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Abstract

Given a symmetric matrix M and a vector λ, we present new bounds on
the Frobenius-distance utility of the Gaussian mechanism for approximat-
ing M by a matrix whose spectrum is λ, under (ε, δ)-differential privacy.
Our bounds depend on both λ and the gaps in the eigenvalues of M , and
hold whenever the top k + 1 eigenvalues of M have sufficiently large gaps.
When applied to the problems of private rank-k covariance matrix approx-
imation and subspace recovery, our bounds yield improvements over pre-
vious bounds. Our bounds are obtained by viewing the addition of Gaus-
sian noise as a continuous-time matrix Brownian motion. This viewpoint
allows us to track the evolution of eigenvalues and eigenvectors of the ma-
trix, which are governed by stochastic differential equations discovered by
Dyson. These equations allow us to bound the utility as the square-root of
a sum-of-squares of perturbations to the eigenvectors, as opposed to a sum
of perturbation bounds obtained via Davis-Kahan-type theorems.

1 Introduction

Given a dataset A ∈ Rm×d, which consists of m individuals with d-dimensional features,
methods for preprocessing or prediction from A often use the covariance matrix M := A⊤A
of A. In many such applications one computes a rank-k approximation to M , or finds a
matrix close to M with a specified set of eigenvalues λ = (λ1, . . . , λd) [37, 28, 36]. Examples
include the rank-k covariance matrix approximation problem where one seeks to compute a
rank-k matrix which minimizes a given distance to M , and the subspace recovery problem
where the goal is to compute a rank k-projection matrix H = VkV ⊤

k , where Vk is the
d × k matrix whose columns are the top-k eigenvectors of M . These matrix approximation
problems are ubiquitous in ML and have a rich algorithmic history; see [29, 45, 10, 8].
In some cases, the rows of A correspond to sensitive features of individuals and the release
of solutions to aforementioned matrix approximation problems may reveal their private
information, e.g., as in the case of the Netflix prize problem [5]. Differential privacy (DP)
has become a popular notion to quantify the extent to which an algorithm preserves privacy
of individuals [15]. Algorithms for solving low-rank matrix approximation problems have
been widely studied under DP constraints [30, 7, 19, 17]. Notions of DP studied in the
literature include (ε, δ)-DP [17, 25, 26, 19] which is the notion we study in this paper,
as well as pure (ε, 0)-DP [17, 30, 2, 32]. To define a notion of DP in problems involving
covariance matrices, following [7, 17], two matrices M = A⊤A and M ′ = A′⊤A′ are said to
be neighbors if they arise from A, A′ which differ by at most one row and as, is oftentimes
done, require that each row of the datasets A, A′ has norm at most 1. For any ε, δ ≥ 0, a
randomized mechanism A is (ε, δ)-differentially private if for all neighbors M, M ′ ∈ Rd×d,
and any measurable subset S of outputs of A, we have P(A(M) ∈ S) ≤ eεP(A(M ′) ∈ S)+δ.
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The problem. We consider a class of problems where one wishes to compute an approxi-
mation to a symmetric d×d matrix under (ε, δ)-differential privacy constraints. Specifically,
given M = A⊤A for A ∈ Rm×d, together with a vector λ of target eigenvalues λ1 ≥ · · · ≥ λd,
the goal is to output a d×d matrix Ĥ with eigenvalues λ which minimizes the Frobenius-norm
distance ∥Ĥ − H∥F under (ε, δ)-differential privacy constraints. Here H is the matrix with
eigenvalues λ and the same eigenvectors as M . This class of problems includes as a special
case the subspace recovery problem if we set λ1 = · · · = λk = 1 and λk+1 = · · · = λd = 0.
It also includes the rank-k covariance approximation problems if we set λi = σi for i ≤ k,
where σ1 ≥ · · · ≥ σd are the eigenvalues of M . Since revealing σis may violate privacy
constraints, the eigenvalues of the output matrix Ĥ should not be the same as those of H.
Various distance functions have been used in the literature to evaluate the utility of (ε, δ)-
DP mechanisms for matrix approximation problems, including the Frobenius-norm distance
∥Ĥ−H∥F (e.g. [19, 2])and the Frobenius inner product utility ⟨M, H−Ĥ⟩ (e.g. [11, 19, 24]).
Note that while a bound ∥H −Ĥ∥F ≤ b implies an upper bound on the inner product utility
of ⟨M, H − Ĥ⟩ ≤ ∥M∥F · b (by the Cauchy-Schwarz inequality), an upper bound on the
inner product utility does not (in general) imply any upper bound on the Frobenius-norm
distance. Moreover, the Frobenius-norm distance can be a good utility metric to use if
the goal is to recover a low rank matrix H from a dataset of noisy observations (see e.g.
[12]). Hence, we use the Frobenius-norm distance to measure the utility of an (ε, δ)-DP
mechanism.
Related work. The problem of approximating a matrix under differential privacy con-
straints has been widely studied. In particular, prior works have provided algorithms for
problems where the goal is to approximate a covariance matrix under differential privacy
constraints, including rank-k PCA and subspace recovery [7, 30, 19, 33] as well as rank-k
covariance matrix approximation [7, 19, 2]. Another set of works have studied the problem
of approximating a rectangular data matrix A under DP [7, 1, 25, 26]. We note that upper
bounds on the utility of differentially-private mechanisms for rectangular matrix approx-
imation problems can grow with the number of datapoints m, while those for covariance
matrix approximation problems oftentimes depend only on the dimension d of the covariance
matrix and do not grow with m. Prior works which deal with covariance matrix approx-
imation problems such as rank-k covariance matrix approximation and subspace recovery
are the most relevant to our paper. The notion of DP varies among the different works
on differentially-private matrix approximation, with many of these works considering the
notion (ε, δ)-DP [25, 26, 19], while other works focus on (pure) (ε, 0)-DP [30, 2, 33].
Analysis of the Gaussian mechanism in [19]. [19] analyze a version of the Gaussian mech-
anism of [16], where one perturbs the entries of M by adding a symmetric matrix E with
i.i.d. Gaussian entries N(0,

√
log( 1

δ )/ε), to obtain an (ε, δ)-differentially private mechanism
which outputs a perturbed matrix M̂ = M + E. One can then post-process this matrix M̂
to obtain a rank-k projection matrix which projects onto the subspace spanned by the top-k
eigenvectors of M̂ (for the rank-k PCA or subspace recovery problem), or a rank-k matrix
Ĥ with the same top-k eigenvectors and eigenvalues as M̂ (for the rank-k covariance matrix
approximation problem). [19] consider different notions of utility in their results, including
the inner product utility (for PCA), and the Frobenius-norm and spectral-norm distance
distances (for low-rank approximation and subspace recovery).

In one set of results, [19] give lower utility bounds of Ω̃(k
√

d) w.h.p. for the rank-k PCA
problem with respect to the inner product utility ⟨M, H⟩, together with matching upper
bounds provided by a post-processing of the Gaussian mechanism, where Ω̃ hides polynomial
factors of 1

ε and log( 1
δ ) (their Theorems 3 and 18). As noted by the authors, their lower

bounds are tight for matrices M with the “worst-case” spectral profile σ, but they can obtain
improved upper bounds for matrices M where σk − σk+1 > Ω̃(

√
d) (Theorem 3 of [19]).

For the subspace recovery problem, [19] obtain a Frobenius-distance bound of ∥Ĥ − H∥F ≤
Õ
(√

kd/(σk−σk+1)
)

w.h.p. for a post-processing of the Gaussian mechanism whenever
σk − σk+1 > Ω̃(

√
d) (implied by their Theorem 6, which is stated for the spectral norm).

And for the rank-k covariance matrix approximation problem, [19] show a utility bound of
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∥Ĥ −M∥F −∥H −M∥F ≤ Õ(k
√

d) w.h.p. for a post-processing of the Gaussian mechanism
(Theorem 7 in [19]), and also give related bounds for the spectral norm. While their Frobe-
nius bound for the covariance matrix approximation problem is independent of the number
of datapoints m, it may not be tight. For instance, when k = d, one can easily obtain a
better bound since, by the triangle inequality, ∥Ĥ − M∥F − ∥H − M∥F ≤ ∥Ĥ − H∥F =
∥M̂ − M∥F = ∥E∥F ≤ O(d) w.h.p., since ∥E∥F is just the norm of a vector of d2 Gaus-
sians with variance Õ(1). Moreover, the bound for the the rank-k covariance approximation
problem, ∥Ĥ − H∥F ≤ Õ(k

√
d), is also a worst-case upper bound for any spectral profile σ

as the right hand side of the bound not depend on the eigenvalues σ.
Thus, a question arises of whether the Frobenius-norm utility bounds for the rank-k covari-
ance matrix approximation and subspace recovery problems are tight for all spectral profiles
σ, and whether the analysis of the Gaussian mechanism can be improved to achieve bet-
ter utility bounds. A more general question is to obtain utility bounds for the Gaussian
mechanism for the matrix approximation problems for arbitrary λ.
Our contribution. Our main result is a new upper bound on the Frobenius-distance utility
of the Gaussian mechanism for the general matrix approximation problem for a given M
and λ (Theorem 2.2). Our bound depends on the eigenvalues of M and the entries of λ.
The novel insight is to view the perturbed matrix M + E as a continuous-time symmetric
matrix diffusion, where each entry of the matrix M + E is the value reached by a (one-
dimensional) Brownian motion after some time T =

√
log( 1

δ )/ε. This matrix-valued Brownian
motion, which we denote by Φ(t), induces a stochastic process on the eigenvalues γ1(t) ≥
· · · ≥ γd(t) and corresponding eigenvectors u1(t), . . . , ud(t) of Φ(t) originally discovered by
Dyson and now referred to as Dyson Brownian motion, with initial values γi(0) = σi and
ui(0) which are the eigenvalues and eigenvectors of the initial matrix M [20].
We then use the stochastic differential equations (3) and (4), which govern the evolution of
the eigenvalues and eigenvectors of the Dyson Brownian motion, to track the perturbations
to each eigenvector. Roughly speaking, these equations say that, as the Dyson Brownian
motion evolves over time, every pair of eigenvalues γi(t) and γj(t), and corresponding eigen-
vectors ui(t) and uj(t), interacts with the other eigenvalue/eigenvector with the magnitude
of the interaction term proportional to 1

γi(t)−γj(t) at any given time t. This allows us to
bound the perturbation of the eigenvectors at every time t, provided that the initial gaps in
the top k+1 eigenvalues of the input matrix are ≥ Ω(

√
d) (Assumption 2.1). Empirically, we

observe that Assumption 2.1 is satisfied for covariance matrices of many real-world datasets
(see Appendix J), as well as on Wishart random matrices W = A⊤A, where A is an m × d
matrix of i.i.d. Gaussian entries, for sufficiently large m (see Appendix I). We then derive a
stochastic differential equation which tracks how the utility changes as the Dyson Brownian
motion evolves over time (Lemma 4.1), and integrate this differential equation over time to
obtain a bound on the (expectation of) the utility E[∥Ĥ − H∥F ] (Lemma 4.5) as a function
of the gaps γi(t) − γj(t).
Plugging in basic estimates (Lemma 4.4) for the eigenvalue gaps γi(t) − γj(t) to Lemma
4.5, we obtain a bound on the expected utility E[∥Ĥ − H∥F ] (Theorem 2.2) for the different
matrix approximation problems as a function of the eigenvalue gaps σi − σj of the input
matrix M . Roughly speaking, our bound is the square-root of a sum-of-squares of the ratios,

λi−λj

σi−max(σj ,σk+1) , of eigenvalue gaps of the input and output matrices.

When applied to the rank-k covariance matrix approximation problem (Corollary 2.3), The-
orem 2.2 implies a bound of E[∥Ĥ − H∥F ] ≤ Õ(

√
kd) whenever the eigenvalues σ of the

input matrix M satisfy σk − σk+1 ≥ Ω(σk) and the gaps in top k + 1 eigenvalues sat-
isfy σi − σi+1 ≥ Ω̃(

√
d). Thus, when M satisfies the above condition on σ, our bound

improves by a factor of
√

k on the (expectation of) the previous bound of [19], which
says that ∥Ĥ − M∥F − ∥H − M∥F ≤ Õ(k

√
d) w.h.p., since by the triangle inequality

∥Ĥ − M∥F − ∥H − M∥F ≤ ∥Ĥ − H∥F . This condition on σ is satisfied, e.g., for ma-
trices M whose eigenvalue gaps are at least as large as those of the Wishart random co-
variance matrices with sufficiently many datapoints m (see Section 2 for details). And,
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if σ is such that σi − σi+1 ≥ Ω(σk − σk+1) for i ≤ k, Theorem 2.2 implies a bound of
E[∥Ĥ −H∥F ] ≤ Õ(

√
d/(σk−σk+1)) for the subspace recovery problem (Corollary 2.4), improv-

ing by a factor of
√

k (in expectation) on the previous bound of [19], which implies that
∥Ĥ − M∥F − ∥H − M∥F ≤ Õ

(√
kd/(σk−σk+1)

)
w.h.p.

2 Results

Our main result (Theorem 2.2) gives a new and unified upper bound on the Frobenius-norm
utility of a post-processing of the Gaussian mechanism, for the general matrix approximation
problem where one is given a symmetric matrix M ∈ Rd×d and a vector λ with λ1 ≥ · · · ≥ λd,
and the goal is to compute a matrix Ĥ with eigenvalues λ which minimizes the distance
∥Ĥ − H∥F . Here H is the matrix with eigenvalues λ and the same eigenvectors as M .
Plugging in different choices of λ to Theorem 2.2, we obtain as corollaries new Frobenius-
distance utility bounds for the rank-k covariance matrix approximation problem (Corollary
2.3) and the subspace recovery problem (Corollary 2.4). Our results rely on the following
assumption about the eigenvalues of the input matrix M :
Assumption 2.1 ((M, k, λ1, ε, δ) Eigenvalue gaps). The gaps in the top k + 1 eigenvalues
eigenvalues σ1 ≥ · · · ≥ σd of the matrix M ∈ Rd×d satisfy σi − σi+1 ≥ 8

√
log( 1.25

δ )
ε

√
d +

3 log
1
2 (λ1k) for every i ∈ [k].

We observe empirically that Assumption 2.1 is satisfied on a number of real-world datasets
which were previously used as benchmarks in the differentially private matrix approximation
literature [11, 2] (see Appendix J). Assumption 2.1 is also satisfied, for instance, by random
Wishart matrices W = A⊤A, where A is an m × d matrix of i.i.d. Gaussian entries, which
are a popular model for sample covariance matrices [47]. This is because the minimum gap
σi − σi+1 of a Wishart matrix grows proportional to

√
m with high probability; thus for

large enough m, Assumption 2.1 holds (see Appendix I for details). Hence, the assumption
requires that the gaps in the top k + 1 eigenvalues of M are at least as large as the gaps in
a random Wishart matrix.
Theorem 2.2 (Main result). Let ε, δ > 0, and given a symmetric matrix M ∈ Rd×d

with eigenvalues σ1 ≥ · · · ≥ σd and corresponding orthonormal eigenvectors v1, . . . , vd.
Let G be a matrix with i.i.d. N(0, 1) entries, and consider the mechanism that outputs
M̂ = M +

√
2 log( 1.25

δ )
ε (G + G⊤). Then such a mechanism is (ε, δ)-differentially private.

Moreover, let λ1 ≥ · · · ≥ λd and k ∈ [d] be any numbers such that λi = 0 for i > k, and define
Λ := diag(λ1, . . . , λd) and V = [v1, . . . , vd], and define σ̂1 ≥ · · · ≥ σ̂d to be the eigenvalues
of M̂ with corresponding orthonormal eigenvectors v̂1, . . . , v̂d and V̂ = [v̂1, . . . , v̂d]. Then if
M satisfies Assumption 2.1 for (M, k, λ1, ε, δ), we have

E
[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

]
≤ O

 k∑
i=1

d∑
j=i+1

(λi − λj)2

(σi − max(σj , σk+1))2

 log( 1
δ )

ε2

The fact that the mechanism in this theorem is (ε, δ)-differentially private follows from stan-
dard results about the Gaussian mechanism [19]. Given any list of eigenvalues λ, and letting
Λ = diag(λ), one can post-process the matrix M̂ by computing its spectral decomposition
M̂ = V̂ Σ̂V̂ ⊤ and replacing its eigenvalues to obtain a matrix V̂ ΛV̂ ⊤ with eigenvalues λ and
eigenvectors V̂ . Since V̂ ΛV̂ ⊤ is a post-processing of the Gaussian mechanism, the mecha-
nism which outputs V̂ ΛV̂ ⊤ is differentially private as well. Theorem 2.2 bounds the excess
utility E[∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F ] (whenever the gaps in the eigenvalues σ1 ≥ · · · ≥ σd of the
input matrix satisfy Assumption 2.1) as a sum-of-squares of the ratio of the gaps λi − λj

in the given eigenvalues to the corresponding gaps σi − max(σj , σk+1) in the eigenvalues of
the input matrix (note that λi − λj = λi − max(λj , λk+1) since λj = 0 for j ≥ k + 1).
While we do not know if Theorem 2.2 is tight for all choices of λ and k, it does give a
tight bound for some problems. Namely, when applied to the covariance matrix estimation
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problem, in the special case where k = d Theorem 2.2 implies a bound of E[∥M̂ − M∥F ] ≤
Õ(

√
kd) = O(d) (see Corollary 2.3). Since M̂ − M =

√
2 log( 1.25

δ )
ε (G + G⊤), the matrix

M̂ − M has independent Gaussian entries with mean zero and variance Õ(1), and we have
from concentration results for Gaussian random matrices (see e.g. Theorem 2.3.6 of [39])
that E[∥M̂ − M∥F ] = Ω̃(d), implying that the bound in Theorem 2.2 is tight in this case.
The proof of Theorem 2.2 differs from prior works, including that of [19] which use Davis-
Kahan-type theorems [13] and trace inequalities, and instead relies on an interpretation of
the Gaussian mechanism as a diffusion process which may be of independent interest (See
Appendix K for additional comparison to previous approaches). This connection allows us
to use sophisticated tools from stochastic differential equations and random matrix theory.
We present an outline of the proof in Section 4.

Application to covariance matrix approximation: Plugging λi = σi for i ≤ k and
λi = 0 for i > k into Theorem 2.2, and plugging in concentration bounds for the perturbation
to the eigenvalues σi, we obtain utility bounds for covariance matrix approximation:
Corollary 2.3 (Rank-k covariance matrix approximation). Let ε, δ > 0, and given a
symmetric matrix M ∈ Rd×d with eigenvalues σ1 ≥ · · · ≥ σd and corresponding orthonormal
eigenvectors v1, . . . , vd. Let G be a matrix with i.i.d. N(0, 1) entries, and consider the
mechanism that outputs M̂ = M +

√
2 log( 1.25

δ )
ε (G + G⊤). Then such a mechanism is (ε, δ)-

differentially private. Moreover, for any k ∈ [d], define Σk := diag(σ1, . . . , σk, 0 . . . , 0) and
V = [v1, . . . , vd], and define σ̂1 ≥ · · · ≥ σ̂d to be the eigenvalues of M̂ with corresponding
orthonormal eigenvectors v̂1, . . . , v̂d, and define Σ̂k := diag(σ̂1, . . . , σ̂k, 0 . . . , 0) and V̂ :=
[v̂1, . . . , v̂d]. Then if M satisfies Assumption 2.1 for (M, k, σ1, ε, δ), and defining σd+1 := 0,
we have

E
[
∥V̂ Σ̂kV̂ ⊤ − V ΣkV ⊤∥F

]
≤ O

(√
kd × σk

σk − σk+1

) log
1
2 ( 1

δ )
ε

.

The proof appears in Appendix G. If σk − σk+1 = Ω(σk), then Corollary 2.3 implies that

E
[
∥V̂ Σ̂kV̂ ⊤ − V ΣkV ⊤∥F

]
≤ O

(√
kd

log
1
2 ( 1

δ )
ε

)
. Thus, for matrices M with eigenvalues sat-

isfying Assumption 2.1 and where σk − σk+1 = Ω(σk), Corollary 2.3 improves by a factor of√
k on the bound in Theorem 7 of [19] which says ∥V̂ Σ̂kV̂ ⊤ − M∥F − ∥V ΣkV ⊤ − M∥F =

Õ(k
√

d) w.h.p.. This is because an upper bound on ∥V̂ Σ̂kV̂ ⊤ −V ΣkV ⊤∥F implies an upper
bound on ∥V̂ Σ̂kV̂ ⊤ − M∥F − ∥V ΣkV ⊤ − M∥F by the triangle inequality. On the other
hand, while their result does not require a bound on the gaps in the eigenvalue of M and
bounds their utility w.h.p., our Corollary 2.4 requires a bound on the gaps of the top k + 1
eigenvalues of M and bounds the expected utility E[∥V̂ Σ̂kV̂ ⊤ − V ΣkV ⊤∥F ].

Application to subspace recovery: Plugging in λ1 = · · · = λk = 1 and λk+1 = · · · =
λd = 0, the post-processing step in Theorem 2.2 outputs a projection matrix, and we obtain
utility bounds for the subspace recovery problem.
Corollary 2.4 (Subspace recovery). Let ε, δ > 0, and given a symmetric matrix
M ∈ Rd×d with eigenvalues σ1 ≥ · · · ≥ σd and corresponding orthonormal eigenvectors
v1, . . . , vd. Let G be a matrix with i.i.d. N(0, 1) entries, and consider the mechanism that
outputs M̂ = M +

√
2 log( 1.25

δ )
ε (G + G⊤). Then such a mechanism is (ε, δ)-differentially

private. Moreover, for any k ∈ [d], define the d × k matrices Vk = [v1, . . . , vk] and
V̂k = [v̂1, . . . , v̂k], where σ̂1 ≥ · · · ≥ σ̂d denote the eigenvalues of M̂ with corresponding
orthonormal eigenvectors v̂1, . . . , v̂d. Then if M satisfies Assumption 2.1 for (M, k, 2, ε, δ),

we have E
[
∥V̂kV̂ ⊤

k − VkV ⊤
k ∥F

]
≤ O

( √
kd

σk−σk+1
× log

1
2 ( 1

δ )
ε

)
. Moreover, if we also have that

σi − σi+1 ≥ Ω(σk − σk+1) for all i ≤ k, then

E
[
∥V̂kV̂ ⊤

k − VkV ⊤
k ∥F

]
≤ O

( √
d

σk − σk+1
×

log
1
2 ( 1

δ )
ε

)
.
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The proof appears in Appendix H. For matrices M satisfying Assumption 2.1, the first
inequality of Corollary 2.4 recovers (in expectation) the Frobenius-norm utility bound im-

plied by Theorem 6 of [19], which states that ∥V̂kV̂ ⊤
k − VkV ⊤

k ∥F ≤ O

( √
kd

σk−σk+1
× log

1
2 ( 1

δ )
ε

)
w.h.p. Moreover, for many input matrices M with spectral profiles σ1 ≥ · · · ≥ σd satisfying
Assumption 2.1, Theorem 2.2 implies stronger bounds than those in [19] for the subspace
recovery problem. For instance, if we also have that σi − σi+1 ≥ Ω(σk − σk+1) for all i ≤ k,
the bound given in the second inequality of Corollary 2.4 improves on the bound of [19] by
a factor of

√
k. On the other hand, while their result only requires that σk − σk+1 ≥

√
d

and bounds the Frobenius distance ∥V̂kV̂ ⊤
k − VkV ⊤

k ∥F w.h.p., our Corollary 2.4 requires a
bound on the gaps of the top k + 1 eigenvalues of M and bounds the expected Frobenius
distance E[∥V̂kV̂ ⊤

k − VkV ⊤
k ∥F ].

3 Preliminaries

Brownian motion and stochastic calculus. A Brownian motion W (t) in R is a con-
tinuous process that has stationary independent increments (see e.g., [34]). In a multi-
dimensional Brownian motion, each coordinate is an independent and identical Brownian
motion. The filtration Ft generated by W (t) is defined as σ (∪s≤tσ(W (s))), where σ(Ω) is
the σ-algebra generated by Ω. W (t) is a martingale with respect to Ft.
Definition 3.1 (Itô Integral). Let W (t) be a Brownian motion for t ≥ 0, let Ft be the
filtration generated by W (t), and let z(t) : Ft → R be a stochastic process adapted to Ft.
The Itô integral is defined as

∫ T

0 z(t)dW (t) := limω→0
∑T

ω
i=1 z(iω) × [W ((i + 1)ω) − W (iω)].

Lemma 3.1 (Itô’s Lemma, integral form with no drift; Theorem 3.7.1 of [31]). Let
f : Rn → R be any twice-differentiable function. Let W (t) ∈ Rn be a Brownian motion, and
let X(t) ∈ Rn be an Itô diffusion process with mean zero defined by the following stochastic
differential equation:

dXj(t) =
d∑

i=1
Rij(t)dWi(t), (1)

for some Itô diffusion R(t) ∈ Rn×n adapted to the filtration generated by the Brownian
motion W (t). Then for any T ≥ 0,

f(X(T )) − f(X(0)) =
∫ T

0

n∑
i=1

n∑
ℓ=1

(
∂

∂Xℓ
f(X(t))

)
Riℓ(t)dWi(t)

+ 1
2

∫ T

0

n∑
i=1

n∑
j=1

n∑
ℓ=1

(
∂2

∂Xj∂Xℓ
f(X(t))

)
Rij(t)Riℓ(t)dt.

Dyson Brownian motion. Let W (t) ∈ Rd×d be a matrix where each entry is an
independent standard Brownian motion with distribution N(0, tId) at time t, and let
B(t) = W (t) + W ⊤(t). Define the symmetric-matrix valued stochastic process Φ(t) as
follows:

Φ(t) := M + B(t) ∀t ≥ 0. (2)
The process Φ(t) is referred to as (matrix) Dyson Brownian motion. At every time t > 0
the eigenvalues γ1(t), . . . , γd(t) of Φ(t) are distinct with probability 1, and (2) induces a
stochastic process on the eigenvalues and eigenvectors. The process on the eigenvalues and
eigenvectors can be expressed via the following diffusion equations. The eigenvalue diffusion
process, which is also referred to as (eigenvalue) “Dyson Brownian motion”, is defined by
the stochastic differential equation (3). The (eigenvalue) Dyson Brownian motion is an
Itô diffusion and can be expressed can be expressed by the following stochastic differential
equation [20]:

dγi(t) = dBii(t) +
∑
j ̸=i

1
γi(t) − γj(t)dt ∀i ∈ [d], t > 0. (3)

6



The corresponding eigenvector process v1(t), . . . , vd(t), referred to as the Dyson vector flow,
is also an Itô diffusion and, conditional on the eigenvalue process (3), can be expressed by
the following stochastic differential equation (see e.g., [3]):

dui(t) =
∑
j ̸=i

dBij(t)
γi(t) − γj(t)uj(t) − 1

2
∑
j ̸=i

dt

(γi(t) − γj(t))2 ui(t) ∀i ∈ [d], t > 0. (4)

Eigenvalue bounds. The following two Lemmas will help us bound the gaps in the
eigenvalues of the Dyson Brownian motion:
Lemma 3.2 (Theorem 4.4.5 of [43], special case 1). Let W ∈ Rd×d with i.i.d. N(0, 1)
entries. Then P(∥W∥2 > 2(

√
d + s) < 2e−s2 for any s > 0.

Lemma 3.3 (Weyl’s Inequality; [6]). If A, B ∈ Rd×d are two symmetric matrices,
and denoting the i’th-largest eigenvalue of any symmetric matrix M by σi(M), we have
σi(A) + σd(B) ≤ σi(A + B) ≤ σi(A) + σ1(B).

4 Proof of Theorem 2.2

We give an overview of the proof of Theorem 2.2, along with the main technical lemmas used
to prove this result. Section 4.1 outlines the different steps in our proof. In Steps 1 and 2 we
construct the matrix-valued diffusion used in our proof. Steps 3,4, and 5 present the main
technical lemmas, and in step 6 we explain how to complete the proof. The statements of
the lemmas and the highlights of their proofs, are given in Sections 4.2, 4.3, 4.4. In section
4.5 we explain how to complete the proof. The full proofs are deferred to the appendix.

4.1 Outline of proof

1. Step 1: Expressing the Gaussian Mechanism as a Dyson Brownian Motion. To
obtain our utility bound, we view the Gaussian mechanism as a matrix-valued Brownian
motion (2) initialized at the input matrix M : Φ(t) := M + B(t) ∀t ≥ 0. If we run this
Brownian motion for time T =

√
2 log( 1.25

δ )/ε we have that Φ(T ) = (
√

2 log( 1.25
δ )/ε)(G+G⊤),

recovering the output of the Gaussian mechanism. In other words, the input to the
Gaussian mechanism is M = Φ(0), and the output is M̂ = Φ(T ).

2. Step 2: Expressing the post-processed mechanism as a matrix diffusion Ψ(t).
Our goal is to bound ∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥F , where M = V ΣV ⊤ and M̂ = V̂ Σ̂V̂ ⊤ are
spectral decompositions of M and M̂ . To bound the error ∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥F we will
define a stochastic process Ψ(t) such that Ψ(0) = V ΛV ⊤ and Ψ(t) = V̂ ΛV̂ ⊤, and then
bound the Frobenius distance ∥Ψ(T ) − Ψ(0)∥F by integrating the (stochastic) derivative
of Ψ(t) over the time interval [0, T ].
Towards this end, at every time t, let Φ(t) = U(t)Γ(t)U(t)⊤ be a spectral decomposition
of the symmetric matrix Φ(t), where Γ(t) is a diagonal matrix with diagonal entries
γ1(t) ≥ · · · ≥ γd(t) that are the eigenvalues of Φ(t), and U(t) = [u1(t), · · · , ud(t)] is a d×d
orthogonal matrix whose columns u1(t), · · · , ud(t) are an orthonormal basis of eigenvectors
of Φ(t). At every time t, define Ψ(t) to be the symmetric matrix with eigenvalues Λ and
eigenvectors given by the columns of U(t): Ψ(t) := U(t)ΛU(t)⊤ ∀t ∈ [0, T ].

3. Step 3: Computing the stochastic derivative dΨ(t). To bound the expected squared
Frobenius distance E[∥Ψ(T ) − Ψ(0)∥2

F ], we first compute the stochastic derivative dΨ(t)
of the matrix diffusion Ψ(T ) (Lemma 4.2).

4. Step 4: Bounding the eigenvalue gaps. The equation for the derivative dΨ(t) in-
cludes terms with magnitude proportional to the inverse of the eigenvalue gaps ∆ij(t) :=
γi(t) − γj(t) for each i, j ∈ [d], which evolve over time. In order to bound these terms,
we use Weyl’s inequality (Lemma 3.3) to show that w.h.p. the gaps in the top k + 1
eigenvalues ∆ij(t) satisfy ∆ij(t) ≥ Ω(σi − σj) for every time t ∈ [0, T ] (Lemma 4.4),
1The theorem is stated for sub-Gaussian entries in terms of a constant C; this constant is C = 2

in the special case where the entries are N(0, 1) Gaussian.
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provided that the initial gaps are sufficiently large (Assumption 2.1) (See Appendix L for
a discussion on why we need this assumption for our proof to work).

5. Step 5: Integrating the stochastic differential equation. Next, we express the
expected squared Frobenius distance E[∥Ψ(T )−Ψ(0)∥2

F ] as an integral ∥Ψ(T )−Ψ(0)∥2
F ] =

E
[∥∥∥∫ T

0 dΨ(t)
∥∥∥2

F

]
. We then apply Itô’s Lemma (Lemma 3.1) to obtain a formula for this

integral. Roughly speaking, the formula we obtain (Lemma 4.5) is

E
[
∥Ψ(T ) − Ψ(0)∥2

F

]
≈
∫ T

0
E

 d∑
i=1

∑
j ̸=i

(λi − λj)2

∆2
ij(t)

dt+T

∫ T

0
E

 d∑
i=1

∑
j ̸=i

λi − λj

∆2
ij(t)

2
 dt

(5)
6. Step 6: Completing the proof. Plugging the bound ∆ij(t) ≥ Ω(σi − σj) into (5), and

noting that the first term on the r.h.s. of (5) is at least as large as the second term since
σi − σj ≥

√
d, we obtain the bound in Theorem 2.2.

4.2 Step 3: Computing the stochastic derivative dΨ(t)

Ψ(t) is itself a matrix-valued diffusion. We use the eigenvalue and eigenvector dynamics
3 and 4 together with Itô’s Lemma (Lemma 3.1) to compute the Itô derivative of this
diffusion. Towards this end, we first decompose the matrix Ψ(t) as a sum of its eigenvectors:
Ψ(t) =

∑d
i=1 λiui(t)u⊤

i (t). Thus, we have

dΨ(t) =
d∑

i=1
λid(ui(t)u⊤

i (t)). (6)

We begin by computing the stochastic derivative d(ui(t)u⊤
i (t)) for each i ∈ [d], by applying

the formula for the derivative of ui(t) in (4), together with Itô’s Lemma (Lemma 3.1):
Lemma 4.1 (Stochastic derivative of ui(t)u⊤

j (t)). For all t ∈ [0, T ], d(ui(t)u⊤
i (t)) =∑

j ̸=i
dBij(t)

γi(t)−γj(t) (ui(t)u⊤
j (t) + uj(t)u⊤

i (t)) +
∑

j ̸=i
dt

(γi(t)−γj(t))2 (ui(t)u⊤
i (t) − uj(t)u⊤

j (t)).

The proof is in Appendix A. Plugging Lemma 4.1 into (6), we get an expression for dΨ(t):
Lemma 4.2 (Stochastic derivative of Ψ(t); see Appendix B for proof). For all
t ∈ [0, T ] we have that dΨ(t) = 1

2
∑d

i=1
∑

j ̸=i(λi − λj) dBij(t)
γi(t)−γj(t) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t)) +∑d

i=1
∑

j ̸=i(λi − λj) dt
(γi(t)−γj(t))2 ui(t)u⊤

i (t).

4.3 Step 4: Bounding the eigenvalue gaps

The derivative in Lemma 4.2 contains terms with magnitude proportional to the inverse of
the eigenvalue gaps ∆ij(t) := γi(t) − γj(t). To bound these terms, we would like to show
that inft∈[0,T ] ∆ij(t) ≥ Ω(σi −σj) for each i < j ≤ k +1 with high probability. Towards this
end, we first apply the spectral norm concentration bound for Gaussian random matrices
(Lemma 3.2), which provides a high-probability bound for ∥B(t)∥2 at any time t, together
with Doob’s submartingale inequality, to show that the spectral norm of the matrix-valued
Brownian motion B(t) does not exceed T

√
d at any time t ∈ [0, T ] w.h.p.:

Lemma 4.3 (Spectral norm bound). For every T > 0, we have,
P
(

supt∈[0,T ] ∥B(t)∥2 > 2T
√

d + α)
)

≤ 2
√

πe− 1
8

α2
T 2 .

The proof appears in Appendix C. Next, we use Lemma 4.3 to bound the eigenvalue gaps:
Lemma 4.4 (Eigenvalue gap bound). Whenever γi(0) − γi+1(0) ≥ 4T

√
d

for every i ∈ S and T > 0 and some subset S ⊂ [d − 1], we have
P
(⋃

i∈S

{
inft∈[0,T ] γi(t) − γi+1(t) < 1

2 (γi(0) − γi+1(0)) − α)
})

≤ 2
√

πe− 1
32 α2 .

8



To prove Lemma 4.4, we plug Lemma 4.3 into Weyl’s Inequality (Lemma 3.3), to show that
γi(t) − γi+1(t) ≥ σi − σi+1 − ∥B(t)∥2 ≥ Ω(σi − σi+1 − T

√
d) ≥ Ω(σi − σi+1),

with high probability for each i ≤ k (Lemma 4.4). The last inequality holds since Assump-
tion 2.1 ensures σi − σi+1 ≥ 1

2 T
√

d for i ≤ k. The full proof is in Appendix D.

4.4 Step 5: Integrating the stochastic differential equation

Next, we would like to integrate the derivative dΨ(t) to obtain an expression for E[∥Ψ(T ) −
Ψ(0)∥2

F ], and to then plug in our high-probability bounds (Lemma 4.4) for the gaps ∆ij(t).
To allow us to later plug in these high-probability bounds after we integrate and take the
expectation, we define a new diffusion process Zη(t) which has nearly the same stochastic
differential equation as 4.2, except that each eigenvalue gap ∆ij(t) is not permitted to
become smaller than the value ηij = 1

4 (σi − max(σj , σk+1)) for each i < j.

Towards this end, fix any η ∈ Rd×d, define the following matrix-valued Itô diffusion Zη(t)
via its Itô derivative dZη(t):

dZη(t) := 1
2
∑d

i=1
∑

j ̸=i |λi − λj | dBij(t)
max(|∆ij(t)|,ηij) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t))

+
∑d

i=1
∑

j ̸=i(λi − λj) dt
max(∆2

ij
(t),η2

ij
) ui(t)u⊤

i (t), (7)

with initial condition Zη(0) := Ψ(0). Thus, Zη(t) = Ψ(0) +
∫ t

0 dZη(s) for all t ≥ 0. We
then integrate dZη(t) over the time interval [0, T ], and apply Itô’s Lemma (Lemma 3.1) to
obtain an expression for the Frobenius norm of this integral:
Lemma 4.5 (Frobenius distance integral). For any T > 0, E

[
∥Zη (T ) − Zη(0)∥2

F

]
=

2
∫ T

0 E
[∑d

i=1
∑

j ̸=i
(λi−λj)2

max(∆2
ij

(t),η2
ij

) dt
]

+ T
∫ T

0 E
[∑d

i=1

(∑
j ̸=i

λi−λj

max(∆2
ij

(t),η2
ij

)

)2
]

dt.

To prove Lemma 4.5, we write

Zη (T ) − Zη(0) = 1
2

∫ T

0

d∑
i=1

∑
j ̸=i

|λi − λj | dBij(t)
max(|∆ij(t)|, ηij) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t))

−
∫ T

0

d∑
i=1

∑
j ̸=i

(λi − λj) dt

max(∆2
ij(t), η2

ij)ui(t)u⊤
i (t). (8)

To compute the Frobenius norm of the first term on the r.h.s. of (8), we use Itô’s Lemma
(Lemma 3.1), with X(t) :=

∫ t

0
∑d

i=1
∑

j ̸=i |λi − λj | dBij(s)
max(|∆ij(s)|,ηij) (ui(s)u⊤

j (s) + uj(s)u⊤
i (s))

and the function f(X) := ∥X∥2
F =

∑d
i=1
∑d

j=1 X2
ij . By Itô’s Lemma, we have

E[∥X(T )∥2
F − ∥X(0)∥2

F ] = E[ 12

∫ t

0

∑
ℓ,r

∑
α,β

( ∂

∂Xαβ
f(X(t)))R(ℓr)(αβ)(t)dBℓr(t)]

+ E

1
2

∫ t

0

∑
ℓ,r

∑
i,j

∑
α,β

(
∂2

∂Xij∂Xαβ
f(X(t))

)
R(ℓr)(ij)(t)R(ℓr)(αβ)(t)dt

 , (9)

where R(ℓr)(ij)(t) :=
(

|λi−λj |
max(|∆ij(t)|,ηij) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t))

)
[ℓ, r], and where we denote

by either Hℓr or H[ℓ, r] the (ℓ, r)’th entry of any matrix H.
The first term on the r.h.s. of (9) is equal to zero since dBℓr(s) is independent of both X(t)
and R(t) for all s ≥ t and the time-integral of each Brownian motion increment dBαβ(s)
has zero mean. To compute the second term on the r.h.s. of (9), we use the fact that

∂2

∂Xij∂Xαβ
f(X) is equal to 2 for i = j and 0 for i ̸= j

To compute the Frobenius norm of the second term on the r.h.s. of (8), we use the Cauchy-
Schwarz inequality. The full proof appears in Appendix E.
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4.5 Step 6: Completing the proof

To complete the proof, we plug in the high-probability bounds on the eigenvalue gaps from
Section 4.3 into Lemma 4.5. Since by Lemma 4.4 ∆ij(t) ≥ 1

2 (σi − σj) w.h.p. for each
i, j ≤ k + 1, and ηij = 1

4 (σi − max(σj , σk+1)), we must also have that Zη(t) = Ψ(t) for
all t ∈ [0, T ] w.h.p. Plugging in the high-probability bounds ∆ij(t) ≥ 1

2 (σi − σj) for each
i, j ≥ k + 1, and noting that λi − λj = 0 for all i, j > k, we get that

E
[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

]
= E

[
∥Ψ (T ) − Ψ(0)∥2

F

]
≤ 2

∫ T

0
E

 d∑
i=1

∑
j ̸=i

(λi − λj)2

(σi − σj)2

dt + T

∫ T

0
E

 d∑
i=1

∑
j ̸=i

λi − λj

(σi − σj)2

2
dt

≤ T

k∑
i=1

d∑
j=i+1

(λi − λj)2

(σi − max(σj , σk+1))2 + T 2
k∑

i=1

 d∑
j=i+1

λi − λj

(σi − max(σj , σk+1))2

2

. (10)

Since (σi − max(σj , σk+1) ≥ Ω(
√

d) for all i ≤ k and j ∈ [d], we can use the Cauchy-
Schwarz inequality to show that the second term is (up to a factor of T) smaller than the
first term:

∑k
i=1

(∑d
j=i+1

λi−λj

(σi−max(σj .σk+1))2

)2
≤
∑k

i=1
∑d

j=i+1
(λi−λj)2

(σi−max(σj ,σk+1) . Plugging

T =
√

2 log( 1.25
δ )

ε into (10), we obtain the bound in Theorem 2.2. For the full proof of
Theorem 2.2, see Appendix F

5 Conclusion and Future Work

We present a new analysis of the Gaussian mechanism for a large class of symmetric matrix
approximation problems, by viewing this mechanism as a Dyson Brownian motion initialized
at the input matrix M . This viewpoint allows us to leverage the stochastic differential
equations which govern the evolution of the eigenvalues and eigenvectors of Dyson Brownian
motion to obtain new utility bounds for the Gaussian mechanism. To obtain our utility
bounds, we show that the gaps ∆ij(t) in the eigenvalues of the Dyson Brownian motion
stay at least as large as the initial gap sizes (up to a constant factor), as long as the initial
gaps in the top k + 1 eigenvalues of the input matrix are ≥ Ω(

√
d) (Assumption 2.1).

While we observe that our assumption on the top-k+1 eigenvalue gaps holds on multiple real-
world datasets, in practice one may need to apply differentially private matrix approximation
on any matrix where the “effective rank” of the matrix is k— that is, on any matrix where
the k’th eigenvalue gap σk − σk+1 is large— including on matrices where the gaps in the
other eigenvalues may not be large and may even be zero. Unfortunately, for matrices with
initial gaps in the top-k eigenvalues smaller than O(

√
d), the gaps ∆ij(t) in the eigenvalues

of the Dyson Brownian motion become small enough that the expectation of the (inverse)
second moment term 1

∆2
ij

(t) appearing in the Itô integral (Lemma 4.5) in our analysis may
be very large or even infinite. Thus, the main question that remains open is whether one
can obtain similar bounds on the utility for differentially private matrix approximation for
any initial matrix M where the k’th gap σk − σk+1 is large, without any assumption on the
gaps between the other eigenvalues of M .
Finally, this paper analyzes a mechanism in differential privacy, which has many implications
for preserving sensitive information of individuals. Thus, we believe our work will have
positive societal impacts and do not foresee any negative impacts to society.
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A Proof of Lemma 4.1

Proof of Lemma 4.1. We compute the stochastic derivative d(ui(t)u⊤
i (t)) by applying the

formula (4) for the stochastic derivative dui(t) of the eigenvector ui(t) in Dyson Brownian
motion. For any t ∈ [0, T ], we have that the stochastic derivative d(ui(t)u⊤

i (t)) satisfies

d(ui(t)u⊤
i (t)) = (ui(t) + dui(t))(ui(t) + dui(t))⊤ − ui(t)ui(t)⊤

=

ui(t) +
∑
j ̸=i

dBij(t)
γi(t) − γj(t)uj(t) − 1

2
∑
j ̸=i

dt

(γi(t) − γj(t))2 ui(t)


×

ui(t) +
∑
j ̸=i

dBij(t)
γi(t) − γj(t)uj(t) − 1

2
∑
j ̸=i

dt

(γi(t) − γj(t))2 ui(t)

⊤

− ui(t)ui(t)⊤

= ui(t)u⊤
i (t) +

∑
j ̸=i

dBij(t)
γi(t) − γj(t) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t)) −

∑
j ̸=i

dt

(γi(t) − γj(t))2 ui(t)u⊤
i (t)

+
∑
j ̸=i

∑
ℓ ̸=i

dBij(t)dBiℓ(t)
(γi(t) − γj(t))(γi(t) − γℓ(t))

uj(t)u⊤
ℓ (t)

− φ1(t)φ2(t)⊤ − φ2(t)φ1(t)⊤ + −φ2(t)φ2(t)⊤ − ui(t)ui(t)⊤ (11)

where we define φ1(t) :=
∑

j ̸=i
dBij(t)

γi(t)−γj(t) uj(t) and φ2(t) :=
∑

j ̸=i
dt

(γi(t)−γj(t))2 ui(t). The
terms φ1(t)φ2(t)⊤ and φ2(t)φ1(t)⊤ have differentials O(dBijdt), and φ2(t)φ2(t)⊤ has dif-
ferentials O(dt2); thus, all three terms vanish in the stochastic derivative by Lemma 3.1.
Therefore, (11) implies that the stochastic derivative d(ui(t)u⊤

i (t)) satisfies

d(ui(t)u⊤
i (t)) =

∑
j ̸=i

dBij(t)
γi(t) − γj(t) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t)) −

∑
j ̸=i

dt

(γi(t) − γj(t))2 ui(t)u⊤
i (t)

+
∑
j ̸=i

∑
ℓ̸=i

dBij(t)dBiℓ(t)
(γi(t) − γj(t))(γi(t) − γℓ(t))

uj(t)u⊤
ℓ (t)

=
∑
j ̸=i

dBij(t)
γi(t) − γj(t) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t)) −

∑
j ̸=i

dt

(γi(t) − γj(t))2 ui(t)u⊤
i (t)

+
∑
j ̸=i

(
dBij(t)

γi(t) − γj(t)

)2
uj(t)u⊤

j (t)

=
∑
j ̸=i

dBij(t)
γi(t) − γj(t) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t)) −

∑
j ̸=i

dt

(γi(t) − γj(t))2 ui(t)u⊤
i (t)

+
∑
j ̸=i

dt

(γi(t) − γj(t))2 uj(t)u⊤
j (t), (12)

where the second-to-last equality holds since all terms dBij(t)dBiℓ(t) with j ̸= ℓ in the sum∑
j ̸=i

∑
ℓ ̸=i

dBij(t)dBiℓ(t)
(γi(t)−γj(t))(γi(t)−γℓ(t)) uj(t)u⊤

ℓ (t) vanish by Itô’s Lemma (Lemma 3.1) since they
have mean 0 and are O(dBij(t)dBiℓ(t)); we are therefore left only with the terms j = ℓ
in the sum which have differential terms (dBij(t))2 which have mean dt plus higher-order
terms which vanish by Itô’s Lemma. Therefore (12) implies that

d(ui(t)u⊤
i (t))

=
∑
j ̸=i

dBij(t)
γi(t) − γj(t) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t)) −

∑
j ̸=i

dt

(γi(t) − γj(t))2 (ui(t)u⊤
i (t) − uj(t)u⊤

j (t)).
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B Proof of Lemma 4.2

Proof of Lemma 4.2. To compute the stochastic derivative of Ψ(t), we would like to apply
our formula for the stochastic derivative of the projection matrix ui(t)u⊤

i (t) for each eigen-
vector ui(t) (Lemma 4.1). Towards this end, we first decompose the matrix Ψ(t) as a sum
of these projection matrices ui(t)u⊤

i (t):

Ψ(t) =
∑d

i=1 λi(ui(t)u⊤
i (t)). (13)

Taking the derivative on both sides of (13), we have

dΨ(t) =
∑d

i=1 λid(ui(t)u⊤
i (t)). (14)

Thus, plugging in Lemma 4.1 for each i ∈ [d] into (14), we have that

dΨ(t) =
d∑

i=1
λid(ui(t)u⊤

i (t))

Lemma 4.1=
d∑

i=1
λi

∑
j ̸=i

dBij(t)
γi(t) − γj(t) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t))

−
∑
j ̸=i

dt

(γi(t) − γj(t))2 (ui(t)u⊤
i (t) − uj(t)u⊤

j (t))


= 1

2

d∑
i=1

∑
j ̸=i

(λi − λj) dBij(t)
γi(t) − γj(t) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t))

− 1
2

d∑
i=1

∑
j ̸=i

(λi − λj) dt

(γi(t) − γj(t))2 (ui(t)u⊤
i (t) − uj(t)u⊤

j (t))

= 1
2

d∑
i=1

∑
j ̸=i

(λi − λj) dBij(t)
γi(t) − γj(t) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t))

−
d∑

i=1

∑
j ̸=i

(λi − λj) dt

(γi(t) − γj(t))2 ui(t)u⊤
i (t),

where the second equality holds by Lemma 4.1. To see why the third equality holds, for the
first term inside the summation, note that dB(t) is a symmetric matrix of differentials which
means that dBij(t) = dBji(t) for all i, j, and hence that dBij(t)

γi(t)−γj(t) (ui(t)u⊤
j (t)+uj(t)u⊤

i (t)) =
− dBji(t)

γj(t)−γi(t) (uj(t)u⊤
i (t)+ui(t)u⊤

j (t)) for all i ̸= j. For the second term inside the summation,
note that dt

(γi(t)−γj(t))2 (ui(t)u⊤
i (t)−uj(t)u⊤

j (t)) = − dt
(γj(t)−γi(t))2 (uj(t)u⊤

j (t)−ui(t)u⊤
i (t)) for

all i ̸= j.

C Proof of Lemma 4.3

Proof of Lemma 4.3. To prove Lemma 4.3 we will use Doob’s submartingale inequality.
Towards this end, let Fs be the filtration generated by B(s). First, we note that exp(∥B(t)∥2)
is a submartingale for all t ≥ 0; that is, E[exp(∥B(t)∥2)|Fs] ≥ exp(∥B(s)∥2) for all 0 ≤ s ≤ t.
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This is because for all s ≤ t, we have

E[exp(∥B(t)∥2)|Fs] = E

[
exp

(
sup

v∈Rd:∥v∥2=1
v⊤B(t)v

) ∣∣∣∣ Fs

]

≥ exp
(
E

[
sup

v∈Rd:∥v∥2=1
v⊤B(t)v

∣∣∣∣ Fs

])

≥ exp
(

sup
v∈Rd:∥v∥2=1

E
[
v⊤B(t)v | Fs

])

= exp
(

sup
v∈Rd:∥v∥2=1

E
[
v⊤(B(t) − B(s))v + v⊤B(s)v | Fs

])

= exp
(

sup
v∈Rd:∥v∥2=1

E
[
v⊤(B(t) − B(s))v| Fs

]
+ E

[
v⊤B(s)v | Fs

])

= exp
(

sup
v∈Rd:∥v∥2=1

E
[
v⊤B(s)v | Fs

])

= exp
(

sup
v∈Rd:∥v∥2=1

v⊤B(s)v
)

,

= exp(∥B(s)∥2),
where the first inequality holds by Jensen’s inequality since exp(·) is convex, and the third
equality holds since v⊤(B(t)−B(s))v is independent of Fs and is distributed as N(0, 2(t−s)).
Thus, by Doob’s submartingale inequality, for any β > 0 (we will choose the value of β later
to optimize our bound) we have,

P

(
sup

t∈[0,T ]
∥B(t)∥2 > 2T (

√
d + α)

)
= P

(
sup

t∈[0,T ]

β

2T
∥B(t)∥2 − β

√
d > βα

)

= P

(
sup

t∈[0,T ]
exp

(
β

2T
∥B(t)∥2 − β

√
d

)
> exp(βα)

)

≤
E[exp( β

2T ∥B(t)∥2 − β
√

d)]
exp(βα)

=
∫∞

0 P[exp( β
2T ∥B(t)∥2 − β

√
d) > x]dx

exp(βα)

=
∫∞

0 P[ 1
2 ∥B(t)∥2 −

√
d > β−1 log(x)]dx

exp(βα)

≤
∫∞

0 2e−β−2 log2(x)dx

exp(βα)

= 2
√

πβe
1
4 β2

exp(βα)

≤ 2
√

πe
1
2 β2

exp(βα)
= 2

√
πe

1
2 β2−βα,

where the first inequality holds by Doob’s submartingale inequality, and the second inequal-
ity holds by Lemma 3.2. Setting β = α, we have

P
(

supt∈[0,T ] ∥B(t)∥2 > T (
√

d + α)
)

≤ 2
√

πe− 1
2 α2

.
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D Proof of Lemma 4.4

Proof of Lemma 4.4. To prove Lemma 4.4, we plug our high-probability concentration
bound for supt∈[0,T ] ∥B(t)∥2 (Lemma 4.3) into Weyl’s Inequality (Lemma 3.3). Since, at
every time t, Φ(t) = M + B(t) and γ1(t) ≥ · · · ≥ γd(t) are the eigenvalues of Φ(t), Weyl’s
Inequality implies that

γi(t) − γi+1(t) ≥ γi(0) − γi+1(0) − ∥B(t)∥2, ∀t ∈ [0, T ], i ∈ [d]. (15)
Therefore, plugging Lemma 4.3 into (15) we have that

P

(⋃
i∈S

{
inf

t∈[0,T ]
γi(t) − γi+1(t) <

1
2(γi(0) − γi+1(0)) − α)

})
Eq. (15)

≤ P

(⋃
i∈S

{
γi(0) − γi+1(0) − sup

t∈[0,T ]
2∥B(t)∥2 <

1
2(γi(0) − γi+1(0)) − α)

})

= P

(⋃
i∈S

{
sup

t∈[0,T ]
∥B(t)∥2 >

1
4(γi(0) − γi+1(0)) + 1

2α)
})

Assumption2.1
≤ P

(⋃
i∈S

{
sup

t∈[0,T ]
∥B(t)∥2 > 2T

√
d + 1

2α)
})

= P

(
sup

t∈[0,T ]
∥B(t)∥2 > 2T

√
d + 1

2α)
)

Lemma 4.3
≤ 2

√
πe− 1

32 α2
,

The first inequality holds by (15), and the second inequality holds by Assumption 2.1 since
γi(0) = σi for each i ∈ [d] because Φ(0) = M . The last inequality holds by the high-
probability concentration bound for supt∈[0,T ] ∥B(t)∥2 (Lemma 4.3).

E Proof of Lemma 4.5

Proof of Lemma 4.5. By the definition of Zη(t) we have that

Zη (T ) − Zη(0) =
∫ T

0
dZη(t)

= 1
2

∫ T

0

d∑
i=1

∑
j ̸=i

|λi − λj | dBij(t)
max(|∆ij(t)|, ηij) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t))

−
∫ T

0

d∑
i=1

∑
j ̸=i

(λi − λj) dt

max(∆2
ij(t), η2

ij)ui(t)u⊤
i (t).

Therefore, we have that

∥Zη(T ) − Zη(0)∥2
F ≤ 1

2

∥∥∥∥∥∥
∫ T

0

d∑
i=1

∑
j ̸=i

|λi − λj | dBij(t)
max(|∆ij(t)|, ηij) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t))

∥∥∥∥∥∥
2

F

+

∥∥∥∥∥∥
∫ T

0

d∑
i=1

∑
j ̸=i

(λi − λj) dt

max(∆2
ij(t), η2

ij)ui(t)u⊤
i (t)

∥∥∥∥∥∥
2

F

. (16)

The first term on the r.h.s. of (16) (inside its Frobenius norm) is a “diffusion” term–that
is, the integral has mean 0 and Brownian motion differentials dBij(t) inside the integral.
The second term on the r.h.s. (inside its Frobenius norm) is a “drift” term– that is, the
integral has non-zero mean and deterministic differentials dt inside the integral. We bound
the diffusion and drift terms separately.
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Bounding the diffusion term: We first use Itô’s Lemma (Lemma 3.1) to bound the
diffusion term in (16). Towards this end, let f : Rd×d :→ R be the function which takes
as input a d × d matrix and outputs the square of its Frobenius norm: f(X) := ∥X∥2

F =∑d
i=1
∑d

j=1 X2
ij for every X ∈ Rd×d. Then

∂2

∂Xij∂Xαβ
f(X) =

{
2 if (i, j) = (α, β)
0 otherwise.

(17)

Define X(t) :=
∫ t

0
∑d

i=1
∑

j ̸=i |λi −λj | dBij(s)
max(|∆ij(s)|,ηij) (ui(s)u⊤

j (s)+uj(s)u⊤
i (s)) for all t ≥ 0.

Then

dXℓr(t) =
d∑

j=1
R(ℓr)(ij)(t)dB(ij)(t) ∀t ≥ 0,

where R(ℓr)(ij)(t) :=
(

|λi−λj |
max(|∆ij(t)|,ηij) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t))

)
[ℓ, r], and where we denote

by either Hℓr or H[ℓ, r] the (ℓ, r)’th entry of any matrix H.
Then we have

E


∥∥∥∥∥∥
∫ T

0

d∑
i=1

∑
j ̸=i

|λi − λj | dBij(t)
max(|∆ij(t)|, ηij) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t))

∥∥∥∥∥∥
2

F


= E[f(X(T ))]
= E[f(X(T )) − f(X(0))]

Itô’s Lemma (Lemma 3.1)= E

1
2

∫ t

0

∑
ℓ,r

∑
α,β

(
∂

∂Xαβ
f(X(t))

)
R(ℓr)(αβ)(t)dBℓr(t)


+ E

1
2

∫ t

0

∑
ℓ,r

∑
i,j

∑
α,β

(
∂2

∂Xij∂Xαβ
f(X(t))

)
R(ℓr)(ij)(t)R(ℓr)(αβ)(t)dt


= 0 + E

1
2

∫ t

0

∑
ℓ,r

∑
i,j

∑
α,β

(
∂2

∂Xij∂Xαβ
f(X(t))

)
R(ℓr)(ij)(t)R(ℓr)(αβ)(t)dt

 , (18)

where the third equality is Itô’s Lemma (Lemma 3.1), and the last equality holds since
E
[∫ T

0

(
∂

∂Xαβ
f(X(t))

)
R(ℓr)(αβ)(t)dBℓr(t)

]
= 0 for each ℓ, r, α, β ∈ [d] because dBℓr(s) is

independent of both X(t) and R(t) for all s ≥ t and the Brownian motion increments
dBαβ(s) satisfy E[

∫ τ

t
dBαβ(s)] = E[Bαβ(τ) − Bαβ(t)] = 0 for any τ ≥ t.
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Thus, plugging (17) into (18), we have

E


∥∥∥∥∥∥
∫ T

0

d∑
i=1

∑
j ̸=i

|λi − λj | dBij(t)
max(|∆ij(t)|, ηij) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t))

∥∥∥∥∥∥
2

F


Eq.(17),(18)= E

1
2

∫ t

0

∑
ℓ,r

∑
i,j

2R2
(ℓr)(ij)(t)dt


= E

∫ t

0

∑
ℓ,r

∑
i,j

((
|λi − λj |

max(|∆ij(t)|, ηij)2 (ui(t)u⊤
j (t) + uj(t)u⊤

i (t))
)

[ℓ, r]
)2

dt


= E

∫ t

0

∑
i,j

∑
ℓ,r

((
|λi − λj |

max(|∆ij(t)|, ηij)2 (ui(t)u⊤
j (t) + uj(t)u⊤

i (t))
)

[ℓ, r]
)2

dt


= E

∫ t

0

∑
i,j

∥∥∥∥ |λi − λj |
max(|∆ij(t)|, ηij) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t))

∥∥∥∥2

F

dt


= 2

∫ T

0
E

 d∑
i=1

∑
j ̸=i

(λi − λj)2

max(∆2
ij(t), η2

ij)∥ui(t)u⊤
j (t) + uj(t)u⊤

i (t)∥2
F dt


= 4

∫ T

0
E

 d∑
i=1

∑
j ̸=i

(λi − λj)2

max(∆2
ij(t), η2

ij)dt

 , (19)

where the fifth equality holds because ⟨ui(t)u⊤
j (t), uℓ(t)u⊤

h (t)⟩ = 0 for all (i, j) ̸= (ℓ, h), and
the last equality holds because ∥ui(t)u⊤

j (t) + uj(t)u⊤
i (t)∥2

F = 2 for all t with probability 1.
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Bounding the drift term: To bound the drift term in (16), we use the Cauchy-Shwarz
inequality:∥∥∥∥∥∥

∫ T

0

d∑
i=1

∑
j ̸=i

(λi − λj) dt

max(∆2
ij(t), η2

ij)ui(t)u⊤
i (t)

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
∫ T

0

d∑
i=1

∑
j ̸=i

λi − λj

max(∆2
ij(t), η2

ij)ui(t)u⊤
i (t) × 1dt

∥∥∥∥∥∥
2

F

Cauchy-Schwarz Inequality
≤

∫ T

0

∥∥∥∥∥∥
d∑

i=1

∑
j ̸=i

λi − λj

max(∆2
ij(t), η2

ij)ui(t)u⊤
i (t)

∥∥∥∥∥∥
2

F

dt ×
∫ T

0
12dt

= T

∫ T

0

∥∥∥∥∥∥
d∑

i=1

∑
j ̸=i

λi − λj

max(∆2
ij(t), η2

ij)ui(t)u⊤
i (t)

∥∥∥∥∥∥
2

F

dt

= T

∫ T

0

d∑
i=1

∥∥∥∥∥∥
∑
j ̸=i

λi − λj

max(∆2
ij(t), η2

ij)ui(t)u⊤
i (t)

∥∥∥∥∥∥
2

F

dt

= T

∫ T

0

d∑
i=1

∥∥∥∥∥∥
∑

j ̸=i

λi − λj

max(∆2
ij(t), η2

ij)

ui(t)u⊤
i (t)

∥∥∥∥∥∥
2

F

dt

= T

∫ T

0

d∑
i=1

∑
j ̸=i

λi − λj

max(∆2
ij(t), η2

ij)

2 ∥∥ui(t)u⊤
i (t)

∥∥2
F

dt

= T

∫ T

0

d∑
i=1

∑
j ̸=i

λi − λj

max(∆2
ij(t), η2

ij)

2

× 1dt, (20)

where the first inequality is by the Cauchy-Schwarz inequality for integrals (ap-
plied to each entry of the matrix-valued integral). The third equality holds since
⟨ui(t)u⊤

i (t), uj(t)u⊤
j (t)⟩ = 0 for all i ̸= j. The last equality holds since ∥ui(t)u⊤

i (t)∥2
F = 1

with probability 1. Therefore, taking the expectation on both sides of (16), and plugging
(19) and (20) into (16), we have

E
[
∥Zη (T ) − Zη(0)∥2

F

]
≤ 2

∫ T

0
E

 d∑
i=1

∑
j ̸=i

(λi − λj)2

max(∆2
ij(t), η2

ij)

dt

+ T

∫ T

0
E

 d∑
i=1

∑
j ̸=i

λi − λj

max(∆2
ij(t), η2

ij)

2
dt. (21)

F Proof of Theorem 2.2

Proof of Theorem 2.2. To complete the proof of Theorem 2.2, we plug in the high-
probability concentration bounds on the eigenvalue gaps ∆ij(t) = γi(t) − γj(t) (Lemma
4.4) into Lemma 4.5. Since by Lemma 4.4 ∆ij(t) ≥ 1

2 (σi − σj) w.h.p. for each
i, j ≤ k + 1, and ηij = 1

4 (σi − max(σj , σk+1)), by Lemma 4.2 we have that the deriva-
tive dΨ(t) satisfies dΨ(t) = dZη(t) for all t ∈ [0, T ] w.h.p. and hence that Zη(t) = Ψ(t)
for all t ∈ [0, T ] w.h.p. Plugging in the high-probability bounds on the gaps ∆ij(t)
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(Lemma 4.4) into the bound on E
[
∥Zη (T ) − Zη(0)∥2

F

]
from Lemma 4.5 therefore al-

lows us to obtain a bound for E
[
∥Ψ (T ) − Ψ(0)∥2

F

]
. To obtain a bound for the utility

E
[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

]
we set T =

√
2 log( 1.25

δ )
ε , in which case we have Ψ(T ) = V̂ ΛV̂ ⊤ and

hence that E
[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

]
= E

[
∥Ψ (T ) − Ψ(0)∥2

F

]
.

Towards this end, for all i ̸= j we define ηij as follows: Let ηij = 1
4 (σi − max(σj , σk+1)) for

0 < i < j ≤ d and i ≤ k, ηij = 0 if 0 < i < j ≤ d and i > k, and ηij = ηji otherwise.

Define the event E = ∩i,j∈[d],i̸=j{inft∈[0,T ] ∆ij(t) ≥ ηij}. And define the event Ê :=⋂
i∈[k]

{
inft∈[0,T ] γi(t) − γi+1(t) ≥ 1

4 (σi − σi+1))
}

. Then Ê ⊆ E. In particular, whenever
the event E occurs, by Lemma 4.2 we have that the derivative dΨ(t) satisfies dΨ(t) = dZη(t)
for all t ∈ [0, T ] and hence that

Ψ(t) = Ψ(0) +
∫ t

0
dΨ(s) = Zη(0) +

∫ t

0
dZη(s) = Zη(t) ∀t ∈ [0, T ],

whenever the event E occurs, since Zη(0) = Ψ(0) by definition. Thus we have that, condi-
tioning Ψ(t) and Zη(t) on the event E,

Ψ(t)|E = Zη(t)|E ∀t ∈ [0, T ]. (22)

To bound the utility E
[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

]
, we first separate E

[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

]
into a sum of terms conditioned on the event E and its complement Ec. By Lemma 4.5 we
have

E
[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

]
= E

[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

∣∣∣∣E]× P(E) + E
[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

∣∣∣∣Ec

]
× P(Ec)

≤ E
[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

∣∣∣∣E]× P(E)

+ 4
(
E
[
∥(V̂ − V )ΛV̂ ⊤∥2

F

∣∣∣∣Ec

]
+ E

[
∥V Λ(V̂ − V )⊤∥2

F

∣∣∣∣Ec

])
× P(Ec)

≤ E
[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F |E
]

× P(E) + 8E
[
∥V̂ − V ∥2

2 × ∥Λ∥2
F

∣∣∣∣Ec

]
× P(Ec)

≤ E
[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

∣∣∣∣E]× P(E) + 32∥Λ∥2
F × P(Ec)

= E
[
∥Ψ (T ) − Ψ(0)∥2

F

∣∣∣∣E]× P(E) + 32∥Λ∥2
F × P(Ec)

≤ E
[
∥Ψ (T ) − Ψ(0)∥2

F

∣∣∣∣E]× P(E) + 32λ2
1k × P(Êc), (23)

where the second inequality holds by the sub-multiplicative property of the Frobenius norm
which says that ∥XY ∥F ≤ ∥X∥2 × ∥Y ∥F for any X, Y ∈ Rd×d. The third inequality holds
since ∥V ∥2 = ∥V̂ ∥2 = 1 since V, V̂ are orthogonal matrices.
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To bound the first term in (23), we use the fact that Ψ(t)|E = Zη(t)|E (Equation (22)) and
apply Lemma 4.5 to bound E

[
∥Zη (T ) − Zη(0)∥2

F

]
. Thus we have,

E
[
∥Ψ (T ) − Ψ(0)∥2

F

∣∣∣∣E]× P(E)

Eq. (22)= E
[
∥Zη (T ) − Zη(0)∥2

F

∣∣∣∣E]× P(E)

≤ E
[
∥Zη (T ) − Zη(0)∥2

F

]
Lemma 4.5= 2

∫ T

0
E

 d∑
i=1

∑
j ̸=i

(λi − λj)2

max(∆2
ij(t), η2

ij)

dt + T

∫ T

0
E

 d∑
i=1

∑
j ̸=i

λi − λj

max(∆2
ij(t), η2

ij)

2
dt

≤ 4
∫ T

0
E

 d∑
i=1

d∑
j=i+1

(λi − λj)2

max(∆2
ij(t), η2

ij)

dt + 2T

∫ T

0
E

 d∑
i=1

 d∑
j=i+1

|λi − λj |
max(∆2

ij(t), η2
ij)

2
dt

= 4
∫ T

0
E

 k∑
i=1

d∑
j=i+1

(λi − λj)2

max(∆2
ij(t), η2

ij)

dt + 2T

∫ T

0
E

 k∑
i=1

 d∑
j=i+1

|λi − λj |
max(∆2

ij(t), η2
ij)

2
dt

≤ 64
∫ T

0
E

 k∑
i=1

d∑
j=i+1

(λi − λj)2

(σi − max(σj , σk+1))2

dt

+ 32T

∫ T

0
E

 k∑
i=1

 d∑
j=i+1

|λi − λj |
(σi − max(σj , σk+1))2

2
dt

= 64TE

 k∑
i=1

d∑
j=i+1

(λi − λj)2

(σi − max(σj , σk+1))2

+ 32T 2E

 k∑
i=1

 d∑
j=i+1

|λi − λj |
(σi − max(σj , σk+1))2

2


= 64T

k∑
i=1

d∑
j=i+1

(λi − λj)2

(σi − max(σj , σk+1))2 + 32T 2
k∑

i=1

 d∑
j=i+1

|λi − λj |
(σi − max(σj , σk+1))2

2

,

(24)

where the first equality holds since Ψ(t)|E = Zη(t)|E by (22), and the second equality
holds by Lemma 4.5. The second inequality holds since, (λi−λj)2

max(∆2
ij

(t),η2
ij

) = (λj−λi)2

max(∆2
ji

(t),η2
ji

) and
|λi−λj |

max(∆2
ij

(t),η2
ij

) = |λj−λi|
max(∆2

ji
(t),η2

ji
) for all i, j ∈ [d]. The third equality holds since λi = 0 for all

i ≥ k +1. The third inequality holds since ηij = 1
4 (σi −max(σj , σk+1)) for all 0 < i < j ≤ d.
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To bound the second term in (23), we have by Lemma 4.4 that

P(Êc) = P

 ⋂
i∈[k]

{
inf

t∈[0,T ]
γi(t) − γi+1(t) ≥ 1

4(σi − σi+1))
}c 

= P

 ⋃
i∈[k]

{
inf

t∈[0,T ]
γi(t) − γi+1(t) <

1
4(σi − σi+1))

}
Assumption2.1

≤ P

 ⋃
i∈[k]

{
inf

t∈[0,T ]
γi(t) − γi+1(t) <

1
2(σi − σi+1) − 3 log

1
2 (λ1k))

}
Lemma4.4

≤ min(e− log(λ2
1k)), 1)

= min
(

1
λ2

1k
, 1
)

, (25)

where the first inequality holds by Assumption 2.1, and the second inequality holds by
Lemma 4.4.
Therefore, plugging (24) and (25) into (23), we have

E
[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

]
Eq. (23),(24),(25)

≤ 64T

k∑
i=1

d∑
i=j+1

(λi − λj)2

(σi − max(σj , σk+1))2 + 32T 2
k∑

i=1

 d∑
i=j+1

|λi − λj |
(σi − max(σj , σk+1))2

2

+ min(32, 32λ2
1k)

≤ O

 k∑
i=1

d∑
j=i+1

(λi − λj)2

(σi − max(σj , σk+1))2 +

 d∑
j=i+1

|λi − λj |
(σi − max(σj , σk+1))2

2
 log( 1

δ )
ε2 , (26)

where the last inequality holds since T =
√

2 log( 1.25
δ )

ε .
Finally, we have by the Cauchy-Schwarz inequality and Assumption 2.1 that d∑

j=i+1

|λi − λj |
(σi − max(σj , σk+1))2

2

=

 d∑
j=i+1

1
|σi − max(σj , σk+1)| × |λi − λj |

|σi − max(σj , σk+1)|

2

Cauchy-Schwarz inequality
≤

 d∑
j=i+1

1
(σi − max(σj , σk+1))2

×

 d∑
j=i+1

(λi − λj)2

(σi − max(σj , σk+1))2


Assumption2.1

≤

 d∑
j=i+1

1
(
√

d)2

×

 d∑
j=i+1

(λi − λj)2

(σi − max(σj , σk+1))2


≤

d∑
j=i+1

(λi − λj)2

(σi − max(σj , σk+1))2 . (27)

In other words, (27) says that the first term inside the outer summation on the r.h.s. of
(26) is at least as large as the second term. Therefore, plugging in (27) into (26), we have
that

E
[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

]
≤ O

 k∑
i=1

d∑
j=i+1

(λi − λj)2

(σi − max(σj , σk+1))2

 log( 1
δ )

ε2 .
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G Proof of Corollary 2.3

Proof of Corollary 2.3. To prove Corollary 2.3, we must bound the utility E[∥V̂ Σ̂kV̂ ⊤ −
V ΣkV ⊤∥F ] of the post-processing of the Gaussian mechanism for the rank-k covariance
matrix estimation problem. Towards this end, we first plug in λi = σi for i ≤ k and λi = 0
for i > k into Theorem 2.2 to obtain a bound for E[∥V̂ ΣkV̂ ⊤ − V ΣkV ⊤∥F ] (Inequality
(30)). We then apply Weyl’s inequality (Lemma 3.3) together with a concentration bound
for ∥B(T )∥2 (Lemma 4.3) to bound the perturbation to the eigenvalues of M when the
Gaussian noise matrix B(T ) is added to M by the Gaussian mechanism. This implies a
bound on E[∥V̂ ΣkV̂ ⊤ − V̂ Σ̂kV̂ ⊤∥F ] (Inequality (32)). Combining these two bounds (30)
and (32), implies a bound on the utility E[∥V̂ Σ̂kV̂ ⊤ − V ΣkV ⊤∥F ] for the post-processing
of the Gaussian mechanism (Inequality (33)).

Bounding the quanitity E[∥V̂ ΣkV̂ ⊤ − V ΣkV ⊤∥F ]. Let λi = σi for i ≤ k and λi = 0 for
i > k , and let Λ := diag(λ1, · · · , λd). Then by Assumption 2.1 we have that σi − σi+1 ≥
8
√

log( 1.25
δ )

ε

√
d + c log

1
2 (σ1k). By Theorem 2.2, we have

E
[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

]
≤ O

 k∑
i=1

d∑
j=i+1

(λi − λj)2

(σi − max(σj , σk+1))2

 log( 1
δ )

ε2 . (28)

First, we note that λi − λj ≤ σi − σj for all i ≤ j ≤ k. Then for all i < j ≤ k, we have

λi − λj

σi − max(σj , σk+1) ≤ σi − σk

σi − max(σj , σk+1) ≤ 1.

And for all i ≤ k < j ≤ d we have

λi − λj

σi − max(σj , σk+1) = σi

σi − σk+1
= σi − σk

σi − σk+1
+ σk

σi − σk+1
≤ 1 + σk

σk − σk+1
.

Thus, the summation term in (28) simplifies to

k∑
i=1

d∑
j=i+1

(λi − λj)2

(σi − max(σj , σk+1))2 ≤ kd

(
1 + σk

σk − σk+1

)2
≤ 4kd

(
σk

σk − σk+1

)2
. (29)

Therefore, plugging (29) into (28), we have

E[∥V̂ ΣkV̂ ⊤ − V ΣkV ⊤∥F ] ≤
√
E[∥V̂ ΣkV̂ ⊤ − V ΣkV ⊤∥2

F ]
Eq.(29),(28)

≤ O

(√
kd × σk

σk − σk+1

) log
1
2 ( 1

δ )
ε

, (30)

where the first inequality holds by Jensen’s inequality.
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Bounding the perturbation to the eigenvalues. By Weyl’s inequality (Lemma 3.3),
we have that for every i ∈ [d]

E[(σ̂i − σi)2] ≤ E[(∥B(T )∥2)2]

≤ 4E[((T
√

d)2] + 4E
[(

∥B(T )∥2 − T
√

d
)2
]

≤ 4T 2d + 4
∫ ∞

0
P
((

∥B(T )∥2 − T
√

d
)2

> α)
)

dα

= 4T 2d + 4
∫ ∞

0
P
(

∥B(T )∥2 − T
√

d >
√

α)
)

dα

Lemma(4.3)
≤ 4T 2d + 8

√
π

∫ ∞

0
e− 1

8
α

T 2 dα

= 4T 2d + 64
√

πT 2e− 1
8

α
T 2

∣∣∣∣∞
α=0

= 4T 2d + 64
√

πT 2

≤ 64
√

π
log( 1

δ )
ε2 d. (31)

The first inequality holds by Weyl’s inequality (Lemma 3.3), and the fourth inequality holds
by Lemma 4.3. Therefore, (31) implies that,

E[∥V̂ ΣkV̂ ⊤ − V̂ Σ̂kV̂ ⊤∥F ] = E[∥Σk − Σ̂k∥F ]

≤
√
E[∥Σk − Σ̂k∥2

F ]
Eq.(31)

≤ O

(
√

kd
log

1
2 ( 1

δ )
ε

)
, (32)

where the first inequality holds by Jensen’s inequality, and the second inequality holds by
(31). Thus, plugging (32) into (30), we have that

E[∥V̂ Σ̂kV̂ ⊤ − V ΣkV ⊤∥F ] ≤ E[∥V̂ ΣkV̂ ⊤ − V ΣkV ⊤∥F ] + E[∥V̂ ΣkV̂ ⊤ − V̂ Σ̂kV̂ ⊤∥F ]
Eq.(30),(32)

≤ O

(√
kd × σk

σk − σk+1

) log
1
2 ( 1

δ )
ε

. (33)

Privacy: Privacy of perturbed covariance matrix M̂ : Recall that two matrices M = A⊤A
and M ′ = A′⊤A′ are said to be neighbors if they arise from A, A′ ∈ Rd×n which differ by at
most one row, and that each row of the datasets A, A′ has norm at most 1. In other words,
we have that M − M ′ = xx⊤ for some x ∈ Rd such that ∥x∥ ≤ 1. Define the sensitivity
S := maxM,M ′neighbors ∥M − M ′∥ℓ2 , where ∥X∥ℓ2 denotes the Euclidean norm of the upper
triangular entries of X (including the diagonal entries). Then we have

S = max
M,M ′neighbors

∥M − M ′∥ℓ2 ≤ ∥M − M ′∥F ≤ max
∥x∥≤1

∥xx⊤∥F = 1.

Then by standard results for the Gaussian Mechansim (e.g., by Theorem A.1 of [18]), we
have that the Gaussian mechanism which outputs the upper triangular matrix M̂upper with
the same upper triangular entries as M̂ = M + S

√
2 log( 1.25

δ )
ε (G+G⊤) = M +

√
2 log( 1.25

δ )
ε (G+

G⊤), where G has i.i.d. N(0, 1) entries, is (ε, δ)-differentially private. However, since the
perturbed matrix M̂ is symmetric, it can be obtained from its upper triangular entries
M̂upper without accessing the original matrix M . Thus, the mechanism which outputs
M̂ = M +

√
2 log( 1.25

δ )
ε (G + G⊤) must also be (ε, δ)-differentially private.

Privacy of rank-k approximation V̂ Σ̂kV̂ ⊤: The mechnaism which outputs the rank-k approx-
imation V̂ Σ̂kV̂ ⊤ is (ε, δ)-differentially private, since V̂ Σ̂kV̂ ⊤ is obtained by post-processing
the perturbed matrix M̂ without any additional access to the matrix M .
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Namely, to obtain V̂ Σ̂kV̂ ⊤, we first (i) compute the spectral decomposition M̂ =
V̂ Σ̂V̂ ⊤. Next, (ii) we take the top-k eigenvalues σ̂1, . . . , σ̂k of M̂ , and set Σ̂k =
diag(σ̂1, . . . , σ̂k, 0, . . . , 0). Finally, we output M̂k := V̂ Σ̂kV̂ ⊤. Both of these steps (i) and
(ii) are post-processing of M̂ and do not require additional access to the matrix M . In
particular, the eigenvalues σ̂1, . . . , σ̂k of M̂k are obtained from the perturbed matrix M̂ ,
and thus do not compromise privacy. Therefore, the mechanism which outputs the rank-k
approximation M̂k := V̂ Σ̂V̂ ⊤ must also be (ε, δ)-differentially private.

H Proof of Corollary 2.4

Proof of Corollary 2.4. To prove Corollary 2.4, we plug in λ1 = · · · = λk = 1 and λk+1 =
· · · = λd = 0 to Theorem 2.2. Corollary 2.4 considers two cases. In the first case (referred
to here as Case I), the eigenvalues σ of the input matrix M satisfies Assumption 2.1 In the
second case (referred to here as Case II) the eigenvalues σ of M also satisfy both Assumption
2.1 as well as the lower bound σi − σi+1 ≥ Ω(σk − σk+1) for all i ≤ k. We derive a bound
on the utility E[∥V̂kV̂ ⊤

k − VkV ⊤
k ∥F ] in each case separately.

Case I: M satisfies Assumption 2.1.
Plugging in λ1 = · · · = λk = 1 and λk+1 = · · · = λd = 0 to Theorem 2.2 we get that, since
M satisfies Assumption 2.1 for (M, k, 2, ε, δ),

E
[
∥V̂kV̂ ⊤

k − VkV ⊤
k ∥2

F

]
= E

[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

]
Theorem 2.2

≤ O

 k∑
i=1

d∑
j=i+1

(λi − λj)2

(σi − max(σj , σk+1))2

 log( 1
δ )

ε2

= O

 k∑
i=1

d∑
j=k+1

1
(σi − max(σj , σk+1))2

 log( 1
δ )

ε2

≤ O

 k∑
i=1

d∑
j=k+1

1
(σk − σk+1)2

 log( 1
δ )

ε2

= O

(
kd

(σk − σk+1)2
log( 1

δ )
ε2

)
, (34)

where the first inequality holds by Theorem 2.2, and the second equality holds since λ1 =
· · · = λk = 1 and λk+1 = · · · = λd = 0.
Thus, applying Jensen’s Inequality to Inequality (34), we have that

E[∥V̂kV̂ ⊤
k − VkV ⊤

k ∥F ] ≤ O

( √
kd

(σk − σk+1)
log

1
2 ( 1

δ )
ε

)
.

Case II: M satisfies Assumption 2.1 and σi − σi+1 ≥ Ω(σk − σk+1) for all i ≤ k.
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Plugging in λ1 = · · · = λk = 1 and λk+1 = · · · = λd = 0 to Theorem 2.2 we get that, since
M satisfies Assumption 2.1 for (M, k, 2, ε, δ),

E
[
∥V̂kV̂ ⊤

k − VkV ⊤
k ∥2

F

]
= E

[
∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥2

F

]
Theorem 2.2

≤ O

 k∑
i=1

d∑
j=i+1

(λi − λj)2

(σi − max(σj , σk+1))2

 log( 1
δ )

ε2

= O

 k∑
i=1

d∑
j=k+1

1
(σi − max(σj , σk+1))2

 log( 1
δ )

ε2

≤ O

 k∑
i=1

d∑
j=k+1

1
(i − k − 1)2(σk − σk+1)2

 log( 1
δ )

ε2

≤ O

(
k∑

i=1

d

(i − k − 1)2(σk − σk+1)2

)
log( 1

δ )
ε2

≤ O

(
d

(σk − σk+1)2
log( 1

δ )
ε2

k∑
i=1

1
i2

)

≤ O

(
d

(σk − σk+1)2
log( 1

δ )
ε2

)
, (35)

where the first inequality holds by Theorem 2.2, the second equality holds since λ1 = · · · =
λk = 1 and λk+1 = · · · = λd = 0, the second inequality holds since σi −σi+1 ≥ Ω(σk −σk+1)
for all i ≤ k, and the last inequality holds since

∑k
i=1

1
i2 ≤

∑∞
i=1

1
i2 = O(1).

Thus, applying Jensen’s Inequality to Inequality (35), we have that

E[∥V̂kV̂ ⊤
k − VkV ⊤

k ∥F ] ≤ O

( √
d

(σk − σk+1)
log

1
2 ( 1

δ )
ε

)
.

I Eigenvalue Gaps of Wishart Matrices

In this section, we provide the results of numerical simulations where we compute the
minimum eigenvalue gap, mini∈[d−1] σi−σi+1 of Wishart random matrices W = A⊤A, where
A is an m × d matrix with i.i.d. N(0, 1) Gaussian entries, for various values of d and m.
The goal of these simulations is to evaluate for what values of m, d the eigenvalue gaps in a
Wishart random matrix W satisfy Assumption 2.1(W, k, λ1, ε, δ), which requires that the size
of the top-k + 1 eigenvalues of the matrix W satisfy σi − σi+1 ≥ 8

√
log( 1.25

δ )
ε

√
d + c log

1
2 (λ1k)

for every i ∈ [k].
We observe that, when d is held constant and m is increased, the minimum eigenvalue gap
size mini∈[d−1] σi − σi+1 grows roughly proportional to

√
m (Figure 1). Moreover, if we

fix m to be m = d3 and increase d, we observe that the minimum eigenvalue gap is at
least as large as

√
d with high probability and grows roughly proportional to

√
d (Figure

2). Thus, we expect Wishart random matrices to satisfy Assumption 2.1(W, k, λ1, ε, δ)
with high probability as long as m ≥ Ω(log( 1.25

δ )ε2 × d3), for any k ≤ d and ε, δ > 0
where, e.g., λ1 ≤ O(d). In particular, we note that in the application of our main result to
subspace recovery we set λ1 = 1 (Corollary 2.4), and in the application of our main result
to rank-k covariance matrix approximation we set λ1 = σ1 (Corollary 2.3) and thus have
that λ1 ≤ O(

√
d) with high probability by the concentration bounds in Lemma 3.2. All

simulations were run on Matlab.
Finally, we note that there is a long line of work in random matrix theory which provides
results about the distributions of the eigenvalues of random matrix ensembles (see e.g.
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[35, 20, 4, 42, 40, 21, 27]), including for Wishart random matrices [38, 44, 41]. For instance,
results are given in [41, 46] for the local eigenvalue statistics of families of Wishart matrices
where d

m → y as d → ∞ for any fixed constant 0 < y ≤ 1. In particular, these works include
results which give high-probability bounds on the minimum eigenvalue gap of this class of
Wishart matrices (see Theorems 16 and 18 in [41], and also Theorem 1.7 of [46] who extend
results of [41] to the edge of the spectrum). Results for eigenvalue gap probabilities of other
random matrix ensembles are given, e.g., in [40, 23, 22, 9]. However, to the best of our
knowledge, we are not aware of any bounds for the minimum eigenvalue gap of families of
Wishart matrices where m

d does not converge to a constant as d → ∞. While it may be
possible to extend the analysis given in [41] to obtain bounds for the minimum eigenvalue
gap for families of Wishart matrices where m

d is polynomial in d, this analysis would be
beyond the scope of our paper.
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Figure 1: The minimum eigenvalue gap, mini∈[d−1] σi − σi+1 of Wishart random matrices
W = A⊤A, where A is an m×d matrix with i.i.d. N(0, 1) Gaussian entries, for various values
of m and d = 10, averaged over 10,000 trials for each m (blue curve), with first quartile
(dashed grey curve) and third quartile (dotted grey curve) also displayed. We observe that
the minimum eigenvalue gap size grows roughly proportional to

√
m.

J Eigenvalue gaps in real datasets

In this section we compute the eigenvalues of covariance matrices M of standard real-world
datasets, and determine the values of k for which our Assumption 2.1(M, k, λ1, ε, δ) holds
on these datasets (for λ1 = σ1, ε = 1, and δ = 1

100 ) . We consider three standard datsets
from the UCI Machine Learning Repository [14]: the 1990 US Census dataset (d = 124,
n = 2458285), the KDD Cup dataset (d = 36, n = 494020), and the Adult dataset (d =
6, n = 48842). All three of these datasets were previously used as benchmarks in the
differentially private matrix approximation and PCA literature (Census and KDD Cup in
e.g. [11], and Adult in e.g. [2]).
As is standard, we pre-process each dataset to ensure that all entries are real-valued and
to normalize the range of the measurements used for the different features. Specifically, we
remove categorical features and apply min-max normalization to the remaining real-valued
features. We then multiply the data matrix by a constant to ensure that all its rows have
magnitude at most 1 (to ensure the sensitivity bounds which imply privacy of the Gaussian
mechanism [18] hold on the dataset), and subtract the mean of each column. We then
compute the eigenvalues of the covariance matrix M = A⊤A of the pre-processed data
matrix A.

Our Assumption 2.1(M, k, λ1, ε, δ) requires that σi − σi+1 ≥ 8
√

log( 1.25
δ )

ε

√
d + 3 log

1
2 (λ1k) for

all i ≤ k.
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Figure 2: The minimum eigenvalue gap, mini∈[d−1] σi − σi+1 of Wishart random matrices
W = A⊤A, where A is an m × d matrix with i.i.d. N(0, 1) Gaussian entries, for various
values of d and m = d3, averaged over 200 trials for each d (blue curve), with first quartile
(dashed grey curve) and third quartile (dotted grey curve) also displayed. We observe that,
if m = d3, the minimum gap size is at least as large as

√
d with high probability, and grows

roughly proportional to
√

d.

As is done in prior works, we consider values of k such that the (non-private) rank-k ap-
proximation of M has Frobenius norm which is a large percentage of ∥M∥F (e.g., in [11]
they choose values of k such that the Frobenius norm of the low-rank approximation is at
least 80% of the original matrix). We will verify that, on the above-mentioned datasets,
our Assumption 2.1 holds for values of k large enough such that the (non-private) rank-k
approximation contains at least 99% of the Frobenius norm of M .
We first compute the eigenvalues of the covariance matrix of the Census dataset (Figure 3,
left). On this dataset, the Frobenius norm of the (non-private) rank-k approximation for
k = 10 contains > 99% of the Frobenius norm of M ; thus we would like our assumption to
hold for values of k for k ≤ 10. For the census dataset we have σ1 = 93730, and thus, for
any k ≤ 11, the r.h.s. of Assumption 2.1 is at most 442. We observe that the eigenvalue
gaps satisfy σi − σi+1 ≥ 442 for all i ≤ 11 (Figure 3, right); thus, our Assumption 2.1 is
satisfied for all k ≤ 11.
Computing the eigenvalues of the covariance matrix of the KDD Cup dataset (Figure 4, left)
we observe that the Frobenius norm of the (non-private) rank-k approximation for k = 3
contains > 99% of the Frobenius norm of M ; thus we would like our assumption to hold
for values of k at least 3. On this dataset we have σ1 = 72670, and thus, for any k ≤ 7,
the r.h.s. of Assumption 2.1 is at most 250. We observe that the eigenvalue gaps satisfy
σi − σi+1 ≥ 250 for i ≤ 7 (Figure 4, right); thus, Assumption 2.1 is satisfied for all k ≤ 7 on
this dataset.
Computing the eigenvalues of the Adult dataset (Figure 5, left) we observe that the Frobe-
nius norm of the (non-private) rank-k approximation for k = 4 contains 99% of the Frobe-
nius norm of M . On this dataset we have that σ1 = 1195, and thus, for any k ≤ 4, the
r.h.s. of Assumption 2.1 is at most 103.4. We observe that the eigenvalue gaps satisfy
σi − σi+1 ≥ 103.4 for i ≤ 4 (Figure 5, right); thus, Assumption 2.1 is satisfied for all k ≤ 4
on this dataset.
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Figure 3: Eigenvalues (left) and eigenvalue gaps (right) of the covariance matrix of the
Census dataset. The gaps in the eigenvalues satisfy Assumption 2.1 for any k ≤ 11, and
λ1 = σ1, ε = 1, δ = 1

100 , as for these values Assumption 2.1 requires that σi − σi+1 ≥ 442
for all i ≤ k.
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Figure 4: Eigenvalues (left) and eigenvalue gaps (right) of the covariance matrix of the KDD
Cup dataset. The gaps in the eigenvalues satisfy Assumption 2.1 for any k ≤ 7, and λ1 = σ1,
ε = 1, δ = 1

100 , as for these values Assumption 2.1 is satisfied when σi − σi+1 ≥ 250 for all
i ≤ k.

K Challenges in using previous approaches

In the special case of covariance matrix approximation, it is possible to use trace inequalities
to bound the quantity ∥M − V̂kΣ̂kV̂ ⊤

k ∥F −∥M −VkΣkV ⊤
k ∥F (which is bounded above by the

quantity ∥V̂ Σ̂kV̂ ⊤ − V ΣkV ⊤∥F we bound). This is the approach taken in [19], who apply
the fact that

tr(X) ≤ rank(X)∥X∥2 ∀X ∈ Rd×d (36)
to show that

∥M − V̂kΣ̂kV̂ ⊤
k ∥2

F − ∥M − VkΣkV ⊤
k ∥2

F ≤ O(k∥M − VkΣkV ⊤
k ∥2∥E∥2 + k∥E∥2

2).

The r.h.s. depends on σk+1 = ∥M − VkΣkV ⊤
k ∥2, and is therefore not invariant to scalar

multiplications of M . However, one can obtain a scalar-invariant bound on the quantity
∥M − V̂kΣ̂kV̂ ⊤

k ∥F − ∥M − VkΣkV ⊤
k ∥F by plugging in ∥M − VkΣkV ⊤

k ∥2 ≤ ∥M − VkΣkV ⊤
k ∥F

and plugging in the high-probability bound ∥E∥2 = O(
√

d). This leads to a bound of
∥M − V̂kΣ̂kV̂ ⊤

k ∥F − ∥M − VkΣkV ⊤
k ∥F ≤ O(k

√
d). In the special case where k = d, this

bound is O(d1.5), and thus is not tight since we have ∥M − V̂kΣ̂kV̂ ⊤
k ∥F −∥M −VkΣkV ⊤

k ∥F =
∥M̂ − M∥F = ∥E∥F = O(d) w.h.p. Roughly, the additional factor of

√
k =

√
d incurred in
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Figure 5: Eigenvalues (left) and eigenvalue gaps (right) of the covariance matrix of the Adult
dataset. The gaps in the eigenvalues satisfy Assumption 2.1 for any k ≤ 4, and λ1 = σ1,
ε = 1, δ = 1

100 , as for these values Assumption 2.1 is satisfied when σi − σi+1 ≥ 103.4 for
all i ≤ k.

their bound is due to the fact that the matrix trace inequality (36) their analysis relies on
gives a bound in terms of the spectral norm, even though they only need a bound in terms
of the Frobenius norm– which can (in the worst case) be larger than the spectral norm by
a factor of

√
k.

Another issue is that the quantity ∥V̂ ΣkV̂ ⊤ −V ΣkV ⊤∥F we wish to bound can be very sen-
sitive to perturbations to Vk, since ∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥F ≥ λk∥V̂kV̂ ⊤

k − VkV ⊤
k ∥F . Thus,

any bound on ∥V̂ ΛV̂ ⊤ − V ΛV ⊤∥F must (at the very least) also bound the distance
∥V̂kV̂ ⊤

k − VkV ⊤
k ∥F between the projection matrices onto the subspace Vk spanned by the

top-k eigenvectors of M . One approach to bounding ∥V̂kV̂ ⊤
k − VkV ⊤

k ∥F , is to use an eigen-
vector perturbation theorem, such as the Davis-Kahan theorem [13], which says, roughly,
that

∥V̂kV̂ ⊤
k − VkV ⊤

k ∥2 ≤ ∥E∥2

σk − σk+1
(37)

(this is the approach taken by [19] when proving their utility bounds for subspace recov-
ery). Plugging in the high-probability bound ∥E∥2 = O(

√
d), and using the fact that

∥V̂kV̂ ⊤
k − VkV ⊤

k ∥F ≤
√

k∥V̂kV̂ ⊤
k − VkV ⊤

k ∥2, gives ∥V̂kV̂ ⊤
k − VkV ⊤

k ∥F ≤
√

k
√

d
σk−σk+1

with high
probability. To obtain bounds for the utility ∥V̂ ΣkV̂ ⊤ − V ΣkV ⊤∥F of the covariance ma-
trix approximation, we can decompose V ΣkV ⊤ =

∑k
i=1(σi − σi+1)ViV

⊤
i , and apply the

Davis-Kahan theorem to each projection matrix ViV
⊤

i :

∥V̂ ΣkV̂ ⊤ − V ΣkV ⊤∥F = ∥V̂ ΣkV̂ ⊤ − V ΣkV ⊤∥F (38)

= ∥
k−1∑
i=1

(σi − σi+1)(V̂iV̂
⊤

i − ViV
⊤

i ) + σk(V̂kV̂ ⊤
k − VkV ⊤

k )∥F (39)

≤
k−1∑
i=1

(σi − σi+1)∥V̂iV̂
⊤

i − ViV
⊤

i ∥F + σk∥V̂kV̂ ⊤
k − VkV ⊤

k ∥F (40)

≤
k−1∑
i=1

(σi − σi+1)
√

i
√

d

σi − σi+1
+ σk

√
k
√

d

σk − σk+1
(41)

= O

(
k1.5

√
d + σk

σk − σk+1

√
k
√

d

)
, (42)

where we define σd+1 := σd. Unfortunately, this bound is not tight up to a factor of k, at least
in the special case where k = d. As a first step to obtaining a tighter bound, we would ideally
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like to add up the Frobenius norm of the summands (σi − σi+1)(V̂iV̂
⊤

i − ViV
⊤

i ) as a sum-of-
squares rather than as a simple sum, in order to decrease the r.h.s. by a factor of

√
k. How-

ever, to do so we would need to bound the cross-terms tr
(

(V̂iV̂
⊤

i − ViV
⊤

i )(V̂j V̂ ⊤
j − VjV ⊤

j )
)

for i ̸= j. To bound each of these cross-terms we need to carefully track the interactions
between the eigenvectors in the subspaces Vi and Vj as the noise E is added to the input
matrix M .
We handle such cross-terms by viewing the addition of noise as a continuous-time matrix
diffusion Ψ(t) = M +B(t), whose eigenvalues γi(t) and eigenvectors ui(t), i ∈ [d], evolve over
time. This allows us to “add up” contributions of different eigenvectors to the Frobenius
distance as a stochastic integral,

||V̂ ΣkV̂ ⊤ − V ΣkV ⊤||2F = ||
∫ T

0

d∑
i=1

∑
j ̸=i

|σi − σj | dBij(t)
γi(t) − γj(t) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t))||2F ,

where, roughly, each differential cross term dBij(t)
γi(t)−γj(t) (ui(t)u⊤

j (t) + uj(t)u⊤
i (t)) adds noise

to the matrix V ΣkV ⊤ independently of the other terms since the Brownian motion differ-
entials dBij(t) are independent for all i, j, t. (16). Roughly, this allows us to add up the
contributions of these terms as a sum of squares using Itô’s Lemma from stochastic calculus
(19).

L Necessity of Assumption 2.1 in our proof

For simplicity, assume that ε = δ = O(1). Our proof uses Weyl’s inequality to bound the
gaps in the eigenvalues γi(t) − γi+1(t) of the perturbed matrix M + G(t) + G⊤(t) at every
time t ∈ [0, 1], where G(t) has i.i.d. N(0, t) entries.
Weyl’s inequality says that for every i ∈ d, σi − ∥G(t) + G⊤(t)∥2 ≤ γi(t) ≤ σi + ∥G(t) +
G⊤(t)∥2. Thus, plugging in the high-probability bound ∥G(t)∥2 ≤ 2

√
d, we have that

γi(t) − γi+1(t) ≥ σi − σi+1 − 4
√

d. (43)

If σi − σi+1 <
√

d, Weyl’s inequality does not give any bound on the gaps since then the
r.h.s. of (43) is σi − σi+1 − 4

√
d is negative. Thus, to apply Weyl’s inequality to bound

the eigenvalue gaps γi(t) − γi+1(t), we require that σi − σi+1 ≥ Ω(
√

d), which is roughly
Assumption 2.1.
On the other hand, we note that Weyl’s inequality is a worst-case deterministic inequality–
it says that σi − ∥G(t) + G⊤(t)∥2 ≤ γi(t) ≤ σi + ∥G(t) + G⊤(t)∥2 with probability 1.
However, G(t) is a random matrix, and the Dyson Brownian motion equations (3) which
govern the evolution of the eigenvalues of the perturbed matrix M + G(t) + G⊤(t) say that
the eigenvalues γi(t) and γj(t) repel each other with a “force” of magnitude 1

γi(t)−γj(t) . Thus,
on average, we conjecture that the gaps γi(t) − γj(t) between any two eigenvalues becomes
larger over time, and hence that E[γi(t) − γj(t)] ≥ σi − σj regardless of the size of the initial
gap σi −σj . This suggests that it may be possible to weaken (or eliminate) Assumption 2.1,
while still recovering the same bound in our main result Theorem 2.2.

M High probability bounds

While our current result holds in expectation, it is possible to use our techniques to prove
high-probability bounds.
The simplest approach is to plug in the expectation bound in our main result (Theorem 2.2)
into Markov’s inequality, which says that P (∥V̂ ΛV̂ ⊤ −V ΛV ⊤∥2

F ≥ s) ≤ E(∥V̂ ΛV̂ ⊤−V ΛV ⊤∥2
F )

s
for all s > 0.
While Markov’s inequality gives a high-probability bound, this bound decays as 1

s . One
approach to obtaining high-probability bounds which decay with rate exponential in s might
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be to apply concentration inequalities to the part of our proof where we currently use
expectations. Namely, our proof of Lemma 4.5 in the appendix uses Itô’s Lemma (restated
as Lemma 3.1 in the appendix) to show that, roughly,

∥Ψ(T )−Ψ(0)∥2
F = 4

∫ T

0

d∑
i=1

∑
j ̸=i

(λi − λj)2

(γi(t) − γj(t))2 +1
2

∫ t

0

∑
ℓ,r

∑
α,β

(
∂

∂Xαβ
f(X(t))

)
R(ℓr)(αβ)(t)dBℓr(t),

where we define f(X) := ∥X∥2
F , X(t) :=

∫ t

0
∑d

i=1
∑

j ̸=i |λi − λj | dBij(s)
|γi(s)−γj(s)| (ui(s)u⊤

j (s) +

uj(s)u⊤
i (s)), and R(ℓr)(ij)(t) :=

(
|λi−λj |

|γi(t)−γj(t)| (ui(t)u⊤
j (t) + uj(t)u⊤

i (t))
)

[ℓ, r].

The two integrals on the r.h.s. are both random variables. For simplicity, our current proof
bounds these random variables by taking the expectation of both sides of the equation. In
particular, the second term on the r.h.s. has mean 0, and thus vanishes when we apply the
expectation.
We do not have to do any additional work to bound the first term on the r.h.s. with high
probability, since the only random variables appearing in that term are the eigenvalue gaps
γi(t) − γj(t), and we have already shown a high-probability bound on these gaps (Lemma
4.4). To bound the second term on the r.h.s. with high probability, in addition to the
gaps γi(t) − γj(t), we would also need to deal with the Gaussian random variables Bℓr(t)
appearing inside the integral. One approach to bounding these random variables Bℓr(t)
with high probability might be to apply standard Gaussian concentration inequalities, and
it would be interesting to see whether this leads to high-probability bounds which are similar
to the expectation bounds we obtain.
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