL(wt)k2: Define

H(wt) = E[�(v>x� y)�0(w>x)x]

and observe that
rL(wt) = rF (wt) +H(wt)

For the first term,

krF (wt)k  E[|�(w>
t
x)� �(v>x)| · |�0(w>

t
x)| · kxk]  E[|w>

t
x� v>x| · kxk]

since �(·) is 1-Lipschitz (i.e. |�(z) � �(z0)|  |z � z0|) and �0(·)  1. Hence, applying Cauchy-
Schwarz yields


q
E[|w>

t
x� v>x|2] · E[kxk2]  kwt � vk ·

p
�2

p
d+ 1

Similarly, for the second term,

kH(wt)k  E[|�(v>x)� y| · kxk] 
q
E[|�(v>x)� y|2] · E[kxk2] 

p
2OPT ·

p
d+ 1

Using the above two expression, we can hence bound krL(wt)k2 as

krL(wt)k2  2krF (wt)k2 + 2kH(wt)k2  4d�2kwt � vk2 + 4dOPT (20)
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Lower bounding kwt � vk2 � kwt+1 � vk2: The above inequalities yield

kwt � vk2 � kwt+1 � vk2 = 2⌘hrL(wt), wt � vi � ⌘2krL(wt)k2

� 2⌘ ·
h
�kwt � vk2 � 2

p
�2

p
OPTkwt � vk

i
� 4d⌘2 · (�2kwt � vk2 +OPT )

� 2⌘ ·
h
�kwt � vk2 � 2(�2�)

1/2C�1
p

kwt � vk2
i
� 4d⌘2 · (�2kwt � vk2 +OPT )

= 2⌘
⇣
� � 2(�2�)

1/2C�1
p

� 2d⌘�2

⌘
kwt � vk2 � 2⌘ · 2d⌘OPT

due to our assumption that (b) does not hold yet, i.e. kwt � vk > Cp��1/2
p

(OPT + ") >

Cp��1/2
p
OPT with some constant Cp > 0, implying

p
OPT < �1/2C�1

p
kwt�vk. Consequently,

by choosing ⌘ = 0.05·�
d�2

= O(d�1) and Cp = 1
9 (
q

100�2
2/�

2+90
�2/�

+ 10
q

�2

�
) = O(1), we get

�2⌘
⇣
100 · 2d⌘ ·OPT + 100 · 2d⌘ · "� 2d⌘ ·OPT

⌘
= 2⌘

⇣
198d⌘ ·OPT + 200d⌘ · "

⌘

�⌘ · 396d · 0.05 · �
d�2

· (OPT + ") = ⌘C 0(OPT + ")

by setting C 0 = 19.8�/�2. Hence the proof follows.

We will also use as a black box two lemmas given in Vardi et al. (2021) that uses the smoothness of
the function to upper bound the contribution from the second order term.

Lemma A.1 (Lemma D.4 in Vardi et al. (2021)). For any w,w0 2 Rd+1
, if ex follows a O(1)-regular

distribution and 8� 2 [0, 1] there exists constants C`, Cu > 0 such that k(1��)w+�w0k 2 [C`, Cu],

then krF (w) � rF (w0)k  (c01 +
8�3(Cu +

p
C2

1 + C2
2 )c

0
2

C`

) · kw � w0k where c01, c
0
2 > 0 are

absolute constants.

Proof. Note that the original proof of this lemma relies on the assumption that the distribution of
ex is compactly supported. Hence we shall provide a modified proof that generalizes the lemma
statement to O(1)-regular distributions. Similar to the argument in Vardi et al. (2021), we write
krF (w)�rF (w0)k as

krF (w)�rF (w0)k =
���E

h
(�(w>x)� �(v>x))�0(w>x)x

i
� E

h
(�(w0>x)� �(v>x))�0(w0>x)x

i���


���E

h
{w>x � 0, w0>x � 0}((w � w0)>x)x

i���

+
���E

h
{w>x � 0, w0>x < 0}(w>x� �(v>x))x

i���

+
���E

h
{w>x < 0, w0>x � 0}(w0>x� �(v>x))x

i���

 E
h
k((w � w0)>x)xk

i

+ E
h

{w>x � 0, w0>x < 0}k(w>x� �(v>x))xk
i

+ E
h

{w>x < 0, w0>x � 0}k(w0>x� �(v>x))xk
i
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Note that we can bound the above three terms similarly as Vardi et al. (2021) by conditioning on the
event in which kxk is given, where fkxk is the p.d.f. of kxk.

=

Z
E
h
k((w � w0)>x)xk | kxk

i
fkxkdx

+

Z
E
h

{w>x � 0, w0>x < 0}k(w>x� �(v>x))xk | kxk
i
fkxkdx

+

Z
E
h

{w>x < 0, w0>x � 0}k(w0>x� �(v>x))xk | kxk
i
fkxkdx

 kw � w0k
Z

kxk2fkxkdx

+ (kwk+ kvk)
Z

E
h

{w>x � 0, w0>x < 0} | kxk
i
kxk2fkxkdx

+ (kw0k+ kvk)
Z

E
h

{w>x < 0, w0>x � 0} | kxk
i
kxk2fkxkdx

We can directly bound both P{w>x � 0, w0>x < 0 | kxk} and P{w>x < 0, w0>x � 0 | kxk} by
4�3/C` · kw � w0k · kxk using the same argument in the proof of Lemma D.4 of Vardi et al. (2021),
hence the above can be bounded as

 kw � w0k
Z

kxk2fkxkdx+ 2(Cu +
q
C2

1 + C2
2 ) ·

4�3

C`

kw � w0k
Z

kxk3fkxkdx

 (c01 +
8�3(Cu +

p
C2

1 + C2
2 )c

0
2

C`

) · kw � w0k

for absolute constants c01, c02 as the second and third moments of kxk due to properties of O(1)-regular
distributions.

Lemma A.2 (Lemma D.5 in Vardi et al. (2021)). Let f : Rd+1 ! R and ` > 0. Assume for any

w,w0 2 Rd+1
such that 8 � 2 [0, 1]

krf((1� �)w + �w0)�rf(w)k  `�kw0 � wk

then the following holds:

f(w0)  f(w) + hrf(w), w0 � wi+ `

2
kw0 � wk2

With all the above lemmas in place, we are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 As described in Section 4.1, we inductively maintain two invariants in every
iteration of the algorithm:

(A) kwt � vk2  O(1), and (B) F (0)� F (wt) = ⌦(1).

These two invariants are true at t = 0 due to our initialization w0. Lemma B.3 guarantees with at
least constant probability ⌦(1), both the invariants hold for w0. The proof that both the invariants
continue to hold follows from the progress made by the algorithm due to a decrease in both kwt�vk2
and F (wt) (note that we only need to show they do not increase to maintain the invariant).

The proof consists of three parts. For the first part, at time t, assuming F (wt)  F (0) � � holds,
then by directly applying Lemma 4.5, we conclude that as long as kwt � vk2 > C2

p
��1(OPT + ")

for some constant Cp > 0, with learning rate ⌘ = c⌘d�1 where c⌘ > 0 is a constant, gradient descent
always makes progress towards v.
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In addition, since whenever kwt � vk2 > C2
p
��1(OPT + "), kwt � vk2 � kwt+1 � vk2 is lower

bounded by ⌘C 0(OPT+") for some constant C 0 > 0, after T = kw0�vk2C 0�1⌘�1(OPT+")�1 
O(d(OPT + ")�1) iterations we get kwT � vk2  O(OPT ) + ", and by Lemma 4.4 this implies
F (wT )  O(OPT ) + ", therefore L(wT )  O(OPT ) + ".

In the second part of the proof, we show that if w0 is initialized such that F (w0)  F (0) � � for
some � > 0, then while gradient descent is still iterating, the inequality F (wt)  F (w0)  F (0)� �
always holds.

By Lemma A.1 which establishes the smoothness of rF (w) between two iterates w and w0, we can
apply Lemma A.2 as

F (w0)  F (w) + hrF (w), w0 � wi+ `

2
kw0 � wk2

where ` = (c01 +
8�3(Cu+

p
C

2
1+C

2
2 )c

0
2

C`
). Note that the conditions in Lemma A.1 are met since at

every timestep t, for some constant C� > 0 kwtk �
p
�p

C�kvk
= C` > 0 implied by Lemma 4.1, and

kwtk 
p
C2

1 + C2
2 = Cu as well by assumption.

Now, substitute w with wt and w0 with wt � ⌘rL(w) yields

F (wt � ⌘rL(wt))  F (wt)� ⌘hrF (wt),rL(wt)i+
`⌘2

2
krL(wt)k2

Note that

hrF (wt),rL(wt)i = hrF (wt),rF (wt) +H(wt)i = krF (wt)k2 + hrF (wt), H(wt)i

where H(wt) = E[(�(v>x)� y)�0(w>
t
x)x].

Next, we define u = rF

krFk . Note that u 2 Rd+1 is a fixed unit vector (it already involves an
expectation over x); hence

|hrF (wt), H(wt)i| = krF (wt)k ·
���
D
E
h
(�(v>x)� y)�0(w>x)x

i
, u
E���

= krF (wt)k
���E

h
(�(v>x)� y)�0(w>x)u>x

i���  krF (wt)k ·
���E

⇥
(�(v>x)� y)u>x

⇤���

 krF (wt)kE
h���(v>x)� y

�� ·
��u>x

��
i
 krF (wt)k ·

p
OPT ·

r
E
h
(u>x)2

i

Note that

E
h
(u>x)2

i
= E

h
(eu>ex+ bu)

2
i
 2E

h
(eu>ex)2

i
+ 2b2

u
= 2

⇣
�2keuk2 + b2

u

⌘
 2(�2 + 1)

Therefore,

|hrF (wt), H(wt)i|  krF (wt)k ·
p
OPT ·

r
E
h
(u>x)2

i
 krF (wt)k ·

p
2(�2 + 1)OPT

=) hrF (wt), H(wt)i � �krF (wt)k ·
p

2(�2 + 1)OPT

Plugging this back to the expression for hrF (wt),rL(wt)i yields

hrF (wt),rL(wt)i = krF (wt)k2 + hrF (wt), H(wt)i
� krF (wt)k2 � krF (wt)k ·

p
2(�2 + 1)OPT

= krF (wt)k
⇣
krF (wt)k �

p
2(�2 + 1)OPT

⌘

� krF (wt)k
⇣
krF (wt)k �

p
2(�2 + 1)(OPT + ")

⌘
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Since we have assumed that gradient descent is still in progress, implying kwt � vk is not at mostp
OPT + " yet, hence by Lemma 4.3 krF (w)k > CG

p
OPT + " at this point, therefore

hrF (wt),rL(wt)i � krF (wt)k
⇣
krF (wt)k�

p
2(�2 + 1)(OPT + ")

⌘
� 80(�2+1)(OPT+")

with CG = 100(�2 + 1); and by setting ⌘ and Cp as specified above, we have

� ⌘hrF (wt),rL(wt)i+
`⌘2

2
krL(wt)k2  �80⌘(�2 + 1)(OPT + ") +

`⌘2

2
krL(w)k2 (21)

 ⌘
⇣
� 80(�2 + 1)(OPT + ") +

`⌘

2
· (4d�2kwt � vk2 + 4dOPT )

⌘
(22)

= ⌘
⇣
� 80(�2 + 1)(OPT + ") + 2d�2`⌘kwt � vk2 + 2d`⌘(OPT + ")

⌘
(23)

= ⌘
⇣
(2d`⌘ � 80(�2 + 1))(OPT + ") + 2d�2`⌘kwt � vk2

⌘
(24)

 ⌘ · kwt � vk2 ·
⇣�(2d`⌘ � 80(�2 + 1))

C2
p

+ 2d�2`⌘
⌘

 0 (25)

by mandating �2 �
p

3200�`+(`C2
p�800)2+`C

2
p

1600 . Note that this does not lose generality since we can
always choose a suitable upper-bound for the second moment along any direction of the O(1)-regular
distribution eDx. Hence, the above inequality implies

F (wt � ⌘rL(wt))  F (wt)  ...  F (w0)  F (0)� �

Finally, in the last part of the proof, a direct application of Lemma B.3 justifies the assumption that w0

can be initialized such that F (w0) is less than F (0) by a constant amount with constant probability
depending only on bv; and since |bv| = O(1) by assumption, for absolute constants c1, c2 > 0, with
probability at least c2, F (w0)  F (0)� c21, which concludes the proof.

B GENERALIZING BEYOND GAUSSIAN MARGINALS

The above algorithmic result can be generalized to a broader class of marginals than Gaussians, that
we call O(1)-regular marginals.

O(1)-regular marginals: Assumptions about the marginals over ex We make the following
assumptions about the marginal distribution eDx over ex 2 Rd: there exists absolute constants
�1,�0

2,�2,�3,�4,�5 > 0 and �0 : R+ ! R+, such that

(i) Approximate isotropicity and bounded fourth moments: for every unit vector u 2 Rd,
Eex⇠ eDx

[hu, exi2] 2 [1/�0
2,�2], and Eex⇠ eDx

[hu, exi4]  �4.

(ii) Anti-concentration: there exists an absolute constant �3 > 0 such that for every unit vector
ũ 2 Rd and � > 0,

sup
t2R

P
ex⇠ eDx

h
hũ, exi 2 (t� �, t+ �)

i
 min{�3�, 1}.

(iii) Spread out: there exists �0 : R+ ! R+ such that �0(|bv|) > 0 is a constant when |bv| is a
constant, and

8ṽ 2 Sd�1, E
ex⇠ eDx

h
�(ṽ>ex+ bv)

i
� �0(|bv|).

(iv) 2-D projections: In every 2-dimensional subspace of Rd spanned by orthonormal unit
vectors ũ1, ũ2 2 Rd, we have a set Gũ1,ũ2 ⇢ R such that ,

P
ex⇠ eDx

[ũ>
2 ex 2 Gũ1,ũ2 ] = 1� o(1), and (26)

8t 2 Gũ1,ũ2 , E
ex⇠ eDx

h
�(ũ>

1 ex)
�� ũ>

2 ex = t
i
� �5 · E

ex⇠ eDx

⇥
�(ũ>

1 ex)
⇤
. (27)
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In other words, the conditional expectation of �(ũ>
1 ex) is not much smaller after conditioning

on the projection in an orthogonal direction ũ2, for most values of ũ>
2 ex. Note that for a

Gaussian N(0, I), the r.v.s ũ>
1 ex, ũ>

2 ex are independent, so this condition holds with �5 = 1
and Gũ1,ũ2 = R.

We remark that Gaussian distribution N (0, I) is O(1)-regular i.e., all the constants �1,�2,�0
2,�5 =

1,�3  2, and �0(bv) = Eg⇠N(0,1)[�(g+ bv)] > 0 for all bv 2 (�1,1); in fact �0 is an increasing
function that is 0 only at �1. We also note that assumptions of this flavor have also been used in
prior works including Vardi et al. (2021), which inspired parts of our analysis. In particular, Vardi
et al. (2021) assume a lower-bound on the density for any 2-dimensional marginal; our assumption
(4) on the 2-dimensional marginals is qualitatively weaker (it is potentially satisfied by even discrete
distributions), and moreover we only need the condition to be satisfied for a large fraction of values
of ũ>

2 ex (and not all). See Section B for the generalized version of our main theorem.

In this section, we present the main theorem as follows.
Theorem B.1 (Generalization beyond Gaussian marginals). For any absolute constants C1 �
1, C2 > 0, there exists absolute constants c3 > 0, c⌘ > 0 such that the following holds. Let eDx be a

distribution over (ex, y) 2 Rd ⇥ R where the marginal over ex are regular with constant parameters

�1,�0
2,�2,�3,�4,�5, and �0(bv) as defined above. Let H = {( ew, bw) : k ewk 2 [1/C1, C1], |bw| 

C2}, and consider population gradient descent iterates: wt+1 = wt � ⌘rL(w). For any " > 0 and

learning rate ⌘ = c⌘d�1
, when starting from w0 = ( ew0, 0) where ew0 is randomly initialized from a

radially symmetric distribution, with at least constant probability c3 > 0 one of the iterates wT of

gradient descent after poly(d, 1/") steps satisfies L(wT ) = O(OPT ) + ".

We now describe the generalization to regular distributions of the necessary lemmas for analyzing
gradient descent in Section B.1.

B.1 GENERALIZED LEMMAS FOR REGULAR DISTRIBUTIONS

In the following lemma, similar to Lemma 4.5, we argue that throughout gradient descent, kwt � vk2
continues to decrease as long as kwt � vk is not too small.

Lemma B.2 (Decrease in kwt � vk). Let eDx be O(1)-regular with parameters defined above.

Assume at time t, F (wt)  F (0) � � where � > 0 is a constant. For constants Cp, C 0 > 0 and �
defined as in Lemma 4.2, if for some " > 0 kwt � vk2 > ��1C2

p
(OPT + "), then kwt+1 � vk2 

kwt � vk2 � ⌘C 0(OPT + ").

Proof. Resembling the proof of Lemma 4.5, to lower-bound kwt � vk2 �kwt+1 � vk2, we will give
a lower bound for hrL(wt), wt � vi and an upper bound for krL(wt)k2.

Lower bounding hrL(wt), wt�vi A direct application of Lemma 4.2 already gives a lower bound
on hrF (wt), wt�vi, hence we need only focus on lower bounding hE[(�(v>x)�y)�0(w>

t
x)x], wt�

vi, and by Cauchy–Schwarz and Young’s inequality, we immediately get

hE[(�(v>x)� y)�0(w>
t
x)x], wt � vi = E[(�(v>x)� y)�0(w>x)(w>

t
x� v>x)]

� �
q
E[(�(v>x)� y)2]

q
E[(w>

t
x� v>x)2�0(w>

t
x)] � �

p
2OPT

q
E[((wt � v)>x)2]

� �
p
2OPT ·

p
C��2kwt � vk � �C 0

�

p
�2 ·

p
OPT · kwt � vk

with constants C� , C 0
�
> 0. Putting the bound above along with that of Lemma 4.2 together we get

rL(wt) = rF (wt) + E[(�(v>x)� y)�0(w>
t
x)x] � �kwt � vk22 �C 0

�

p
�2 ·

p
OPT · kwt � vk2

Upper bounding krL(wt)k2 Recall rL(wt) = rF (wt) + H(wt) =) krL(wt)k2 
2krF (wt)k2 + 2kH(wt)k2. For the first term,

krF (wt)k  E[|�(w>
t
x)� �(v>x)| · |�0(w>

t
x)| · kxk]  E[|w>

t
x� v>x| · kxk]
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since �(·) is 1-Lipschitz (i.e. |�(z) � �(z0)|  |z � z0|) and �0(·)  1. Hence, applying Cauchy-
Schwarz yields


q
E[|w>

t
x� v>x|2] · E[kxk2]  kwt � vk ·

p
�2d+ 1

Similarly, for the second term,

kH(wt)k  E[|�(v>x)� y| · kxk] 
q

E[|�(v>x)� y|2] · E[kxk2] 
p
2OPT ·

p
�2d+ 1

Using the above two expression, we can hence bound krL(wt)k2 as

krL(wt)k2  2kF (wt)k2 + 2kH(wt)k2  C 00
�
dkw � vk2 + C 00

�
dOPT

for some constant C 00
�
> 0.

Lower bounding kwt � vk2 � kwt+1 � vk2 The above inequalities yield

kwt � vk2 � kwt+1 � vk2 = 2⌘hrL(wt), wt � vi � ⌘2krL(wt)k2

� 2⌘ ·
h
�kwt � vk2 � C 0

�

p
�2

p
OPTkwt � vk

i
� C 00

�
d⌘2 · (kw � vk2 +OPT )

� 2⌘ ·
h
�kwt � vk2 � C 0

�

p
�2�

1/2C�1
p

kwt � vk2
i
� C 00

�
d⌘2 · (kw � vk2 +OPT )

= 2⌘
⇣
� � C 0

�

p
�2�

1/2C�1
p

�
C 00

�

2
d⌘
⌘
kwt � vk2 � 2⌘ ·

C 00
�

2
d⌘OPT

due to our assumption that (b) does not hold yet, i.e. kwt � vk > Cp��1/2
p

(OPT + ") >

Cp��1/2
p
OPT with some constant Cp > 0, implying

p
OPT < �1/2C�1

p
kwt�vk. Consequently,

by choosing ⌘  O(d�1), we get

� 2⌘
⇣
C1�kwt � vk2 � C2OPT

⌘
� 2⌘

⇣
C1C

2
p
(OPT + ")� C2OPT

⌘

� ⌘C 0(OPT + ")

where C1, C2, C 0 > 0 are constants. Hence the proof follows.

With the lemmas above, we are now ready to prove Theorem B.1.

B.2 PROOF OF THEOREM B.1

The proof highly resembles that of Theorem 1.1 by inductively maintaining the same two invariants
in every iteration of the algorithm:

(A) kwt � vk2  O(1), and (B) F (0)� F (wt) = ⌦(1).

Hence, we only highlight the difference compared to the previous proof.

The proof also consists of three parts. For the first part, we simply replace Lemmas 4.5 and 4.4 with
Lemmas B.2 and 4.4, resulting in the same argument that after T  O(d(OPT + ")�1) iterations
we get F (wT )  O(OPT ) + ", therefore L(wT )  O(OPT ) + ".

In the second part of the proof, Lemmas 4.3, A.1, A.2 remain valid for O(1)-regular distributions,
therefore we need only note that for any unit vector u 2 Rd+1,

E[(u>x)2]  2E[(eu>ex)2] + 2b2
u
 2�2 + 2b2

u
 O(�2)

which only affects the bounds for krL(wt)k and kH(wt)k up to a constant factor. Hence the
inequality F (wt � ⌘rL(wt))  F (wt)  F (w0)  F (0)� � also holds.

Finally, in the last part of the proof, a direct application of Lemma B.3 justifies the initialization
assumption, which concludes the proof.
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B.3 RANDOM INITIALIZATION

We now prove the initialization lemma assuming weak conditions on the marginal distribution over
ex 2 Rd which is eDx (recall that the standard Gaussian N(0, I) also satisfies all of the properties). We
will initialize w = (w̃, bw) with bw = 0 and w̃ drawn from a spherical symmetric distribution Dw.
Dw first picks the length ⇢ 2 D⇢, and then sets w̃ = ⇢ŵ, where ŵ is a uniformly random unit vector.
The distribution D⇢ can be any distribution that is reasonably spread out – it just needs to place
non-negligible probability in any constant length interval (a1kṽk2, a2kṽk2) where a2 > a1 > 0 are
constants.

As stated in the preliminaries, we assume for simplicity that kṽk2 = 1 (or ⇥(1)); this is essentially
the same as assuming that we know the length scale of kṽk2, since we can scale the input by this
length kṽk2 (see Proposition C.1). Please refer to Lemma 5.1 when we do not know the length scale
of kṽk2. For convenience, we will set D⇢ to be the absolute value of a standard Gaussian N(0, 1) (or
N(0,�2) with � 2 [1, 2].
Lemma B.3. There exists c1(v), c2(v), c3(v) > 0 which only depend on bv/kṽk2 (and not on the

dimension), and are both absolute constants when |bv|/kṽk2 = O(1), such that the following holds.

When w = (w̃, bw = 0) is drawn according to w̃ = ⇢kṽk2ŵ ⇠ Dw described above (with ŵ being

a uniformly random unit vector, and ⇢ ⇠ D⇢ being the absolute value of a normal N(0,�2) with

� 2 [1, 2]). Then with probability at least c2(v) > 0, we have

F (w)  F (0)� c1(v)
2kṽk22, and kw � vk  c3(v)kṽk2. (28)

In the above lemma, if eDx is a standard Gaussian N(0, I), it suffices to choose for example c1(v) =

c0 Eg1⇠N(0,1)[�(g1+bv/kṽk)]
⌘
= c0 ·

⇣
bv
kṽk�(

bv
kṽk )+

1p
2⇡

e�b
2
v/2kṽk

2
⌘

for some universal constants
c0, c00, c

00
0 > 0. c2(v) and c3(v) are also chosen similarly as constants that only depend on |bv|/kṽk

and not on any dimension dependent term. We remark that for random initialization to work, we only
need the probability of success ⌘ > 0 to be non-negligible (e.g., at least an inverse polynomial). We
can always try O(1/⌘) many random initializers, and amplify the success probability to be at least
0.99.

Proof. For convenience we define bbv := bv/kṽk2, bv := v/kṽk2, so they are normalized w.r.t. the
length of ṽ. The conditions of the lemma assume that |bbv| = O(1).

By definition, the distribution of w̃ 2 Rd is spherically symmetric.

F (w)� F (0) =
1

2
E
x

h
(�(w̃>x)� �(ṽ>x+ bv))

2
i
� 1

2
E
x

h
�(ṽ>x+ bv))

2
i

=
1

2
E
x

h
(�(w̃>x)2

i
� E

x

h
�(w̃>x)�(ṽ>x+ bv))

i

=
⇢2kṽk22

2
E
x

h
(�( bw>x)2

i
� ⇢kṽk22 E

x

h
�( bw>x)�(bv>x+bbv))

i
,

where w̃ = ⇢kṽk2 bw with bw being the unit vector along w̃. For a fixed ⇢ 2 R+, bw (and hence w̃) is
picked along a uniformly random direction i.e., bw ⇠U Sd�1. Hence for x ⇠ eDx

E
bw⇠Sd�1

[F ((⇢ bw, 0))� F (0)] =
⇢2kṽk22

2
E

bw⇠USd�1
E

x⇠ eDx

h
(�( bw>x)2

i
(29)

� ⇢kṽk22 E
bw⇠USd�1

E
x⇠ eDx

h
�( bw>x)�(bv>x+bbv))

i

= kṽk22
�
c0⇢2 � 2c3(v)⇢

�
, (30)

where c0 > 0 is a universal constant based on our assumptions about eDx (c0 = 0.5 for x ⇠ N(0, I)).

We now derive an expression for c3(v), and prove that it is a constant independent of the dimension.
Let bw = z1bv + z2w? where w? is some unit vector orthogonal to ṽ. Note that z1, z2 are r.v.s that
depend only on the choice of the initializer (our rotationally invariant distribution), and not on eDx.
For bw ⇠U Sd�1, the typical values E[z21 ] = 1/d and E[z22 ] = 1 � 1/d; moreover z1 and z2 are
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symmetric (around 0), and their signs are independent. Let the r.v.s ⇠1 = hex, bvi, ⇠2 = hex,w?i
denote the marginal distribution along bv, w?. The ⇠1, ⇠2 are independent of z1, z2 (but ⇠1, ⇠2 could
be dependent); these also satisfy condition (3) about the 2-dimensional marginals of eDx because it is
O(1)-regular.

c3(v) = E
bw⇠USd�1

E
x⇠ eDx

h
�( bw>x)�(bv>x+bbv))

i

= E
z1,z2

E
⇠1,⇠2

h
�(z1⇠1 + z2⇠2)�(⇠1 +bbv)

i

= E
z1,z2

E
⇠1,⇠2

h
�(z1⇠1 + z2⇠2)�(⇠1 +bbv)

i
.

Since z1 is a symmetric r.v.,

c3(v) =
1

2
E

z1,z2

E
⇠1,⇠2

h
�(|z1⇠1|+ z2⇠2)�(⇠1 +bbv)

i
+

1

2
E

z1,z2

E
⇠1,⇠2

h
�(�|z1⇠1|+ z2⇠2)�(⇠1 +bbv)

i

� 1

2
E

z1,z2

E
⇠1,⇠2

h
�(|z1⇠1|+ z2⇠2)�(⇠1 +bbv)

i

� 1

2
E

⇠1,⇠2

E
z1,z2

h
�(z2⇠2)�(⇠1 +bbv)

i

� Ez |z2|
2

Z 1

t=�bbv
p(⇠1 = t) · (t+bbv) · E

⇠2

[�(⇠2)|⇠1 = t] dt (since z2 is independent of ⇠1, ⇠2)

� 1

8

Z 1

t=�bbv
p(⇠1 = t) · (t+bbv) · E

⇠2

[�(⇠2)|⇠1 = t] dt (since z2 is independent of ⇠1, ⇠2)

since E[|z2|] � 1/4 (in fact when d is large, |z2| = 1�O(1/
p
d) for w.h.p.). We now split up the inner

integral over t 2 [�bbv,1) into two parts depending on whether E⇠2 [�(⇠2)|⇠1 = t] � �5 E⇠2 [�(⇠2)]

is satisfied or not. Let Bad ⇢ [�bbv,1) be subset where it is not satisfied. Note that from regularity
of eDx, we have that P[Bad] = o(1). We only take the contribution from t 2 [�bbv,1) \ Bad:

c3(v) �
�5

8

⇣Z 1

t=�bbv
p(⇠1 = t) · (t+bbv) · E

⇠2

[�(⇠2)] dt�
Z 1

t=�bbv
p(⇠1 = t)1[t 2 Bad] · (t+bbv) · �5 E

⇠2

[�(⇠2)] dt
⌘

� �5 E⇠2 [�(⇠2)]

8

⇣
E
⇠1

[�(⇠1 +bbv)]�

s

P[Bad] ·
Z

t2Bad
p(⇠1 = t) · (t+bbv)2 dt

⌘

� �5�0(0)

8

⇣
E
⇠1

[�(⇠1 +bbv)]� P[Bad]1/2 ·
⇣
2

Z

t2R
p(⇠1 = t) · (t2 +bb2

v
) dt

⌘1/2 ⌘

� �5�0(0)

8

⇣
�0(|bbv|)� o(1) ·

q
2(�2 +bb2

v
)
⌘

� c1�0(|bbv|),
as required for an absolute constant c1 > 0. Note that the last line used regularity to say �5 = ⌦(1)

and lower bound E[�(bv>ex+bbv)] � �0(|bbv|).
We now prove that the first part (31) holds with non-negligible probability. From (30), we note that
for any ⇢ 2

⇥
c3(v)
2c0 , c3(v)

c0

⇤
, we have that

E
bw⇠USd�1

[F ((⇢ bw, 0))]  F (0)� kṽk22
c3(v)2

2c0
.

Moreover ⇢ is distributed as the absolute value of a standard normal with variance in [1, 4]; so we get
that ⇢ 2

�
c3(v)
2c0 , c3(v)

c0

�
with probability at least c5(v) := 1

2
p
2⇡c0

· e�⌦(c3(v)
2)c3(v), which is constant

when |bbv| is a constant.

Now we condition on the event that ⇢ 2
⇥
c3(v)
2c0 , c3(v)

c0

⇤
. For a fixed ⇢ in this interval, let Z be a r.v.

that captures the distribution of F ((⇢kṽk bw, 0))� F (0) as bw is drawn uniformly from the unit sphere
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Sd�1. Note that E[Z]  �kṽk22c3(v)2/2c0.

Var[Z]  E[F ((⇢kṽk2 bw, 0))2]  16 E
x⇠ eDx

[kṽk4�(⇢ bw>x)4] + 16 E
x⇠ eDx

[kṽk4�(bv>x+bbv)4]

 256kṽk4
⇣
2�4 +bb4

v

⌘
.

Further for � = �E[Z]/2, we have from the Cantelli-Chebychev one-sided tail inequality we have
for some absolute constant c6 > 0

P
h
Z  E[Z]/2

i
� E[Z]2

4Var[Z] + E[Z]2
� min

n
c6c3(v)

2/(�4 +bb4
v
),
1

2

o
=: c6(v),

where c6(v) is a constant when bbv is a constant. This allows us to conclude that F (w) < F (0) �
⌦(kṽk2) with probability at least c5(v) · c6(v) which is a constant when bbv is a constant. Finally
the kw � vk2  kwk2 + kṽk2 is upper bound just because of our choice of ⇢ and kṽk2 being upper
bounded by assumption.

B.4 MULTISCALE RANDOM INITIALIZATION (FOR UNKNOWN LENGTH SCALE)

Lemma B.3 shows that if we guess the correct length scale of kṽk2 up to a factor of 2, then the
random spherically symmetric initialization in Section 5 succeeds with constant probability. When
we have unknown length scale kṽk2 2 [1/M,M ], the random initialization can try out the different
length scales in geometric progression i.e., the length scale ⌧ is chosen uniformly at random from
{2�j : j 2 Z,� logM  j  logM}.

Random initialization for unknown length scale We will initialize w = (w̃, bw) with bw = 0 and
w̃ drawn from a spherical symmetric distribution Dw. The length is chosen from the distribution D⇢

so that it has a non-negligible probability in any constant length interval (a1kvk2, a2kvk2) where
a2 > a1 > 0 are constants: our specific choice picks the correct length scale with non-negligible
probability, and is reasonably spread out.

We are given a parameter M such that kvk2 2 [2� logM , 2logM ] (note that M can have large
dependencies on d and other parameters; our guarantees will be polynomial in logM ). A random
initializer w = (w̃, 0) is drawn from Dunknown(M) as follows:

1. Pick j uniformly at random from
�
�dlogMe,�dlogMe+1, . . . ,�1, 0, 1, . . . , dlogMe

 
.

2. ⇢ 2 R+ is drawn according to D⇢ as follows: we first pick2 g ⇠ N(0, 1) and set ⇢ = 2j |g|.

3. A uniformly random unit vector ŵ 2 Rd is drawn and we output w̃ = ⇢ŵ. The initializer is
(w̃, 0).

We prove the following claim about the random initializer.

Lemma 5.1 There exists c1(v), c2(v), c3(v) > 0 which only depend on bv/kṽk2 (and not on the

dimension), and are both absolute constants when |bv|/kṽk2 = O(1), such that the following holds.

When w = (w̃, bw = 0) is drawn according to the distribution Dunknown(M) described above for

some given M � 1 satisfying kvk2 2 [1/M,M ]. Then with probability at least c2(v)/ logM , we

have

F (w)  F (0)� c1(v)
2kṽk22, and kw � vk  c3(v)kṽk2. (31)

Proof. Since kṽk2 2 [1/M,M ], the random initialization will pick j⇤ with probability at least
1/(2 logM) such that kṽk2 2 [2j

⇤
, 2j

⇤+1]. For this choice of j⇤, we can apply Lemma B.3 (note
that we only need a guess of kṽk2 up to a factor of 2) to get the required guarantee.

2One can pick many other spread out distributions in place of the absolute value of a Gaussian.
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C INVARIANCE TO SCALING

In this section we show that the guarantees of gradient descent do not change by scale the instance
by a multiplicative factor of ↵. Here the instance is scaled by only multiplying the y values by the
same factor ↵ (but not scaling the point x). This allows us to assume that kṽk2 = 1 without loss of
generality as long as the initializer is also in the same length scale (see Lemma 5.1 how the random
initialization finds the correct length scale with reasonable probability).

Recall that we consider the loss function L which given hypothesis w = (w̃, bw) 2 Rd+1 and input
distribution D̃ over (ex, y) 2 Rd ⇥ R is

L(w, D̃) = 1
2 E
(ex,y)⇠D̃

[(�(w̃>ex+ bw)� y)2]. (32)

We show the following simple proposition.

Proposition C.1. Let ↵ > 0, and let D̃ be any distribution over (ex, y) 2 Rd ⇥ R, let D̃↵ be

the corresponding distribution given by (ex, y0 = ↵y) (only the y values are scaled). For every

w = (w̃, bw) 2 Rd+1
we have that

L(↵w, D̃↵) = ↵2 · L(w, D̃), where ↵w = (↵w̃,↵bw). (33)

Moreover, for two runs of gradient descent (with the same step size ⌘) producing iterates

w0, w1, . . . , wT when run on D̃ and producing iterates w0
0, w

0
1, . . . , w

0
T

when run on D̃↵, we have:

if w0
0 = ↵w0, then 8t 2 {0, 1, 2, . . . , T}, w0

t
= ↵ · wt. (34)

Finally, if OPT and OPT↵ are the optimal losses for D̃ and D̃↵ respectively, then for any � > 0,

F (wt)  � ·OPT if and only if F (w0
t
)  � ·OPT↵.

Proof. The first part follows directly from (32). We have

L(↵w, D̃↵) =
1
2 E
(ex,y0)⇠D̃↵

[(�(↵w̃>ex+ ↵bw)� y0)2] = 1
2 E
(ex,y)⇠D̃

[(�(↵w̃>ex+ ↵bw)� ↵y)2]

= 1
2 E
(ex,y)⇠D̃

[(↵�(w̃>ex+ bw)� ↵y)2] = ↵2L(w, D̃).

The second part uses the form of the gradient update through a simple induction. The base case
is true since by assumption w0

0 = ↵w0. Suppose w0
t
= ↵wt. Let D↵ denote the distribution over

x = (ex, 1), y0 = ↵y corresponding to D̃↵. Recall that w0
t+1 = w0

t
�rL(w0

t
,D↵) where

rL(w0
t
,D↵) = E

(x,y0)⇠D↵

h
(�(w>x)� y0)�0(w>x)x

i
.

Hence w0
t+1 = w0

t
� ⌘rL(w0

t
,D↵) = w0

t
� ⌘ E

(x,y0)⇠D↵

h
(�(↵w>x)� y0)�0(↵w>x)x

i

= ↵wt � ↵ · ⌘ E
(x,y)⇠D

h
(�(↵w>x)� ↵y)�0(w>x)x

i

= ↵wt � ↵ ·rL(wt,D) = ↵wt+1.

Note that the last but second line used the fact that �0(↵w>x) = I[↵w>x � 0] = �0(w>x) when
↵ > 0. The last part of the proposition just follows from the first claim that L(↵w, D̃↵) = ↵2·L(w, D̃)
for all w applied to wT , w0

T
= ↵wT and the optimal solutions corresponding to OPT and OPT↵.

Remark. We remark that the above proposition essentially shows that we can assume that kṽk2 = 1,
almost without loss of generality. However, this proposition assumes that initializer w̃0 can also
be scaled accordingly i.e., the initializer w̃0 continues to have the same length scale as ṽ. This is
achieved by our random initialization strategy in Section B.4, since it tries out many different length
scales.
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D ANALYSIS OF GRADIENT DESCENT WITH FINITE SAMPLES

In this section, we analyze gradient descent when trained on finite number of i.i.d. samples (xi, yi) ⇠
D. As in the previous sections, we assume the marginal distribution of x is a standard Gaussian.
We will utilize the notations below, which are analogous to those defined with respect to the data
distribution

• bL(w) = 1
2n

P
n

i=1(�(w
>xi)� yi)2

• bF (w) = 1
2n

P
n

i=1(�(w
>xi)� �(v>xi))2

• bH(w) = 1
n

P
n

i=1(�(v
>xi)� yi)�0(w>xi)xi

where n is the number of samples.

Since we can only access n samples, we update the weight through full-batch gradient descent as
follows

wt+1 = wt � ⌘rbL(wt)

We are now ready to analyze gradient descent on finite samples. We first state the main result
established in this section
Theorem D.1. Let C1 � 1, C2 > 0, c03 > 0 be absolute constants. Let D be a distribution over

(ex, y) 2 Rd ⇥ R where the marginal over ex is the standard Gaussian N (0, I) and the distribution

of y satisfies |y|  BY for some BY � 1. Let H = {w = (w̃, bw) : kw̃k 2 [1/C1, C1], |bw|  C2},

and consider empirical gradient descent iterates: wt+1 = wt � ⌘rbL(wt). For a suitable constant

learning rate ⌘, when starting from w0 = (w̃0, 0) where w̃0 is randomly initialized from a radially

symmetric distribution, when given poly(d, 1/", BY ) i.i.d. samples from the data distribution D,

with at least constant probability c03 > 0 one of the iterates wT of gradient descent after poly(d, 1
"
)

steps satisfies L(wT ) = O(OPT ) + 2".

We remark that the above theorem also holds under our weaker distributional assumptions in Section B
with an additional sub-Gaussianity assumption on eDx, as evident from the proof that follows. In
order to prove Theorem D.1, we first introduce the following definitions and lemmas. The following
definition is a standard tool for establishing uniform convergence guarantees and is deeply related
to the notion of Rademacher Complexity. For further details please refer to Shalev-Shwartz &
Ben-David (2014).
Definition D.2 (Representativeness). Given data samples S = {z1, ..., zn} 2 Zn and a function
class F = {f : Z ! R}, the representativeness of S with respect to F is

Rep(F , S) = sup
f2F

E[f(z)]� 1

n

nX

i=1

f(zi)

Note that representativeness is a random variable. The following lemma quantifies the conver-
gence property of representativeness with respect to the loss function gradient through analyzing its
Rademacher complexity.
Lemma D.3 (Concentration of Representativeness). For absolute constants c1, c2, c3 > 0, with

probability at least 1 � , the representativeness of random samples S = {(exi, yi)}ni=1 ⇠i.i.d. D
with respect to the function class Fj = {(�(w>x) � y)�0(w>x)xj : kwk  C1}, Rep(Fj , S) is

bounded by

Rep(Fj , S) 
c1dBY C

p
d log(Cn)p
n

+

r
c3dB2

Y
log(4/)

n

where for all yi, |yi|  BY .

Proof. Note that E[Rep(Fj , S)]  2E[R(Fj �S)], where R(Fj �S) is the Rademacher Complexity
of the set {{(�(w>xi) � yi)�0(w>xi)xij}ni=1 : kwk  C1} (Lemma 26.2 of Shalev-Shwartz &
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Ben-David (2014)). Hence, combining it with McDiarmid’s inequality for almost-bounded difference
functions (see Kutin (2002)), with probability at least 1�  we get

Rep(Fj , S)  E[Rep(Fj , S)] +

r
c3dB2

Y

n
log

� 4


�
 2E[R(Fj � S)] +

r
c3dB2

Y

n
log

� 4


�

For the first term, by definition we have

R(Fj � S) =
1

n
E
s

h
sup

kwkC1

nX

i=1

sixij�
0(w>xi)(w

>xi � yi)
i

where {si}ni=1 are i.i.d. Rademacher random variables. Given the sample S, let RS be the maximum
`2 norm of a vector xi 2 S. We can further upper bound the above as

R(Fj � S) 
1

n
E
s

h
sup

kwkC1

nX

i=1

sixij�
0(w>xi)(w

>xi)
i
+

1

n
E
s

h
sup

kwkC1

nX

i=1

sixij�
0(w>xi)yi

i

For the second term above we can use Massart’s finite class lemma Shalev-Shwartz & Ben-David
(2014) and noticing that the sup is only over O(nd+1) different hypotheses (since only sign of w>xi

matters, and we can use Sauer-Shelah’s lemma with linear classifiers in d dimensions Shalev-Shwartz
& Ben-David (2014)), we get that

1

n
E
s

h
sup

kwkC1

nX

i=1

sixij�
0(w>xi)yi

i
 O(

1p
n
RSBY

p
d log n).

To bound the first term, for an appropriate " to be chosen later, let H" be a minimal "-cover for the set
{w 2 Rd : kwk  C}. It is well known that |H"| = O(C/")d Shalev-Shwartz & Ben-David (2014).
For any w 2 Rd such that kwk  C we will denote by w" the closest vector to w (in `2 distance) in
the set H". Then we can write

R(Fj � S) 
1

n
E
s

h
sup
w2H"

nX

i=1

sixij�
0(w>xi)(w

>xi)
i

+
1

n
E
s

h
sup

kwkC1

� nX

i=1

sixij�
0(w>xi)(w

>xi)�
nX

i=1

sixij�
0(w>

"
xi)(w

>
"
xi)

�i

Noticing that |(w>�w>
"
) ·xi|  "RS , and the fact that |�0(t1)t1��0(t2)t2|  |t1� t2|, we get that

R(Fj � S) 
1

n
E
s

h
sup
w2H"

nX

i=1

sixij�
0(w>xi)(w

>xi)
i
+O("RSBY ) +O(

1p
n
RSBY

p
d log n).

(35)

For the first term above we apply Massart’s finite class lemma Shalev-Shwartz & Ben-David (2014)
to get that

1

n
E
s

h
sup
w2H"

nX

i=1

sixij�
0(w>xi)(w

>xi)
i
 O(

1p
n
RSC

p
log(|H"|)). (36)

From (35) and (36) we get that

R(Fj � S) = O(
1p
n
RSBY C

p
d log(Cn/") + "RSBY ).

Substituting " = 1/
p
n above we get that

R(Fj � S) = O
� 1p

n
RSBY C

p
d log(Cn)

�
.
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Finally, taking the expectation over S and using standard property of Gaussians we get that

E[R(Fj � S)] = O
� 1p

n
dBY C

p
d log(Cn)

�
.

This completes the proof.

With these lemmas, we are now ready to prove Theorem D.1.

Proof of Theorem D.1. The proof consists of three parts highly identical to that of Theorem 1.1,
hence we only highlight the main difference. As in the proof of Theorem 1.1 we will assume that
kvk2 = 1; note that this is without loss of generality from Proposition C.1. Also as in the proof of
Theorem 1.1, we will only argue at one of the iterates T satisfies the required guarantee (this may not
be the last iterate).

In the first part, we rewrite the update rule as

wt+1 = wt � ⌘rL(wt) + ⌘
⇣
rL(wt)�rbL(wt)

⌘
= wt � ⌘rL(wt) + ⌘⇣t,

where ⇣t := rL(wt)�rbL(wt), and g(⇣t) := �⌘hrL(wt), ⇣ti+ hwt � v, ⇣ti+
⌘k⇣tk2

2
. (37)

We obtain the improvement in each iteration as

kwt � vk2 � kwt+1 � vk2 = 2⌘hrL(wt), wt � vi � ⌘2krL(wt)k2 � 2⌘g(⇣t)

Note that 2⌘g(⇣t) is a random variable that depends on z and can possibly be negative. We will later
use a uniform convergence bound in Lemma D.3 to bound both k⇣tk and hence |g(⇣t)| with high
probability for all w that is bounded by a fixed constant. Conditioned on this high probability event
(given in Lemma D.3), the rest of the analysis is deterministic. Recall that " > 0 is the parameter
denoting the desired error. We will maintain the invariants that when gradient descent is still in
progress (or we haven’t encountered a time step with our desired guarantees), |g(⇣t)|  ", and
kwt � vk is bounded by a constant.

Recall that

g(⇣t) = �⌘hrL(wt), ⇣ti+ hwt � v, ⇣ti+
⌘k⇣tk2

2

By applying the upper bound for krL(wt)k as in the population argument (see Equation 20 in the
proof of Theorem 1.1), we get for some constant C 0 > 0

|g(⇣t)|  ⌘krL(wt)kk⇣tk+ kwt � vkk⇣tk+
⌘k⇣tk2

2

 ⌘
p
C 0d(kwt � vk2 +OPT )k⇣tk+ kwt � vkk⇣tk+

⌘k⇣tk2

2

In addition, since at this point gradient descent is still running, C 0pOPT  kwt � vk, hence with
suitable constant C 00 > 0 we can further write

|g(⇣t)|  ⌘
p
CGdC

00kwt � vkk⇣tk+
⌘k⇣tk2

2

Again, while gradient descent is still in progress, our induction argument establishes that kwt �
vk2 � kwt+1 � vk2 is lower-bounded by a non-negative amount, hence kwt+1 � vk  kwt � vk 
...  kw0 � vk = O(1) which also establishes that every kwtk is upper-bound by a constant.
Let T be the time step until which all of the above properties hold (otherwise we have already
encountered an iterate where we get the required guarantee). Therefore we can conclude that
|g(⇣t)|  O(k⇣tk) + ⌘k⇣tk2

2 , 8t  T .

We now proceed to bound the magnitude of k⇣tk. Using Lemma D.3, for each coordinate of ⇣t we
sample poly(d, 1/", BY ) data points so that with probability 1� /(d+ 1) its magnitude is at most
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"/(d+ 1). We then take the union bound over all d+ 1 coordinates and set  = 1/d3 to conclude
that with high probability,

8t  T, kg(⇣t)k  ", and k⇣tk2  "/c. (38)

Now, since we have showed that kg(⇣t)k remains bounded by ", identical to our argument in the proof
for Theorem 1.1 except modifying the induction hypothesis to be kwt � vk > Cp��1/2

p
OPT + 2",

we conclude that after T  O(d(OPT + 2")�1) iterations we get kwt � vk2  O(OPT ) + 2", and
similarly by Lemma 4.4 this implies both F (wT ) and L(wT ) are at most O(OPT ) + 2".

Proceeding to the second part of the proof, we will show that while gradient descent is still running,
F (wt) continues to decrease. We rewrite the expression given in Lemma A.2 as

F (wt � ⌘rbL(wt))  F (wt)� ⌘hrF (wt),rL(wt)i+ `⌘2krL(wt)k2 � ⌘hrF (wt), ⇣ti+ `⌘2k⇣tk2

At this point, note that we can still argue that krF (wt)k > CG

p
OPT + 2" directly by Lemma

4.3, for some constant C 000 > 0, we can hence upper-bound the second and third terms by directly
applying Equation 21, yielding

⌘
⇣
� C 000(OPT + 2") + `⌘CLdkwt � vk2

⌘
� ⌘hrF (wt), ⇣ti+ `⌘2k⇣tk2

 ⌘
⇣
� C 000(OPT + 2") + `⌘CLdkwt � vk2 + CF dkwt � vkk⇣tk+ `⌘k⇣tk2

⌘
.

Therefore by applying the same analysis as in the population case, and using (38) we have that the
above upper bound is

 ⌘
⇣
� C 000(OPT + 2") + `⌘CLdkwt � vk2 + "/c

⌘
 0

Hence F (wt) continues to decrease, hence F (wt)  F (0)� �.

Finally, by Lemma B.3 with constant probability gradient descent starts at a point such that F (w0) 
F (0)� �, hence the proof follows.
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