
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

ObjBlur: A Curriculum Learning Approach With Progressive
Object-Level Blurring for Improved Layout-to-Image Generation

Anonymous Authors

ABSTRACT
We present ObjBlur, a novel curriculum learning approach to im-
prove layout-to-image generation models, where the task is to
produce realistic images from layouts composed of boxes and la-
bels. Our method is based on progressive object-level blurring,
which effectively stabilizes training and enhances the quality of
generated images. This curriculum learning strategy systematically
applies varying degrees of blurring to individual objects or the
background during training, starting from strong blurring to pro-
gressively cleaner images. Our findings reveal that this approach
yields significant performance improvements, stabilized training,
smoother convergence, and reduced variance between multiple
runs. Moreover, our technique demonstrates its versatility by being
compatible with generative adversarial networks and diffusionmod-
els, underlining its applicability across various generative modeling
paradigms. With ObjBlur, we reach new state-of-the-art results on
the complex COCO and Visual Genome datasets.

CCS CONCEPTS
• Computing methodologies→ Neural networks; Computa-
tional photography; Image processing.

KEYWORDS
Image Generation, Curriculum Learning, Layout-to-Image

1 INTRODUCTION
Layout-to-image generation is a fundamental task in computer
vision and graphics, bridging the gap between structured scene
descriptions, such as layouts composed of bounding boxes and
labels, and the generation of realistic images [10, 29, 39, 43]. It is
a complex task, further compounded by intrinsic variations in the
difficulty of learning to generate different object classes and their
inherent diversity in shapes, sizes, and context [8].

Layout-to-image models are mainly based on GANs [9] and thus
inherit their training stability issues, such as mode collapse and
overfitting [22]. While data augmentation (DA) techniques have
been proven to be effective in visual recognition models [25, 35],
training a GAN under similar augmentations leads to a leaking
effect in which the generator learns to produce augmented (instead
of clean) images. For example, if rotation is used as a DA, the
generator will produce rotated images after training, an undesirable
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Figure 1: Comparison of FID during training. ObjBlur stabi-
lizes training, leading to smoother convergence with better
final performance and lower standard deviation across three
runs, especially at the end of training.

outcome. To mitigate this problem, consistency regularization [37,
41, 42], invertibility [31], and differential augmentation techniques
[15, 40] have been proposed.

Meanwhile, the machine learning community has been inter-
ested in curriculum learning (CL) strategies [1, 28, 32] to structure
training examples in a meaningful order that gradually exposes the
model to more complex concepts. It provides an intuitive approach
to guiding models through progressively challenging training sce-
narios. Interestingly, their exploration remains relatively limited
in the context of generative models [28, 32] and nonexistent in the
domain of layout-to-image generation. For single-object genera-
tive image models, previous work proposed the use of multiple
discriminators [7, 13, 24], progressively growing the model [14]
or ranking images by difficulty [27]. However, all previous work
requires either changing the model, loss function, using a difficulty
estimator, or a combination of them. To our knowledge, there is no
previous work on using curriculum learning for layout-to-image
generation.

This paper introduces ObjBlur, a new approach to layout-to-
image generation that utilizes curriculum learning by applying
progressive object-level blurring to improve the image quality of
layout-to-image models. Blurring is a natural image degradation
operation because low frequencies are retained over higher fre-
quencies. In fact, even human perception is more sensitive to low
frequencies of an image [2, 23]. Strong blurring removes high-
frequency details, resulting in a simpler signal without affecting
the structural content of the image (as opposed to degradation
alternatives such as additive noise). Decreasing the blur strength
produces a more complex signal with high-frequency details, thus
exposing the model to a more difficult task. Therefore, blurring

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Our ObjBlur method incorporates a novel curriculum learning approach based on progressive object-level blurring to
individual objects or the background throughout the training procedure on a per-sample basis. At each training step 𝑡𝑖 , we use
the blurring schedule function s(𝑡𝑖 ) to compute the current blurring strength 𝑠𝑖 , starting from strong blurring to progressively
cleaner images. Finally, the probability 𝑝obj defines whether blurring should be applied to objects or the background for the
current image. More details in section 3.

offers an intuitive and powerful approach to incrementally adjust
task difficulty, ensuring a smooth training progression.

Our method can be realized by only modifying the data loader to
apply a progressive blur to the images. As a result, it can be easily
integrated into existing layout-to-image approaches and does not
depend on difficulty estimators or changes in the model architec-
ture and optimization protocol. By systematically applying varying
degrees of blurring during training, starting with strong blurring
and progressing to cleaner images, we stabilize training and ensure
that the model learns to generate high-quality images.

A crucial aspect of image quality is the appearance of foreground
objects in relation to the background. Thus, we propose an object-
level approach that randomly applies the blur to either the objects or
the background. To demonstrate the benefits of ObjBlur, we perform
extensive analysis on several layout-to-image generation models,
including adversarial- [10, 29], and diffusion-based [43] approaches.
We also comprehensively analyze several design choices and their
impact on performance and stability. Using LayoutDiffusion [43] as
a backbone, our proposed ObjBlur schedule significantly improves
the quality of generated images, offering a robust and versatile
approach that leads to new state-of-the-art results. In terms of FID
[11], SceneFID [30] and CAS [20], we reach relative improvements
of 2.38%, 34.43%, 4.70% on COCO [3], and 6.13%, 18.45%, 10.15% on
Visual Genome [17] while only requiring changes to the dataloader.

2 RELATEDWORK
2.1 Layout-to-Image
The layout-to-image (L2I) task was first studied in [39] using a
VAE [16] by composing object representations into a scene before
producing an image. Adversarial approaches [29] produced higher-
resolution images and provided better control of individual objects

by using a reconfigurable layout with separate latent style codes.
Further developments studied better instance representations [30]
and context awareness [10]. Recent developments have focused on
using diffusion models by adjusting the self-attention mask to focus
on the instances and adding prompt tokens [5] or by constructing
a structural image patch with region information to facilitate multi-
modal fusion of image and layout [43].

2.2 Curriculum Learning
The idea of monotonically increasing the difficulty of tasks is related
to curriculum learning (CL) [1] which introduces more complex con-
cepts gradually, instead of randomly presenting training data. CL is
inspired by the teaching paradigm of organizing learning material
in an orderly fashion. Although it has been successfully applied in
a wide range of tasks [28, 32], its application to generative models
is minimal. In text generation, the length of character sequences
can gradually be increased as training progresses [19]. To improve
image generation, multiple discriminators are used in [7, 13, 24],
while the image resolution increases in [14]. While [14] is similar in
spirit, it requires an entirely different implementation to grow both
the generator and discriminator layers during training, a challeng-
ing and not generalizable procedure. In [4], a CL strategy based on
semantic difficulty determined by embedding distance is used for
text-to-image synthesis. Several CL strategies are proposed in [27]
based on ranking the training images according to their difficulty
scores, and a smoothing schedule to intermediate CNN features is
presented in [26]. To the best of our knowledge, we propose the
first CL strategy for L2I models using a progressive object-level
blurring schedule without requiring architectural changes to the
model. Instead, our method only requires dataloader changes and
can thus be seamlessly integrated into any method.
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2.3 Blurring & other DA Techniques
Data augmentation (DA) techniques have played an essential role
in the success of deep learning over the last decade by artificially
expanding the data set and enabling the training of large models
[25, 35]. Examples of model-free image augmentation can be catego-
rized into geometrical transformations, color space augmentations,
kernel filters, image and feature mixing, and random erasing. Unfor-
tunately, training generative models under similar augmentations
typically leads to a leaking effect where the generator learns to
produce the augmented data distribution. Our method is inspired
by CutBlur [36], a data augmentation technique developed to im-
prove the performance of super-resolution models. CutBlur pastes a
low-resolution patch into the corresponding high-resolution image
region and vice versa. On the contrary, our method is tailored to
generate images from layouts and is a creative application of CL. It
uses progressive object-level blurring as a CL strategy and solves
the leaking issue by progressing from strong blur to clean images
during training, thus guiding our model to produce clean images at
inference time.

2.4 Diffusion GANs
Diffusion models achieve excellent sample quality but traditionally
suffer from expensive sampling. GANs [9] can generate high-quality
images in one step but are typically prone to training instability,
such as overfitting and mode collapse [22]. Recently, approaches
combining GANs with diffusion models have become popular to
address this issue. In [34], the diffusion model is parameterized
by a multimodal conditional GAN to smoothen the data distribu-
tion and increase the sampling step size. In [33], instance noise is
injected using a diffusion timestep-dependent discriminator to sta-
bilize training, augment the dataset, and ease the vanishing gradient
problem. In contrast, we propose a CL strategy using an object-
level blurring schedule during training to improve layout-to-image
models.

2.5 Blurring Diffusion Models
An interesting connection, especially when combining our idea
with diffusion models, can be made with recent heat dissipation
[21] and blurring diffusion [6, 12, 18] models. In [21], images are
generated by stochastically reversing the heat equation, correspond-
ing to a blur operator. Meanwhile, [12] defines blurring through
a diffusion process with non-isotropic noise, combining heat dis-
sipation and additive noise. In [18], each frequency component
of an image is diffused at different speeds, resulting in a reverse
process that gradually deblurs and removes noise. The pairing of
blur with noise as the diffusion mechanism is also proposed in [6].
In contrast to previous research, we maintain the diffusion and
sampling processes unchanged. Instead, we adapt the data loader
to implement a curriculum learning strategy, facilitating a seamless
transition from an easier to a more challenging task.

3 METHOD
This section describes our curriculum learning strategy based on
progressive object-level blurring using notation similar to that in
CutBlur [36]. Our ObjBlur method is straightforward: Given a clean,
high-resolution image xHR ∈ R𝑊 ×𝐻×𝐶 and layout ℓ = {(𝑏𝑖 , 𝑐𝑖 )𝑚𝑖=1}

Algorithm 1 ObjBlur
Input: D: training dataset
Input: 𝑀𝜃 : initialized model
Input: 𝑝obj: object blur probability
Input: s(𝑡): blur schedule function
1: for all training steps 𝑡 = 0 to 𝑇 do
2: xHR, ℓ ∼ D ⊲ Sample image and layout
3: 𝑠𝑡 = s(𝑡) ⊲ Get blur strength
4: xLR = blur(xHR, 𝑠𝑡 ) ⊲ Get LR image
5: m = binarize(ℓ) ⊲ Get binary mask
6: if 𝑝obj ≤ U(0, 1) then
7: x̂ = m ⊙ xLR +m ⊙ xHR ⊲ Blur objects
8: else
9: x̂ = m ⊙ xHR +m ⊙ xLR ⊲ Blur background
10: end if
11: 𝑀𝜃 ← step(𝑀𝜃 ; x̂, ℓ) ⊲ Train step using x̂ and ℓ

12: end for
Output: Trained model𝑀𝜃

of𝑚 objects with corresponding bounding boxes 𝑏𝑖 and class labels
𝑐𝑖 , we first obtain the binary mask m ∈ {0, 1}𝑊 ×𝐻 indicating the
bounding boxes of all objects as provided in the layout ℓ . Next, we
define a blur schedule function s(𝑡) : [0,𝑇 ] → [0, 1] to compute
the current blur strength 𝑠𝑡 ∈ [0, 1] at training step 𝑡 ∈ [0,𝑇 ]. In
its simplest form, it can be a linear mapping from training progress
to blur strength s(𝑡) = 1 − 𝑡/𝑇 , moving from strong blur (𝑠0 = 1) to
clean images (𝑠𝑇 = 0). Given a start resolution of𝑊0, 𝐻0 ≤𝑊𝑡 , 𝐻𝑡 ≤
𝑊,𝐻 , we use 𝑠𝑡 to compute the intermediate image resolution at
the current step 𝑡 :

𝑊𝑡 = (1 − 𝑠𝑡 ) · (𝑊 −𝑊0) +𝑊0 (1)
𝐻𝑡 = (1 − 𝑠𝑡 ) · (𝐻 − 𝐻0) + 𝐻0 (2)

Using a bilinear image resizing operation𝜓 (x,𝑤, ℎ), we can then
generate the low-resolution (LR) image xLR,𝑡 ∈ R𝑊 ×𝐻×𝐶 for the
current timestep 𝑡 by first downsampling xHR to𝑊𝑡 , 𝐻𝑡 and sub-
sequent upsampling to match the image resolution of xHR, thus
removing high-frequency details while retaining structural content:

xLR,𝑡 = blur(xHR, 𝑠𝑡 )
= 𝜓up (𝜓down (xHR,𝑊𝑡 , 𝐻𝑡 ),𝑊 ,𝐻 ) (3)

We have two options to perform object-level blurring: blur the
foreground objects or the background. To produce the former, we
can cut-and-paste the object regions of xLR into xHR using the
binary mask m to produce x̂LR→HR. Similarly, we can generate an
alternative image with a blurred background by cut-and-pasting
the object regions of xHR into xLR to get x̂HR→LR.

blur objects: x̂LR→HR = m ⊙ xLR +m ⊙ xHR
blur background: x̂HR→LR = m ⊙ xHR +m ⊙ xLR

(4)

where m denotes the inverted mask, and ⊙ is the element-wise
Hadamard product. To control how often we want to use an image
with blurred objects as opposed to an image with blurred back-
ground, we define the probability 𝑝obj of blurring the objects as
opposed to the background, and randomly choose whether to return
x̂HR→LR or x̂LR→HR for the current sample.
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Table 1: Main results. We report the mean and standard deviation over three runs and mark the best mean in bold. Using our
proposed ObjBlur schedule, we achieve better performance across global image FID and object-level SceneFID while often
reducing the variance at the same time. Note: [43] uses a slightly different evaluation protocol; thus, the scores are not directly
comparable to [10, 29].

COCO Visual Genome

Model FID ↓ SceneFID ↓ DS ↑ FID ↓ SceneFID ↓ DS ↑
LostGAN [29] 27.34 ± 0.88 13.73 ± 0.66 0.47 ± 0.08 31.53 ± 1.50 11.76 ± 0.46 0.46 ± 0.08
LostGAN [29] + ObjBlur 21.92 ± 0.88 11.41 ± 0.31 0.48 ± 0.09 28.72 ± 1.39 10.76 ± 0.45 0.47 ± 0.08

CAL2IM [10] 16.72 ± 0.85 8.22 ± 0.29 0.44 ± 0.09 20.41 ± 1.45 6.98 ± 1.34 0.39 ± 0.09
CAL2IM [10] + ObjBlur 15.40 ± 0.29 7.98 ± 0.14 0.44 ± 0.09 19.94 ± 0.94 6.85 ± 0.26 0.39 ± 0.09

LayoutDiffusion [43] 17.59 ± 0.09 7.26 ± 0.22 0.46 ± 0.09 15.50 ± 0.21 6.61 ± 0.12 0.45 ± 0.09
LayoutDiffusion [43] + ObjBlur 17.19 ± 0.15 4.76 ± 0.35 0.46 ± 0.09 14.55 ± 0.29 5.39 ± 0.19 0.45 ± 0.09

In other words, for each image sample, we either blur the objects
as defined by the layout ℓ or the background before continuing
with model training. The blur strength is progressively reduced,
using the blur schedule function s(𝑡) and the current training step
𝑡 , while the start resolution used to compute xLR defines the initial
blur strength. See Figure 2 for a visualization and Algorithm 1
for an algorithmic overview of our method. We analyze different
blur schedules s(𝑡), start resolutions, object probability 𝑝obj and
schedule durations in section 5.

In contrast to CutBlur [36], which performs fixed blurring of a
random patch, our method consists of a semantic-driven curriculum.
Through progressive object-level blurring, we do not induce spatial
confusion, unrealistic patterns, or loss of semantic content in the
training data. Our proposed ObjBlur focuses on object-level blurring
and implicitly guides the model into respecting the input layout
by learning the boundaries between blurred and non-blurred areas.
Because the blurring schedule converges towards clean images, the
data augmentation does not leak into the generations of the final
model.

4 EXPERIMENT SETUP
4.1 Datasets
Weuse COCO-Stuff [3] and Visual Genome [17] and follow standard
data filter procedures as in the corresponding works [10, 29, 43].
In COCO-Stuff, the annotations contain 80 thing classes (person,
car, etc.) and 91 stuff classes (sky, road, etc.). Boxes that are smaller
than 2% of the image area are eliminated, and we use images with
3 to 8 objects. Finally, images that belong to crowd are filtered,
resulting in 74,777 train and 3,097 val images. In Visual Genome,
we select object and relationship categories occurring at least 2000
and 500 times in the train set, respectively, choose images with 3 to
30 bounding boxes, and ignore all small objects, resulting in 62,565
train, 5,506 val, and 5,088 test images.

4.2 Evaluation Metrics
We choose multiple metrics to evaluate our model and compare it
with baselines. To evaluate the quality and diversity of the images,
we use FID [11]. To assess the visual quality of individual objects,
we choose the SceneFID [30], which corresponds to the FID applied

on cropped objects as defined by the bounding boxes, and the
classification accuracy score (CAS) [20], which measures how well
an object classifier trained on generated image crops can perform
on real image crops. To evaluate the diversity between images
generated from the same layout, we adopt the procedure from
LayoutDiffusion [43] and use LPIPS [38] as the diversity score (DS)
between two images generated from the same layout (one-to-many
mapping). As it is a distance metric, higher values indicate greater
image diversity.

4.3 Models & Training Details
We choose two adversarial [10, 29] and one recent diffusion [43]
models and use the official PyTorch implementations available on
GitHub to evaluate our proposed ObjBlur schedule. For [29] and
[10], we increase the batch size to 512 and train on 8 NVIDIA
RTXA6000 GPUs to speed up training. Given this change, we also
retrain the baseline, improving it compared to the reported perfor-
mance as a side effect. We train for 200 epochs, which takes about
two days. For [43], we leave everything unchanged and train on
8 NVIDIA A100 GPUs for 300k iterations with a batch size of 64,
which takes about two days. The image resolution is set to 128×128.
We train every model three times and report mean and standard
deviation to evaluate training stability.

5 RESULTS
We first discuss our main results in Table 1 and then perform an
extensive analysis on the effect of different hyperparameters using
LostGAN [29] and the COCO [3] dataset as a simple baseline. Finally,
we critically examine the importance of performing object-level
blurring as opposed to full image blurring, random patch blurring
(as in CutBlur [36]), and random mask blurring.

5.1 Quantitative Evaluation
Ourmain results are summarized in Table 1 and Table 2. ObjBlur sig-
nificantly improves the performance of LostGAN [29] and CAL2IM
[10] across both FID and SceneFID in terms of mean and standard
deviation in three runs without any changes to the model architec-
ture or optimization. We achieve a relative improvement of 19.82%
in FID and 16.89% in SceneFID on COCO with [29]. With [10], our
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Figure 3: (a) We test different initial blurring strengths corresponding to the used start image resolution to compute xLR and find
that 4 and 8 perform best. (b) We analyze the object blur probability 𝑝obj, which defines the ratio between object vs. background
blurring, and find that 50% works best. Blurring objects too often negatively affects performance. (c) We study the effect of
schedule duration during which we apply our blurring schedule and find that 95% of training time, corresponding to 190 out of
200 epochs, performs best.

method significantly reduces the mean FID and SceneFID from
16.72 to 15.40 (a relative improvement of 7.89%) and from 8.22 to
7.98, respectively, while reducing the FID and SceneFID standard
deviations from 0.85 to 0.29 and from 0.29 to 0.14. Our method
also improves LayoutDiffusion [43], thus achieving a new state-of-
the-art in terms of FID and SceneFID on both COCO and Visual
Genome. Even though diffusion models are much more stable to
train as compared to GANs, we still observe a significant improve-
ment, decreasing the global image FID from 17.59 to 17.19 on COCO,
and from 15.50 to 14.55 on Visual Genome. In particular, we improve
the SceneFID by 34.43% on COCO, and 18.45% on Visual Genome. In
terms of generated image diversity, we reach comparable or better
DS scores, showing that ObjBlur maintains or improves sampling
diversity. Table 2 shows that ObjBlur produces much more recog-
nizable objects across all tested models and datasets, improving
[29] on COCO by 2.44pps, and [43] on Visual Genome by 3.70pps.

5.2 Effect on Training Stability
To better understand the influence of our method, we analyze the
performance during training of [29] with and without ObjBlur
(Figure 1). In terms of FID, our method leads to a much smoother
convergence with better final performance. Compared to the base-
line, performance improves steadily throughout training time, and
the standard deviation across runs is also much lower, especially
at convergence. Therefore, our approach can be seen as an effec-
tive stabilization and regularization method. We also compare our
method’s capability to produce diverse images for the same layout
using LPIPS as the diversity score and find that ObjBlur achieves
comparable scores. In other words, our proposed schedule does not
lead to a loss of sampling diversity.

5.3 Importance of Initial Blur Strength
The initial blurring strength (i.e., the resolution used to compute
LR image regions) plays an important role and must be balanced to

Table 2: Classification accuracy scores (CAS) with and with-
out ObjBlur (higher is better). We achieve consistently better
scores with ObjBlur.

Model COCO Visual Genome

real images 51.04 48.07

LostGAN [29] 28.70 25.89
LostGAN [29] + ObjBlur 31.14 26.40

CAL2IM [10] 32.20 27.94
CAL2IM [10] + ObjBlur 32.43 28.09

LayoutDiffusion [43] 43.60 36.45
LayoutDiffusion [43] + ObjBlur 45.65 40.15

successfully regularize the training process. Starting with too much
blurring could lead to overfitting on the boundaries, especially if a
schedule function with a slow ramp-up is used. Starting with too
little blurring could remove any potential benefits of using a CL
schedule because the difference to training with clean images is
too small. Furthermore, it could hinder training by changing the
data distribution too quickly during the early training phase. Our
results are summarized in Figure 3a. We find that starting with an
LR resolution of 4 and 8 works best with steady degradation when
starting higher.

5.4 Effect of Blur Objects/Background Ratio
We propose to select between the blurring of objects or the back-
ground at random defined by 𝑝obj = 0.5. To better understand the
impact of the ratio, we conduct additional experiments that range
from always blurring the background 𝑝obj = 0.0 to always blurring
the objects 𝑝obj = 1.0. Our results in Figure 3b show that many
configurations lead to better performance, but 50% works best. Ap-
plying a blur schedule focusing on the background is generally
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Figure 4: Visual comparison of generated images with and without using ObjBlur during training. Our images are subjectively
better, with more fine-grained details, better texture, more recognizable objects and higher global image coherence.
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Figure 5: We test different schedule functions s(𝑡) to compute the current blurring strength. (a) Visualization of different
schedule functions. (b) Results: Many choices yield better performance compared to the baseline, but using a sin schedule
function produces the best scores.

more stable. We hypothesize that blurring objects too often neg-
atively affects performance due to overfitting on low-resolution
object boundaries.

5.5 Effect of Schedule Duration
The blurring schedule does not necessarily have to run for the
entire duration of training. For example, it is possible to use the
CL schedule within the first 𝑛 epochs and then fine-tune on clean
images for the remaining iterations. We ablate the impact of using
it within 70% to 100% of the training time, see Figure 3c and find
that the model benefits from a short fine-tuning stage on clean
images in the last 5% of epochs. Interestingly, the standard deviation
across multiple runs increases towards longer fine-tuning phases
on clean images, indicating problematic convergence behaviour.
We hypothesize that this is due to shorter adaptation times during
the CL schedule.

5.6 Visual Comparison
A comparison of generated images using baseline models and our
method is shown in Figure 4 for adversarial approaches LostGAN
[29], CAL2IM [10], and LayoutDiffusion [43]. When using ObjBlur,
we find that the images are generally of similar quality. However,
looking closer, one can see that our method often produces better
images and more recognizable objects in comparison, especially
on the GAN-based models. We provide four more pages of visual
results in the appendix.

5.7 Effect of Different Schedule Functions
We ablate several other functions to compute the current blur
strength, see Figure 5: linear, step functions with step sizes of 4 and
8, power of two steps with an exponential increase of steps to allow
more time for adjustment and exponential functions with different
rates. Although most achieve better results than the baseline, sin

performs significantly better than others, providing an initial warm-
up and final fine-tuning along a symmetric transition throughout
the schedule. Interestingly, an exponentially schedule function em-
phasizing a long warm-up performs second best, indicating the
potential benefits of a kind of “pre-training“ on low-resolution
images. We leave further exploration to future work.

5.8 ObjBlur vs. CutBlur
To test the importance of our proposed object-level schedule, we
compare it with a CutBlur [36] version of our CL schedule. We
use the official implementation to select random patches and keep
all other parameters, such as blur strength and schedule functions,
constant. The results can be found in Table 3. Using CutBlur leads to
degraded performance and yields a generator that produces blurred
patches after training. Combining CutBlur with our schedule im-
proves the baseline, indicating that a blurring schedule is effective.
Our proposed ObjBlur, which applies blurring based on semantic
information provided by the object annotations, is the best across
both FID and SceneFID by a significant margin.

5.9 Effect of Object-Levelness
A critical question to investigate is whether the benefits of our pro-
posed blurring schedule are due to semantic differentiation between
foreground objects and background or if similar performance can
be achieved by choosing the correct amount of blurring on a dataset
level. To answer this question, we perform a random mask assign-
ment experiment. We reuse the object-based masks computed with
our proposed approach and shuffle the image-to-mask assignment
during training. This will effectively keep the amount of blur on
a dataset level constant and answer whether the semantic-driven
masks are significant. Alternatively, we test whether applying the
blur on the entire image is beneficial. Different blur techniques
are visualized in Figure 6. Our results in Table 3 indicate that a
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Results in Table 3.

semantic-driven blurring schedule is critical and that performance
suffers whenever objects are inconsistently blurred.

6 LIMITATIONS & FUTUREWORK
While our method can stabilize training and improve performance,
there are a few limitations and possibilities for future work. We
exclusively studied blurring as an augmentation function. The po-
tential applicability of other augmentations, such as additive noise,
remains unexplored. Uniform blurring across all images and object
classes ignores object and sample difficulty differences. Investi-
gating a dynamic blurring schedule for individual objects, object
classes, or specific samples could benefit future research. Although
our findings underscore the necessity of object masks, we also
demonstrate that combining CutBlur [36] with our CL schedule
surpasses baseline performance. Further studies are needed to de-
termine whether similar performance can be achieved using masks
without requiring object annotations. Combining ObjBlur with
blurring diffusion models such as in [6, 12] would be interesting.
Finally, we ask whether our approach could work on single-object
datasets such as ImageNet by blurring important (object-centric)
areas and whether it benefits low-data regime scenarios.

7 REPRODUCIBILITY & ETHICS STATEMENT
Our method can easily be reproduced as it only requires changes to
the data loader of existing layout-to-image models to apply a pro-
gressive object-level blur using standard down- and upsampling op-
erations. We show an example implementation in the appendix. Our
method is plug-and-play and improves existing layout-to-image
generation models. As such, it inherits risks such as being misused
to spread fake news, invading privacy, and potential copyright is-
sues due to using real-world datasets. To counter these issues, it’s
important to develop advanced deepfake detection technologies
and enforce ethical guidelines to differentiate synthetic images from
real ones, ensuring responsible use of the technology.

8 CONCLUSION
In this work, we introducedObjBlur, an innovative curriculum learn-
ing strategy based on object-level blurring that significantly im-
proved layout-to-image generation models. Our approach reaches

Table 3: Combining CutBlur [36] with our proposed CL sched-
ule performs well, but applying the CL schedule on objects
instead of random patches yields the best performance sug-
gesting that semantic-driven blur masks are important.

blur technique CL FID ↓ SceneFID ↓
none ✘ 27.34 13.73
CutBlur [36] ✘ 57.53 31.51
CutBlur [36] ✔ 23.94 12.05
FullBlur ✔ 27.26 13.81
Rand.MaskBlur ✔ 26.68 12.80
ObjBlur ✔ 21.92 11.41

state-of-the-art performance, better training stability, and reduced
variance across different runs through a systematic progression
from strong blurring to progressively cleaner images during train-
ing. ObjBlur is plug-and-play, and only requires modifications to
the data loader, which makes it easy to utilize. Its compatibility
with generative adversarial networks and diffusion models under-
scores its versatility in various generativemodelling paradigms. Our
research explores curriculum learning in the context of layout-to-
image generation for the first time, and we hope it leads to further
investigations into the potential of curriculum learning and data
augmentation within generative models.
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