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ObjBlur: A Curriculum Learning Approach With Progressive Object-Level Blurring for Improved
Layout-to-Image Generation

Supplementary Material

EXAMPLE OBJBLUR IMPLEMENTATION

Below we provide an example implementation of ObjBlur using PyTorch’s __getitem__() method within the Dataset class. Most layout-to-
image models process object annotations individually; we use this for-loop to generate XjrHr and Xgr—,1r. Alternatively, binary masks
defining the object regions can be pre-computed and used as described in main paper.
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ort torchvision.transforms as T

__getitem__(self, index, t, T, start_res, p_obj):

W

Load an image from the dataset at given index, apply ObjBlur, and then return it.

Parameters:

index (int): The index of the image in the dataset.

t (float): The current training step.

T (float): The total number of training steps.

start_res (int): The start resolution to compute the low-resolution image.

p_obj (float): Probability threshold [0, 1] to apply blur to objects or background.

Returns:
tuple: A tuple containing the ObjBlur'ed image and the object data associated with the image.

wun

# Load clean xsquarex* image from the dataset
image_path = self.id_to_path(index)

hr_image = load_image(image_path)

hr_size = hr_image.shape[-1] # height == width

# Compute LR image resolution
blur_strength = (1 - t/T) # Linear CL schedule (1->0 for t:0->T)
lr_size = int((1 - blur_strength) x (hr_size - start_res) + start_res)

# Get blurred image by resizing to LR and then back to HR
down = T.Resize(lr_size)

up = T.Resize(hr_size)

lr_image = up(down(hr_image))

# Decide randomly whether to blur objects or background
blur_flag = random.randint (@, 100)

# Get object data for the current image

obj_data = self.id_to_objects(index)

for obj in enumerate(obj_data):
# Get bounding box coordinates for current object
X, y, w, h = obj['bbox"']

# Apply object-level blurring based on blur_flag

if blur_flag <= p_obj * 100:
# Blurred objects: cut-and-paste LR objects into HR image
hr_imagel:, y:y+h, x:x+w] = lr_imagel:, y:y+th, x:x+w]

ellislel!
# Blurred background: cut-and-paste HR objects into LR image
lr_imagel[:, y:y+h, x:x+w] = hr_image[:, y:y+h, x:x+w]

# Return the processed image and object data
if blur_flag <= p_obj x 100:

return hr_image, obj_data
else:

return lr_image, obj_data
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Figure 1: Visualization of our data loading process to create ObjBlur’ed images as described in Listing 1. We start by sampling a
clean image from the dataset and producing a blurry version via downsampling and subsequent upsampling. Next, we produce
two new training samples by cut-and-pasting HR object regions into the LR image and vice versa. Finally, depending on p,};, we
randomly choose whether to return the sample with blurred objects or blurred background and continue with model training.

2 NEGATIVE RESULTS

We explored other novel and interesting techniques which ended up degrading or otherwise not improvingy performance or stability in our
setting. We report them here for completeness, save time for future work and give a more complete overview of our attempts at improving
layout-to-image models with curriculum learning approaches. However, these experiments and results are less thorough and specific to our
particular setting. Thus, different perspectives, experimental settings, or implementations could still be fruitful research directions.

e Class-Wise Curriculum Learning: Not all object classes are equally difficult to learn. For example, there are many classes with a
strong texture bias, such as “sky” and “grass” which are arguably much easier to learn than, for example, “person”. We sorted the
classes using CAS (a proxy for generative difficulty) and experimented with an easy-to-difficult mechanism in the data loader. In other
words, easier classes are learned first, and more complex classes are gradually added to the model. However, we only found slight
improvements in SceneFID but a decrease in global image FID (even if combined with our blurring schedule).

o Number of Objects Curriculum Learning: With similar motivation, we also experimented with the number of objects within an
image. Intuitively, generating 1 object per image should be easier than generating 10. This is further exacerbated through possibly
complex relationships between individual objects and occlusion issues. To that end, we experimented with a CL schedule, where the
number of object annotations per image gradually increases from 1 to N such that the network can learn incrementally to generate
more objects. However, this approach did not succeed (even if combined with our blurring schedule). A potential reason is that many
difficult object regions were initially treated as background.

3 MORE VISUAL RESULTS

We provide more visual results to compare the generated images with and without ObjBlur. Results on COCO are shown in Figure 2 and
Figure 3. Results on Visual Genome are shown in Figure 4 and Figure 5. Images generated using our method are generally better. Objects are
more recognizable and most often show similar or more details.
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Figure 2: Visual comparison of generated images with and without using ObjBlur during training on COCO, Part 1/2.
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Figure 3: Visual comparison of generated images with and without using ObjBlur during training on COCO, Part 2/2.
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Figure 4: Visual comparison of generated images with and without using ObjBlur during training on VG, Part 1/2.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446



465
466
467

469
470
471
472
473
474
475
476

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522

ACM MM, 2024, Melbourne, Australia Anonymous Authors

Visual Genome

layout real image LostGAN +ObjBlur CAL2IM +ObjBlur LayoutDiff. +ObjBlur

Figure 5: Visual comparison of generated images with and without using ObjBlur during training on VG, Part 2/2.
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