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Abstract

In this work we consider the problem of differentially private computation of1

quantiles for the data, especially the highest quantiles such as maximum, but with2

an unbounded range for the dataset. We show that this can be done efficiently3

through a simple invocation of AboveThreshold, a subroutine that is iteratively4

called in the fundamental Sparse Vector Technique, even when there is no upper5

bound on the data. In particular, we show that this procedure can give more6

accurate and robust estimates on the highest quantiles with applications towards7

clipping that is essential for differentially private sum and mean estimation. In ad-8

dition, we show how two invocations can handle the fully unbounded data setting.9

Within our study, we show that an improved analysis of AboveThreshold can10

improve the privacy guarantees for the widely used Sparse Vector Technique that11

is of independent interest. We give a more general characterization of privacy loss12

for AboveThreshold which we immediately apply to our method for improved13

privacy guarantees. Our algorithm only requires one 𝑂(𝑛) pass through the data,14

which can be unsorted, and each subsequent query takes 𝑂(1) time. We empiri-15

cally compare our unbounded algorithm with the state-of-the-art algorithms in16

the bounded setting. For inner quantiles, we find that our method often performs17

better on non-synthetic datasets. For the maximal quantiles, which we apply18

to differentially private sum computation, we find that our method performs19

significantly better.20

1 Introduction21

In statistics, quantiles are values that divide the data into specific proportions, such as median22

that divides the data in half. Quantiles are a central statistical method for better understanding a23

dataset. However, releasing quantile values could leak information about specific individuals within24

a sensitive dataset. As a result, it becomes necessary to ensure that individual privacy is ensured25

within this computation. Differential privacy offers a rigorous method for measuring the amount26

that one individual can change the output of a computation. Due it’s rigorous guarantees, differential27

privacy has become the gold standard for measuring privacy. This measurement method then offers28

an inherent tradeoff between accuracy and privacy with outputs of pure noise achieving perfect29

privacy. Thus, the goal of designing algorithms for differentially private quantile computation is to30

maximize accuracy for a given level of privacy.31

There are a variety of previous methods for computing a given quantile of the dataset that we will32

cover in Section 1.2 , but each of these requires known bounds on the dataset. The most effective33

and practical method invokes the exponential mechanism Smith (2011). For computing multiple34

quantiles this method can be called iteratively. Follow-up work showed that it could be called35

recursively by splitting the dataset at each call to reduce the privacy cost of composition Kaplan36

et al. (2022). Further, a generalization can be called efficiently in one shot Gillenwater et al. (2021).37
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1.1 Our contributions38

In this work, we offer an alternative practical and accurate approach, Unbounded Quantile Esti-39

mation (UQE), that also invokes a well-known technique and can additionally be applied to the40

unbounded setting. While the commonly-used technique designs a distribution to draw from that is41

specific to the dataset, our method will simply perform a noisy guess-and-check. Initially we assume42

there is only a lower bound on the data, as non-negative data is common in real world datasets with43

sensitive individual information. Our method will simply iteratively increase the candidate value44

by a small percentage and halt when the number of data points below the value exceeds the desired45

amount dictated by the given quantile. While the relative increase will be small each iteration, the46

exponential nature still implies that the candidate value will become massive within a reasonable47

number of iterations. As a consequence, our algorithm can handle the unbounded setting where we48

also show that two calls to this procedure can handle fully unbounded data. Computing multiple49

quantiles can be achieved by applying the recursive splitting framework from Kaplan et al. (2022).50

Performing our guess-and-check procedure with differential privacy exactly fits AboveThreshold,51

a method that is iteratively called in the Sparse Vector Technique Dwork et al. (2009). We also52

take a deeper look at AboveThreshold and unsurprisingly show that similar to report noisy max53

algorithms, the noise addition can come from the Laplace, Gumbel or Exponential distributions. We54

further push this analysis to show that for monotonic queries, a common class of queries which55

we will also utilize in our methods, the privacy bounds for composition within the Sparse Vector56

Technique can be further improved. Given the widespread usage of this technique,1 we believe this57

result is of independent interest. Furthermore, we give a more general characterization of query58

properties that can improve the privacy bounds of AboveThreshold. We immediately utilize this59

characterization in our unbounded quantile estimation algorithm to improve privacy guarantees.60

While the commonly used algorithms for quantile estimation can still apply incredibly loose bounds61

to ensure the data is contained within, this can have a substantial impact upon the accuracy for62

estimating the highest quantiles such as maximum. This leads to an especially important application63

for our algorithm, differentially private sum computation, which can thereby be used to compute64

mean as well. Performing this computation practically without assumptions upon the distribution65

often requires clipping the data and adding noise proportionally. Clipping too high adds too much66

noise, and clipping too low changes the sum of the data too much. The highest quantiles of the data67

are used for clipping to optimize this tradeoff. The unbounded nature of our approach fundamentally68

allows us to estimate the highest quantiles more robustly and improve the accuracy of differentially69

private sum computation.70

This improvement in differentially private sum computation is further evidenced by our empirical71

evaluation, with significant improvements in accuracy. Our empericial comparison will be upon the72

same datasets from previous work in the bounded setting. We also compare private computation of73

the inner quantiles on these datasets. For synthetic datasets generated from uniform or guassian74

distributions, we see that the more structured approach of designing a distribution for the data from75

the exponential mechanism consistently performs better. However, for the real-world datasets, we76

see that our unstructured approach tends to perform better even within this bounded setting. By77

design our algorithm is less specific to the data, so our alternative approach becomes advantageous78

when less is known about the structure and bounds of the data a priori. As such, for large-scale79

privacy systems that provide statistical analysis for a wide variety of datasets, our methods will be80

more flexible to handle greater generality accurately.81

1.2 Background literature82

The primary algorithm for privately computing a given quantile, bywhichwe compare our technique,83

applies the exponential mechanism with a utility function based upon closeness to the true quantile84

Smith (2011). We will discuss this algorithm, which we denote as Exponential Mechanism Quantile85

(EMQ), in greater detail in Section A. This approach was then extended to computing multiple86

quantiles more cleverly by recursively splitting the data and establishing that only one partition of87

1For example, see Roth and Roughgarden (2010); Hardt and Rothblum (2010); Dwork et al. (2015); Nissim
et al. (2016); Nissim and Stemmer (2018); Kaplan et al. (2020a,b); Hasidim et al. (2020); Bun et al. (2017); Bassily
et al. (2018); Cummings et al. (2020); Ligett et al. (2017); Barthe et al. (2016a,b); Steinke and Ullman (2016);
Cummings et al. (2015); Ullman (2015); Nandi and Bassily (2020); Shokri and Shmatikov (2015); Hsu et al. (2013);
Sajed and Sheffet (2019); Feldman and Steinke (2017); Blum et al. (2015); Chen et al. (2016)
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the dataset can change between neighbors thereby reducing the composition costs Kaplan et al.88

(2022). Additional follow-up work showed that a generalization of the utility function to multiple89

quantiles could be efficiently drawn upon in one shot Gillenwater et al. (2021). Another recent result90

examined this problem in the streaming data setting and gave a method that only uses strongly91

sub-linear space complexity Alabi et al. (2022).92

Quantile computation can also be achieved through CDF estimation Bun et al. (2015); Kaplan et al.93

(2020a). However these techniques offer limited practicality as they rely upon several reductions94

and parameter tuning. Recursively splitting the data is also done for CDF estimation algorithms95

where the statistics from each split can be aggregated for quantile computation Dwork et al. (2010);96

Chan et al. (2011). These techniques tend to be overkill for quantile estimation and thus suffer in97

accuracy comparatively.98

We will also give improved privacy analysis of the Sparse Vector Technique which was originally99

introduced in Dwork et al. (2009). A more detailed analysis of the method can be found in Lyu et al.100

(2017). Additional recent work has shown that more information can be output from the method at101

no additional privacy cost Kaplan et al. (2021); Ding et al. (2023).102

1.3 Organization103

We provide the requisite notation and definitions in Section 2. In Section 3, we review the104

AboveThreshold algorithm from the literature and show that privacy analysis can be further105

improved. In Section 4, we provide our unbounded quantile estimation method. In Section 5, we106

test our method compared to the previous techniques on synthetic and real world datasets. In107

Section A, we consider the estimation of the highest quantiles which has immediate application108

to differentially private sum and mean estimation. In Section B, we give further results on the109

AboveThreshold algorithm and provide the missing proofs from Section 3. In Section C, we provide110

further variants and extensions of our unbounded quantile estimation technique.111

2 Preliminaries112

We will let 𝑥, 𝑥′ denote datasets in our data universe  .113

Definition 2.1. Datasets 𝑥, 𝑥′ ∈  are neighboring if at most one individual’s data has been changed.114

Note that we use the swap definition, but our analysis of the AboveThresholdalgorithm will be115

agnostic to the definition of neighboring. Using this definition as opposed to the add-subtract116

definition is necessary to apply the same experimental setup as in Gillenwater et al. (2021). Our117

differentially private quantile estimation will apply to either and we will give the privacy guarantees118

if we instead use the add-subtract definition in Section C.2.119

Definition 2.2. A function 𝑓 ∶  → ℝ has sensitivity Δ if for any neighboring datasets |𝑓 (𝑥) −120

𝑓 (𝑥
′
)| ≤ Δ121

Definition 2.3. Dwork et al. (2006b,a) A mechanism 𝑀 ∶  →  is (𝜀, 𝛿)-differentially-private (DP)122

if for any neighboring datasets 𝑥, 𝑥′ ∈  and 𝑆 ⊆  :123

Pr[𝑀(𝑥) ∈ 𝑆] ⩽ 𝑒
𝜀
Pr[𝑀(𝑥

′
) ∈ 𝑆] + 𝛿.

We will primarily work with pure differential privacy in this work where 𝛿 = 0. We will also be124

considering the composition properties of the Sparse Vector Technique, and the primary method for125

comparison will be Concentrated Differential Privacy that has become widely used in practice due to126

it’s tighter and simpler advanced composition properties Bun and Steinke (2016). This definition is127

instead based upon Reny divergence where for probability distributions 𝑃, 𝑄 over the same domain128

and 𝛼 > 1129

𝐷𝛼(𝑃||𝑄) =

1

𝛼 − 1

ln E
𝑧∼𝑃 [(

𝑃(𝑧)

𝑄(𝑧))

𝛼−1

]

Definition 2.4. Bun and Steinke (2016) A mechanism 𝑀 ∶  →  is 𝜌-zero-concentrated-130

differentially-private (zCDP) if for any neighboring datasets 𝑥, 𝑥′ ∈  and all 𝛼 ∈ (1,∞):131

𝐷𝛼(𝑀(𝑥)||𝑀(𝑥
′
)) ≤ 𝜌𝛼.
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We can translate DP into zCDP in the following way.132

Proposition 1. Bun and Steinke (2016) If 𝑀 satisfies 𝜀-DP then 𝑀 satisfies 1

2
𝜀
2-zCDP133

In our examination of AboveThreshold we will add different types of noise, similar to the report134

noisy max algorithms Ding et al. (2021). Accordingly, we will consider noise from the Laplace, Gum-135

bel and Exponential distributions where Lap(𝑏) has PDF 𝑝Lap(𝑧; 𝑏), Gumbel(𝑏) has PDF 𝑝Gumbel(𝑧; 𝑏),136

and Expo(𝑏) has PDF 𝑝Expo(𝑧; 𝑏) where137

𝑝Lap(𝑧; 𝑏) =
1

2𝑏

exp (−|𝑧|/𝑏) 𝑝Gumbel(𝑧; 𝑏) =
1

𝑏

exp (− (𝑧/𝑏 + 𝑒
−𝑧/𝑏

))

𝑝Expo(𝑧; 𝑏) =

{
1

𝑏
exp (−𝑧/𝑏) 𝑧 ≥ 0

0 𝑧 < 0

We let Noise(𝑏) denote noise addition from any of Lap(𝑏), Gumbel(𝑏), or Expo(𝑏). We will also138

utilize the definition of the exponential mechanism to analyze the addition of Gumbel noise.139

Definition 2.5. McSherry and Talwar (2007) The Exponential Mechanism is a randomized mapping140

𝑀 ∶  →  such that141

Pr [𝑀(𝑥) = 𝑦] ∝ exp
(

𝜀 ⋅ 𝑞(𝑥, 𝑦)

2Δ )

where 𝑞 ∶  ×  → ℝ has sensitivity Δ.142

3 Improved Analysis for Sparse Vector Technique143

In this section, we review the AboveThreshold algorithm from the literature. To our knowledge,144

this technique has only been used with Laplace noise in the literature. Unsurprisingly, we show145

that Gumbel and Exponential noise can also be applied, with the former allowing for a closed146

form expression of each output probability. We further show that for monotonic queries the147

privacy analysis of the Sparse Vector Technique, which iteratively applies AboveThreshold, can148

be improved. Most proofs will be pushed to the appendix where we also give a more general149

characterization of query properties that can improve the privacy bounds of AboveThreshold.150

3.1 Above Threshold Algorithm151

We first provide the algorithm for AboveThreshold where noise can be applied from any of the152

Laplace, Gumbel or Exponential distributions.153

Algorithm 1 AboveThreshold

Require: Input dataset 𝑥 , a stream of queries {𝑓𝑖 ∶  → ℝ} with sensitivity Δ, and a threshold 𝑇

1: Set 𝑇̂ = 𝑇 + Noise(Δ/𝜀1)
2: for each query 𝑖 do
3: Set 𝜈𝑖 = Noise(Δ/𝜀2)
4: if 𝑓𝑖(𝑥) + 𝜈𝑖 ≥ 𝑇̂ then
5: Output ⊤ and halt
6: else
7: Output ⊥
8: end if
9: end for

We will also define a common class of queries within the literature that is often seen to achieve a154

factor of 2 improvement in privacy bounds.155

Definition 3.1. We say that stream of queries {𝑓𝑖 ∶  → ℝ} with sensitivity Δ is monotonic if for any156

neighboring 𝑥, 𝑥′ ∈  we have either 𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑥
′
) for all 𝑖 or 𝑓𝑖(𝑥) ≥ 𝑓𝑖(𝑥

′
) for all 𝑖.157
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To our knowledge all previous derivations of AboveThreshold in the literature apply Lap noise158

which gives the following privacy guarantees.159

Lemma 3.1 (Theorem 4 and 5 of Lyu et al. (2017)). If the noise addition is Lap then Algorithm 1 is160

(𝜀1 + 2𝜀2)-DP for general queries and is (𝜀1 + 𝜀2)-DP for monotonic queries.161

Given that Expo noise is one-sided Lap noise, it can often be applied for comparative algorithms such162

as this one and report noisy max as well. We will show this extension in Section B for completeness.163

Corollary 3.1. If the noise addition is Expo then Algorithm 1 is (𝜀1 + 2𝜀2)-DP for general queries and164

(𝜀1 + 𝜀2)-DP for monotonic queries.165

While the proofs for Expo noise generally follow from the Lap noise proofs, it will require different166

techniques to show that Gumbel noise can be applied as well. In particular, we utilize the known167

connection between adding Gumbel noise and the exponential mechanism.168

Lemma 3.2. If the noise addition is Gumbel and 𝜀1 = 𝜀2 then Algorithm 1 is (𝜀1 + 2𝜀2)-DP for general169

queries and (𝜀1 + 𝜀2)-DP for monotonic queries.170

We defer the proof of this to the appendix. In all of our empirical evaluations we will use Expo171

noise in our calls to AboveThreshold because it has the lowest variance for the same parameter.172

While we strongly believe that Expo noise will be most accurate under the same noise parameters,173

we leave a more rigorous examination to future work. We also note that this examination was174

implicitly done for report noisy max between Gumbel and Expo noise in McKenna and Sheldon175

(2020), where their algorithm is equivalent to adding Expo noise Ding et al. (2021), and Expo noise176

was shown to be clearly superior.177

3.2 Improved privacy analysis for Sparse Vector Technique178

In this section, we further consider the iterative application of AboveThreshold which is known179

as the sparse vector technique. We show that for monotonic queries, we can improve the privacy180

analysis of sparse vector technique to obtain better utility for the same level of privacy. Our primary181

metric for measuring privacy through composition will be zCDP which we defined in Section 2 and182

has become commonly used particularly due to the composition properties. We further show in183

Section B that our analysis also enjoys improvement under the standard definition of differential184

privacy. These improved properties immediately apply to our unbounded quantile estimation185

algorithm as our queries will be monotonic.186

Theorem 1. If the queries are monotonic, then for any noise addition of Lap, Gumbel, or Expo we187

have that Algorithm 1 is 1

2
𝜀
2-zCDP where 𝜀 = 𝜀1

2
+ 𝜀2. If the noise addition is Gumbel then we further188

require 𝜀1 = 𝜀2189

Note that applying Proposition 1 will instead give 𝜀 = 𝜀1 + 𝜀2. It will require further techniques to190

reduce this by 𝜀1/2which will immediately allow for better utility with the same privacy guarantees.191

This bound also follows the intuitive factor of 2 improvement that is often expected for monotonic192

queries. The analysis will be achieved through providing a range-bounded property, a definition193

that was introduced in Durfee and Rogers (2019). This definition is ideally suited to characterizing194

the privacy loss of selection algorithms, by which we can view AboveThreshold. As such it will also195

enjoy the improved composition bounds upon the standard differential privacy definition shown196

in Dong et al. (2020). This range bounded property was then unified with zCDP with improved197

privacy guarantees in Cesar and Rogers (2021).198

We give a proof of this theorem along with further discussion in Section B.3. We will also give199

a generalized characterization of when we can take advantage of properties of the queries to200

tighten the privacy bounds in AboveThreshold. We will immediately utilize this characterization201

to improve the privacy guarantees for our method in Section C.202

4 Unbounded Quantile Estimation203

In this section we give our method for unbounded quantile estimation. We focus upon the lower204

bounded setting which we view as most applicable to real-world problems, where non-negative205

data is incredibly common, particularly for datasets that contain information about individuals.206
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This method can be symmetrically apply to upper bounded data, and in Section C.1 we will show207

how this approach can be extended to the fully unbounded setting.208

For the quantile problem we will assume our data 𝑥 ∈ ℝ
𝑛. Given quantile 𝑞 ∈ [0, 1] and dataset209

𝑥 ∈ ℝ
𝑛 the goal is to find 𝑡 ∈ ℝ such that |{𝑥𝑗 ∈ 𝑥|𝑥𝑗 < 𝑡}| is as close to 𝑞𝑛 as possible.210

4.1 Unbounded quantile mechanim211

The idea behind unbounded quantile estimation will be a simple guess-and-check method that will212

just invoke AboveThreshold. In particular, wewill guess candidate values 𝑡 such that |{𝑥𝑗 ∈ 𝑥|𝑥𝑗 < 𝑡}|213

is close to 𝑞𝑛. We begin with the smallest candidate, recall that we assume lower bounded data214

here and generalize later, and iteratively increase by a small percentage. At each iteration we215

check if |{𝑥𝑗 ∈ 𝑥|𝑥𝑗 < 𝑡}| has exceeded 𝑞𝑛, and terminate when it does, outputting the most recent216

candidate. In order to achieve this procedure privately, we will simply invoke AboveThreshold.217

We also discuss how this procedure can be achieved efficiently in Section 4.2.218

Thus we give our algorithm here where the lower bound of the data, 𝓁, is our starting candidate and219

𝛽 is the scale at which the threshold increases. Given that we want our candidate value to increase220

by a small percentage it must start as a positive value. As such we will essentially just shift the data221

such that the lower bound is instead 1. In all our experiments we set 𝛽 = 1.001, so the increase is by222

0.1% each iteration.223

Algorithm 2 Unbounded quantile mechanism
Require: Input dataset 𝑥 , a quantile 𝑞, a lower bound 𝓁, and parameter 𝛽 > 1

1: Run AboveThreshold with 𝑥 , 𝑇 = 𝑞𝑛 and 𝑓𝑖(𝑥) = |{𝑥𝑗 ∈ 𝑥|𝑥𝑗 − 𝓁 + 1 < 𝛽
𝑖
}|

2: Output 𝛽𝑘
+ 𝓁 − 1 where 𝑘 is the query that AboveThreshold halted at

Given that our method simply calls AboveThreshold it will enjoy all the privacy guarantees from224

Section 3.1. Furthermore we will show that our queries are monotonic.225

Lemma 4.1. For any sequence of thresholds {𝑡𝑖 ∈ ℝ} let 𝑓𝑖(𝑥) = |{𝑥𝑗 ∈ 𝑥|𝑥𝑗 < 𝑡𝑖}| for all 𝑖. For any226

neighboring dataset under Definition 2.1, we have that {𝑓𝑖} are monotonic queries with sensitivity 1.227

Proof. Let 𝑥𝑗 be the value that differs between neighbors 𝑥, 𝑥′. Define 𝑥,𝑡 = {𝑥𝑗 ∈ 𝑥|𝑥𝑗 < 𝑡}. We228

consider the case 𝑥′
𝑗
> 𝑥𝑗 and the other will follow symmetrically. For all thresholds 𝑡𝑖 ∈ (−∞, 𝑥𝑗 ] we229

have 𝑥𝑗 ∉ 𝑥,𝑡𝑖
and 𝑥

′

𝑗
∉ 𝑥

′
,𝑡𝑖
, so 𝑓𝑖(𝑥) = 𝑓𝑖(𝑥

′
). For all thresholds 𝑡𝑖 ∈ (𝑥

′

𝑗
, ∞) we have 𝑥𝑗 ∈ 𝑥,𝑡𝑖

and230

𝑥
′

𝑗
∈ 𝑥

′
,𝑡𝑖
, so 𝑓𝑖(𝑥) = 𝑓𝑖(𝑥

′
). Finally, for all thresholds 𝑡𝑖 ∈ (𝑥𝑗 , 𝑥

′

𝑗
] we have 𝑥𝑗 ∈ 𝑥,𝑡𝑖

and 𝑥′
𝑗
∉ 𝑥

′
,𝑡𝑖
, so231

𝑓𝑖(𝑥) = 𝑓𝑖(𝑥
′
) + 1. Therefore, 𝑓𝑖(𝑥) ≥ 𝑓𝑖(𝑥

′
) for all 𝑖, and the sensitivity is 1.232

233

Note that for the swap definition of neighboring the threshold remains constant. We will discuss234

how to extend our algorithm and further improve the privacy bounds for the add-subtract definition235

of neighboring in Section C.2.236

4.2 Simple and scalable implementation237

In this section we show how our call to AboveThreshold can be done with a simple linear time238

pass through the data, and each subsequent query takes 𝑂(1) time. While the running time could239

potentially be infinite, if we set 𝛽 = 1.001, then after 50,000 iterations our threshold is already over240

10
21 and thus highly likely to have halted. Unless the scale of the data is absurdly high or the 𝛽241

value chosen converges to 1, our guess-and-check process will finish reasonably quickly. 2242

In our initial pass through the data, for each data point 𝑥𝑗 we will find the index 𝑖 such that243

𝛽
𝑖
≤ 𝑥𝑗 − 𝓁 + 1 < 𝛽

𝑖+1, which can be done by simply computing ⌊log
𝛽
(𝑥𝑗 − 𝓁 + 1)⌋ as our lower244

bound ensures 𝑥𝑗 − 𝓁 + 1 ≥ 1. Using a dictionary or similar data structure we can efficiently store245

|{𝑥𝑗 ∈ 𝑥|𝛽
𝑖
≤ 𝑥𝑗 − 𝓁 + 1 < 𝛽

𝑖+1
}| for each 𝑖 with the default being 0. This preprocessing does not246

2Note that the process can also be terminated at any time without affecting the privacy guarantees.
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require sorted data and takes 𝑂(𝑛) arithmetic time, where we note that the previous algorithms247

also measure runtime arithmetically.248

Finally, for each query if we already have |{𝑥𝑗 ∈ 𝑥|𝑥𝑗 − 𝓁 + 1 < 𝛽
𝑖
}|, then we can add |{𝑥𝑗 ∈ 𝑥|𝛽

𝑖
≤249

𝑥𝑗 − 𝓁 + 1 < 𝛽
𝑖+1

}| in O(1) time to get |{𝑥𝑗 ∈ 𝑥|𝑥𝑗 − 𝓁 + 1 < 𝛽
𝑖+1

}|. Inductively, each query will take250

O(1) time. We provide the code in Section D.3 for easier reproducibility.251

4.3 Extension to multiple quantiles252

The framework for computing multiple quantiles set up in Kaplan et al. (2022) is agnostic to the253

technique used for computing a single quantile. Their method will first compute the middle quantile254

and split the data according to the result. Through recursive application the number of levels of255

computation will be logarithmic. Furthermore, at each level we can see that at most one partition of256

the data will differ between neighbors, allowing for instead a logarithmic number of compositions.257

As such our approach can easily be applied to this recursive splitting framework to achieve the258

same improvements in composition. This will require some minor updating of their proofs to the259

swap definition that we will do in Section C.260

5 Empirical Evaluation261

In this section we empirically evaluate our approach compared to the previous approaches. We262

give further detail of the previous approaches, particularly EMQ, in Section A along with strong263

intuition upon why our approach will better handle maximal quantile estimation for data clipping.264

We first go over the datasets and settings used for our experiments which will follow recent related265

work Gillenwater et al. (2021); Kaplan et al. (2022). Next we evaluate how accurately our method266

estimates quantiles for the different datasets in the bounded setting. Finally, we will consider the267

application of computing differentially private sum, which also gives mean computation, and show268

how our algorithm allows for a significantly more robust and accurate method when tight bounds269

are not known for the dataset.270

5.1 Datasets271

We borrow the same setup and datasets as Gillenwater et al. (2021); Kaplan et al. (2022). We test our272

algorithm compared to the state-of-the-art on six different datasets. Two datasets will be synthetic.273

One draws 10,000 data points from the uniform distribution in the range [−5, 5] and the other draws274

10,000 data points from the normal distribution with mean zero and standard deviation of five. Two275

datasets will come from Soumik (2019) with 11,123 data points, where one has book ratings and the276

other has book page counts. Two datasets will come from Dua and Graf (2019) with 48,842 data277

points, where one has the number of hours worked per week and the other has the age for different278

people. We provide histograms of these datasets for better understanding in Section D.279

5.2 Quantile estimation experiments280

For our quantile estimation experiments, for a given quantile 𝑞 ∈ [0, 1] we consider the error of281

outcome 𝑜𝑞 from one of the private methods to be |𝑜𝑞 − 𝑡𝑞 | where 𝑡𝑞 is the true quantile value. We use282

the in-built quantile function in the numpy library with the default settings to get the true quantile283

value. As in previous related works, we randomly sample 1000 datapoints from each dataset and284

run the quantile computation on each method. This process is then iterated upon 100 times and the285

error is averaged. We set 𝜀 = 1 as in the previous works, which will require setting 𝜀1 = 𝜀2 = 1/2286

for the call to AboveThreshold in our method.287

We will also tighten the ranges to the following, [−5, 5] for the uniform dataset, [−25, 25] for288

the normal dataset, [0, 10] for the ratings dataset, [0, 10000] for the pages dataset, [0, 100] for the289

hours dataset, and [0, 100] for the ages dataset. Given that EMQ suffers performance when many290

datapoints are equal we add small independent noise to our non-sythetic datasets. This noise will291

be from the normal distribution with standard deviation 0.001 for the ratings dataset and 0.1 for the292

other three that have integer values. Our method does not require the noise addition but we will293

use the perturbed dataset for fair comparison. True quantiles are still computed upon the original294

data. For the datasets with integer values we rounded each output to the nearest integer. For our295

method we set 𝛽 = 1.001 for all datasets.296
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For these experiments we only compare our method UQE and the previous method EMQ, using297

the implementations from Gillenwater et al. (2021). The other procedures, discussed in Section A.1298

are more generalized and thus for this specific setting do not perform nearly as well which can be299

seen in the previous experiments Gillenwater et al. (2021); Kaplan et al. (2022), so we omit them300

from our results. For this experiment we consider estimating each quantile from 5% to 95% at a 1%301

interval. In Figure 1 we plot the mean absolute error of each normalized by the mean absolute error302

of UQE to make for an easier visualization.303

Figure 1: Plots of UQE = (mean absolute error UQE) / (mean absolute error UQE) and EMQ = (mean
absolute error EMQ) / (mean absolute error UQE). Normalizing in this way will make for an easier
visualization. When EMQ is below UQE then it’s error is lower, and when EMQ is above UQE then
it’s error is higher

As we can see in Figure 1, EMQ consistently performs better on synthetic data, and UQE tends304

to performs better on the non-synthetic data. This fits with our intuition that UQE will be best305

suited to situations where the data is unstructured and less is known about the dataset beforehand306

because our guess-and-check methodology is designed to better handle ill-behaving datasets.307

5.3 Sum estimation experiments308

As the primary application of our method we will also be considering differentially private sum309

computation, which can thereby compute mean as well. We will be using the following 2𝜀-DP310

general procedure for computing the sum of non-negative data:311

1. Let Δ = PrivateQuantile(𝑥, 𝑞, 𝜀) where PrivateQuantile is any differentially private312

computation algorithm and 𝑞 ≈ 1.313

2. Output Lap(Δ/𝜀) + ∑
𝑛

𝑗=1
min(𝑥𝑗 , Δ)314

We further test this upon the non-synthetic datasets. For large-scale privacy systems that provide315

statistical analysis for a wide variety of datasets, if we use a PrivateQuantile that requires an316

upper bound then we ideally want this bound to be agnostic to the dataset. The is particularly true317

for sum computations upon groupby queries as the range and size can differ substantially amongst318

groups. As such, we fix the range at [0, 10000] to encompass all the datasets. We will otherwise use319

the same general setup as in Section 5.2.320

We will measure the error of this procedure as the absolute error of the output and the true sum of321

the dataset. For each of the 100 iterations of choosing 1000 samples randomly from the full dataset,322

we also add Lap noise 100 times. Averaging over all these iterations gives our mean absolute error.323

We will run this procedure with 𝜀 ∈ {0.1, 0.5, 1}. Further we will use 𝑞 = 0.99 always for our method,324

but give the absolute error for the best performing 𝑞 ∈ {0.95, 0.96, 0.97, 0.98, 0.99} for the other325
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Privacy Method Ratings data Pages data Ages data Work hours data
UQE 4.780.21 4385.232077.16 103.0516.04 180.4844.92

𝜀 = 1 EMQ 5.730.54 4324.382343.25 187.0633.55 339.0675.82

AT 8.750.31 4377.452340.93 293.11117.32 471.98174.07

UQE 9.220.31 7102.343093.13 180.6127.03 277.8977.60

𝜀 = 0.5 EMQ 6906.137123.36 7601.473963.52 678.221931.11 2131.804669.11

AT 29.01115.04 7491.974367.31 473.19238.19 582.58369.29

UQE 44.591.79 21916.376423.75 821.77157.68 981.10219.66

𝜀 = 0.1 EMQ 45861.7928366.46 46552.0927944.18 50558.3228843.72 47185.5829437.22

AT 11351.7721423.40 30830.4920422.05 14490.0625268.71 9928.1820159.17

Table 1: Mean absolute error for differentially private sum estimation. The standard deviation
over the 100 iterations is also provided for each in the subscript. UQE = Our unbounded quantile
estimation method. EMQ = The exponential mechanism based quantile estimation method. AT =
The aggregate tree method for quantile estimation. For our method we only use 𝑞 = 0.99. For the
others we use the best performance for 𝑞 ∈ {0.95, 0.96, 0.97, 0.98, 0.99}.

methods. It is important to note that this value would have to be chosen ahead of time, which326

would add more error to the other methods. The previous methods we consider here are again the327

EMQ, but also the aggregate tree (AT) methods, were we use both the implementation along with328

generally best performing height (3) and branching factor (10) from Gillenwater et al. (2021). We329

also implemented the bounding technique using inner quartile range within Algorithm 1 of Smith330

(2011), but this performed notably worse than the others so we omitted the results from our table.331

As we can see in Table 1, our method is far more robust and accurate. Furthermore, for our method332

the choice of 𝑞 remained constant and we can see that our results still stayed consistently accurate333

when 𝜀 changed. Note that the noise added to the clipped sum is also scaled proportional to 𝜀 so the334

amount the error increased as 𝜀 decreased for our method is what would be expected proportionally.335

Once again these findings are consistent with our intuition. Our technique is more robust to336

differing datasets and privacy parameters, and especially better performing for this important use337

case.338

Recall that the sampled data had size 1000 so dividing accordingly can give the error on mean339

estimates. There is a long line of literature on differentially private mean estimation.3 To our knowl-340

edge, all of these more complex algorithms either require assumptions upon the data distribution,341

such as sub-Gaussian or bounded moments, or bounds upon the data range or related parameters,342

and most often require both. These results also focus upon proving strong theoretical guarantees343

of accuracy with respect to asymptotic sample complexity. We first note that our approach will344

provide better initial bounds upon the data as seen in our experiments, which directly improve345

the theoretical guarantees in the results that require a data range. But also our focus here is upon346

practical methods that are agnostic to data distributions and more widely applicable to real-world347

data. Consequently, a rigorous comparison among all of these methods would be untenable and348

outside the scope of this work.349

We also discuss how further tuning our parameters can give additional improvement for our method350

in Section D.2. While these parameters must be set in advance, and we kept ours fixed within the351

experiments for this reason, there could be improved default settings that we leave to future work.352
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A Maximal Quantiles Estimation469

In this section, we specifically consider applying our unbounded quantile estimation to computing470

the highest quantiles. This is commonly needed for clipping the dataset to privately compute the471

sum and mean, which we empirically test in Section 5.3. Our primary goal here is to build intuition472

upon why our approach fundamentally gives more accurate and robust estimations of the highest473

quantiles when only loose upper bounds on the data are known. We first give more details upon the474

previous methods, particularly the EMQ method. Then we give a more detailed look at how these475

methods are negatively affected by loose upper bounds and why ours performs well in comparison.476

A.1 Previous techniques477

The most effective and practical previous method for quantile estimation, EMQ, builds a distribu-478

tion over an assumed bounded range [𝑎, 𝑏] through an invocation of the exponential mechanism.479

Assuming the data is sorted, it will partition the range based upon the data and select an interval480

[𝑥𝑗 , 𝑥𝑗+1] with probability proportional to481

exp
(
−

𝜀|𝑗 − 𝑞𝑛|

2 )
(𝑥𝑗+1 − 𝑥𝑗)

where the intervals [𝑎, 𝑥1] and [𝑥𝑛, 𝑏] are also considered. A uniformly random point is then drawn482

from within the selected interval. Note that this utility function is not monotonic and will not enjoy483

the same improved privacy bounds.484

There are other approaches that recursively partition the data range while computing statistics485

on each partition, then aggregate these statistics across logarithmic levels to reduce the noise for486

quantile computation Dwork et al. (2010); Chan et al. (2011). Another technique is to instead utilize487

the local sensitivity while maintaining privacy by using a smoothing procedure that can also be488

used for computing quantiles Nissim et al. (2007). There is also a similar approach to ours within489

Chen et al. (2016) for bounding an unbounded dataset that increases the bounds by a factor of 2490

each iteration but we will discuss in Section A.2 why this variant performs substantially worse.491
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A.2 Effect of bounds upon maximum quantiles492

Asmentioned, EMQwill construct a probability distribution over the range [𝑎, 𝑏]. The corresponding493

PDF is a unimodal step function of the intervals defined by the data with the peak interval [𝑥𝑗 , 𝑥𝑗+1]494

being such that 𝑗 closest to 𝑞𝑛. Note then that if 𝑏 >> 𝑥𝑛 then the probability of selecting [𝑥𝑛, 𝑏]495

increases dramatically. The exponential decay as the PDF moves away from the peak interval496

diminishes the impact of [𝑥𝑛, 𝑏] significantly if 𝑛 is far away from 𝑞𝑛. However, for computing497

the highest quantiles, we want 𝑞 close to 1 by definition, and the looseness of the upper bound498

drastically effects the accuracy.499

In contrast, as soon as the candidate value for our method exceeds the true quantile value, each500

successive query will have an output of at least 𝑞𝑛 which is the threshold. The probability of501

continuing for 𝜆 more queries then exponentially decreases in 𝜆. 4 For ease of comparison, we can502

modify our Algorithm 2 such that in the last step, the output is drawn uniformly from [𝛽
𝑘−1

, 𝛽
𝑘
],503

assuming 𝓁 = 1 for simplicity. This would then create a continuous probability distribution that504

would similarly be a step function with each interval [𝛽𝑘−1
, 𝛽

𝑘
] being a step.505

For better intuition we plot the approximate PDF of each in Figure 2. We use the Gumbel noise506

in the call to AboveThreshold to take advantage of the closed form expression in Lemma B.2 for507

easier PDF computation.508

Figure 2: Illustrative example of how the approximate PDF of the previous method, EMQ is affected
by looser upper bounds compared to our unbounded method UQE. A small amount of data was
drawn uniformly from [0, 10] and we set 𝑞 = 0.9, so accurate output would be about 9. The left and
right side assumed a range of [0, 20] and [0, 10] respectively for EMQ.

As we can see in Figure 2, the upper bound, 𝑏, increasing from 10 to 20 dramatically increases the509

probability of selecting a point in [𝑥𝑛, 𝑏] which changes the normalization for the other intervals,510

significantly altering the PDF of EMQ. Given that our method is unbounded, the PDF for UQE stays511

the same in both figures and sees the expected exponential decay once the candidate quantile passes512

the true quantile.513

There are also alternative methods for bounding the data range by computing the interquartile514

range more accurately and scaling up. However these methods make strong assumptions upon the515

data distribution being close to the normal distribution as well as bounds upon the third moment516

Smith (2011). For real-world datasets, the tails of the data can vary significantly, and scaling up517

in a data-agnostic manner can often be similarly inaccurate. We also found this to be true in our518

experiments.519

The smooth sensitivity framework will run into similar issues when 𝑞 is closer to 1 because fewer520

data points need to be changed to push the quantile value to the upper bound. If this upper bound is521

large, then the smooth local sensitivity will still be substantial. Aggregate tree methods are slightly522

more robust to loose upper bounds as they aren’t partitioning specific to the data. However, for523

4We expect 𝜆 to most likely be small and this only adds a factor of 𝛽𝜆 additional error. Note that setting 𝛽
too high, such as 𝛽 = 2 which gives a similar algorithm to Chen et al. (2016), implies that even taking five
additional queries will lead to a value that is over 32 times too large.
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accurate estimates the partitioning of the range still requires the data be well-distributed across the524

evenly split partitions, which is significantly affected by loose upper bounds.525

B Improved analysis for Sparse Vector Technique526

In this sectionwe complete the analysis for improving the privacy bounds for sparse vector technique527

with monotonic queries. We will first give a more generalized characterization of query properties528

by which we can improve the privacy bounds for AboveThreshold. While this characterization is529

more complex, we will immediately utilize it in Section C to improve the privacy bounds of our530

methods under an alternate common definition of neighboring. Additionally, the class of queries531

that we apply it to are not monotonic, so improvements can be made in a multitude of settings.532

Next we will review the definition of range-bounded, a property of privacy mechanisms that can be533

used to improve composition bounds, and apply it to our setting. Finally we will utilize these results534

to show that the privacy analysis of the sparse vector technique can be improved more generally,535

but also specifically for monotonic queries.536

B.1 Generalized characterization537

We provide a more general characterization for the privacy loss of AboveThreshold that is specific538

to the input stream of queries. This will be achieved by providing a one-sided privacy parameter539

for each pair of neighboring datasets where order matters. For a given pair 𝑥, 𝑥′, our goal will be to540

upper bound the output distribution of 𝑥 by the output distribution of 𝑥′ up to an exponential factor541

of the one-sided privacy parameter. The specificity of the parameter to the neighboring datasets542

will reduce conciseness but it is for this reason that we will be able to further improve privacy543

analysis. This precise characterization will also help improve bounds for our method in Section C544

without requiring onerous analysis.545

Definition B.1. For a stream of queries {𝑓𝑖} with sensitivity Δ, we define our one-sided privacy loss546

for neighboring data sets 𝑥, 𝑥′ as547

𝜀(𝑥, 𝑥
′
) = max

𝑘
(

𝜀1

Δ

Δ𝑘(𝑥, 𝑥
′
) +

𝜀2

Δ

max{0, Δ𝑘(𝑥, 𝑥
′
) − (𝑓𝑘(𝑥

′
) − 𝑓𝑘(𝑥))}

)

where Δ𝑘(𝑥, 𝑥
′
) = max𝑖<𝑘 max{0, 𝑓𝑖(𝑥

′
) − 𝑓𝑖(𝑥)}.548

Given that our definition is meant to encompass the one-sided privacy loss for AboveThreshold549

we will now prove that fact for Expo and Gumbel noise (and Lap follows equivalently to Expo). We550

first prove this conjecture for Expo noise.551

Lemma B.1. For a stream of queries {𝑓𝑖} with sensitivity Δ, threshold 𝑇 and neighboring data sets552

𝑥, 𝑥
′, if we run Algorithm 1 with Expo noise, then for any given outcome {⊥𝑘−1

, ⊤} we have553

Pr [AboveThreshold(𝑥, {𝑓𝑖}, 𝑇 )] = {⊥
𝑘−1

, ⊤} ≤ exp(𝜀(𝑥, 𝑥
′
))Pr [AboveThreshold(𝑥′, {𝑓𝑖}, 𝑇 )] = {⊥

𝑘−1
, ⊤}

Proof. Let 𝜈𝑖 ∼ Expo(Δ/𝜀2) denote the noise drawn for query 𝑓𝑖, and let 𝜈 ∼ Expo(Δ/𝜀1) denote the554

noise drawn for the threshold. We will fix the randomness of 𝜈𝑖<𝑘 for datasets 𝑥 and 𝑥
′, and let555

𝜏 = max𝑖<𝑘 𝑓𝑖(𝑥) + 𝜈𝑖 and 𝜏
′
= max𝑖<𝑘 𝑓𝑖(𝑥

′
) + 𝜈𝑖.556

It suffices then to show that for any fixed randomness 𝜈𝑖<𝑘 we have557

Pr𝜈,𝜈𝑘 [𝜏 < 𝑇 + 𝜈 < 𝑓𝑘(𝑥) + 𝜈𝑘] ≤ exp(𝜀(𝑥, 𝑥
′
))Pr𝜈,𝜈𝑘 [𝜏

′
< 𝑇 + 𝜈 < 𝑓𝑘(𝑥

′
) + 𝜈𝑘]

We can then prove this by showing that for every pair of draws 𝜈, 𝜈𝑘 that satisfies 𝜏 < 𝑇+𝜈 < 𝑓𝑘(𝑥)+𝜈𝑘 ,558

there is a unique pair 𝜈′, 𝜈′
𝑘
that satisfies 𝜏′ < 𝑇 + 𝜈

′
< 𝑓𝑘(𝑥

′
) + 𝜈

′

𝑘
and that559

𝑝Expo(𝜈; Δ/𝜀1) ⋅ 𝑝Expo(𝜈𝑘 ; Δ/𝜀2) ≤ exp(𝜀(𝑥, 𝑥
′
))𝑝Expo(𝜈

′
; Δ/𝜀1) ⋅ 𝑝Expo(𝜈

′

𝑘
; Δ/𝜀2)

By definition, draws from the exponential distribution must take non-negative values so we must560

also ensure that 𝜈′ ≥ 𝜈 and 𝜈′
𝑘
≥ 𝜈𝑘 . As such, we letΔ1 = max{0, 𝜏

′
−𝜏} andΔ2 = max{0, Δ1−(𝑓𝑘(𝑥

′
)−561
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𝑓𝑘(𝑥))}, and our injective mapping will be 𝜈′ = 𝜈 +Δ1 and 𝜈′𝑘 = 𝜈𝑘 +Δ2. It is then straightforward to562

see that if 𝜏 < 𝑇 + 𝜈 we must have 𝜏′ < 𝑇 + 𝜈 + Δ1. Similarly, if 𝑇 + 𝜈 < 𝑓𝑘(𝑥) + 𝜈𝑘 then 𝑇 + 𝜈 + Δ1 <563

𝑓𝑘(𝑥
′
) + 𝜈𝑘 + Δ2 because Δ2 ≥ Δ1 − (𝑓𝑘(𝑥

′
) − 𝑓𝑘(𝑥)). The PDF of the exponential distribution then564

gives us 𝑝Expo(𝜈; Δ/𝜀1) ≤ exp(
𝜀1Δ1

Δ
)𝑝Expo(𝜈

′
; Δ/𝜀1) and 𝑝Expo(𝜈𝑘 ; Δ/𝜀2) ≤ exp(

𝜀2Δ2

Δ
)𝑝Expo(𝜈

′

𝑘
; Δ/𝜀2)565

Due to the fixing of randomness, we have that 𝜏′ − 𝜏 ≤ max𝑖<𝑘(𝑓𝑖(𝑥
′
) − 𝑓𝑖(𝑥)) so Δ1 ≤ Δ𝑘(𝑥, 𝑥

′
),566

which implies our desired inequality above.567

568

This proof then easily applies to Lap as well. The proof for Gumbel will differ though as we no569

longer have similar closeness of PDF properties, but can instead utilize our closed form expressions.570

Lemma B.2. Given a dataset 𝑥 , a stream of queries {𝑓𝑖} and threshold 𝑇 , for any outcome {⊥𝑘−1
, ⊤}571

from running AboveThreshold with Gumbel noise and 𝜀 = 𝜀1 = 𝜀2, then572

Pr [AboveThreshold(𝑥, {𝑓𝑖}, 𝑇 ) = {⊥
𝑘−1

, ⊤}] =

exp(
𝜀

Δ
𝑓𝑘(𝑥))

exp(
𝜀

Δ
𝑇 ) + ∑

𝑘

𝑖=1
exp(

𝜀

Δ
𝑓𝑖(𝑥))

⋅

exp(
𝜀

Δ
𝑇 )

exp(
𝜀

Δ
𝑇 ) + ∑

𝑘−1

𝑖=1
exp(

𝜀

Δ
𝑓𝑖(𝑥))

Proof. We add noise Gumbel(Δ/𝜀) to all 𝑓𝑖(𝑥) and the threshold 𝑇 , and in order to output {⊥𝑘−1
, ⊤}573

we must have that for the first 𝑘 queries, the noisy value of 𝑓𝑘(𝑥) is the largest and the noisy574

threshold is the second largest. It is folklore in the literature that adding Gumbel noise (with the575

same noise parameter) and choosing the largest index is equivalent to the exponential mechanism.576

This can also be extended to showing that adding Gumbel noise and choosing the top-k indices in577

order is equivalent to the peeling exponential mechanism. The peeling exponential mechanism578

first selects the top index using the exponential mechanism and removes it from the candidate set,579

repeating iteratively until accumulating the top-k indices. A formal proof of this folklore result is580

also provided in Lemma 4.2 of Durfee and Rogers (2019). Applying this result and the definition of581

the exponential mechanism gives the desired equality.582

583

Interestingly, we can similarly show that AboveThreshold with Gumbel noise is equivalent to an584

iterative exponential mechanism that we provide in Section B.4. The closed form expression will585

actually allow for a slightly improved characterization that we also utilize in Section C.2.586

Lemma B.3. For a stream of queries {𝑓𝑖} with sensitivity Δ, threshold 𝑇 and neighboring data sets587

𝑥, 𝑥
′, if we run Algorithm 1 with Gumbel noise with 𝜀1 = 𝜀2, then for any outcome {⊥𝑘−1

, ⊤} we have588

Pr [AboveThreshold(𝑥, {𝑓𝑖}, 𝑇 )] = {⊥
𝑘−1

, ⊤} ≤ exp(𝜀(𝑥, 𝑥
′
))Pr [AboveThreshold(𝑥′, {𝑓𝑖}, 𝑇 )] = {⊥

𝑘−1
, ⊤})

and further we can relax Δ𝑘(𝑥, 𝑥
′
) to max𝑖<𝑘(𝑓𝑖(𝑥

′
) − 𝑓𝑖(𝑥)).589

Proof. Let 𝜀 = 𝜀1 = 𝜀2. From Lemma B.2 we know that590

Pr [AboveThreshold(𝑥, {𝑓𝑖}, 𝑇 ) = {⊥
𝑘−1

, ⊤}] =

exp(
𝜀

Δ
𝑓𝑘(𝑥))

exp(
𝜀

Δ
𝑇 ) + ∑

𝑘

𝑖=1
exp(

𝜀

Δ
𝑓𝑖(𝑥))

⋅

exp(
𝜀

Δ
𝑇 )

exp(
𝜀

Δ
𝑇 ) + ∑

𝑘−1

𝑖=1
exp(

𝜀

Δ
𝑓𝑖(𝑥))

Similar to the proof of Lemma B.1, we let Δ1 = max𝑖<𝑘(𝑓𝑖(𝑥
′
) − 𝑓𝑖(𝑥)) and Δ2 = max{0, Δ1 + (𝑓𝑘(𝑥) −591

𝑓𝑘(𝑥
′
))}. We first want to show that592

exp(
𝜀

Δ
𝑇 )

exp(
𝜀

Δ
𝑇 ) + ∑

𝑘−1

𝑖=1
exp(

𝜀

Δ
𝑓𝑖(𝑥))

≤ 𝑒

𝜀Δ
1

Δ

exp(
𝜀

Δ
𝑇 )

exp(
𝜀

Δ
𝑇 ) + ∑

𝑘−1

𝑖=1
exp(

𝜀

Δ
𝑓𝑖(𝑥

′
))
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This inequality reduces to ∑
𝑘−1

𝑖=1
exp(

𝜀

Δ
𝑓𝑖(𝑥

′
)) ≤ exp(𝜀Δ1/Δ)∑

𝑘−1

𝑖=1
exp(

𝜀

Δ
𝑓𝑖(𝑥)) which follows from593

our definition of Δ1. Next we want to show that594

exp(
𝜀

Δ
𝑓𝑘(𝑥))

exp(
𝜀

Δ
𝑇 ) + ∑

𝑘

𝑖=1
exp(

𝜀

Δ
𝑓𝑖(𝑥))

≤ 𝑒

𝜀Δ
2

Δ

exp(
𝜀

Δ
𝑓𝑘(𝑥

′
))

exp(
𝜀

Δ
𝑇 ) + ∑

𝑘

𝑖=1
exp(

𝜀

Δ
𝑓𝑖(𝑥

′
))

First we let Δ′

1
= max𝓁≤𝑘(𝑓𝓁(𝑥

′
) − 𝑓𝓁(𝑥)) and Δ

′

2
= 𝑓𝑘(𝑥) − 𝑓𝑘(𝑥

′
). We see that we equivalently have595

Δ2 = Δ
′

1
+ Δ

′

2
because if Δ′

1
> Δ1 then Δ

′

1
= 𝑓𝑘(𝑥

′
) − 𝑓𝑘(𝑥) = −Δ

′

2
, and Δ1 − Δ

′

1
< 0 which implies596

Δ
′

1
+ Δ

′

2
= max{0, Δ1 + Δ

′

2
} = 0. Furthermore, we see that exp( 𝜀

Δ
𝑓𝑘(𝑥)) = exp(𝜀Δ

′

2
/Δ) exp(

𝜀

Δ
𝑓𝑘(𝑥))597

and∑
𝑘

𝑖=1
exp(

𝜀

Δ
𝑓𝑖(𝑥

′
)) ≤ exp(𝜀Δ

′

1
/Δ)∑

𝑘

𝑖=1
exp(

𝜀

Δ
𝑓𝑖(𝑥)) which implies the inequality above.598

Combining our two inequalities along with the fact that Δ1 ≤ Δ𝑘(𝑥, 𝑥
′
) completes the proof.599

600

Now that we’ve bounded the one-sided privacy loss for neighboring datasets for each type of noise,601

this will immediately imply an overall privacy bound over all neighbors that utilizes this general602

characterization.603

Corollary B.1. For a stream of queries {𝑓𝑖} with sensitivity Δ and threshold 𝑇 , Algorithm 1 with Lap,604

Gumbel, or Expo noise is 𝜀-DP where605

𝜀 = max

𝑥∼𝑥
′

𝜀(𝑥, 𝑥
′
)

and for Gumbel noise we must have 𝜀1 = 𝜀2.606

B.2 Range-bounded definition and properties607

The definition of range-bounded was originally introduced in Durfee and Rogers (2019) to tighten608

the privacy bounds on the composition of exponential mechanisms. The analysis was further609

extended in Dong et al. (2020) to give the optimal composition of range-bounded mechanisms. This610

definition was then unified with other definitions in Cesar and Rogers (2021).611

Definition B.2 (Durfee and Rogers (2019)). A mechanism 𝑀 ∶  →  is 𝜀-range-bounded if for612

any neighboring datasets 𝑥, 𝑥′ ∈  and outcomes 𝑦, 𝑦′ ∈  :613

Pr [𝑀(𝑥) = 𝑦]

Pr [𝑀(𝑥
′
) = 𝑦]

≤ 𝑒
𝜀
Pr [𝑀(𝑥) = 𝑦

′
]

Pr [𝑀(𝑥
′
) = 𝑦

′
]

If we have bounds upon this property that are stronger than those immediately implied by DP, then614

it was shown in Dong et al. (2020) that substantial improvements can be made in bounding the615

overall DP over the composition of these mechanisms. While these improvements can be applied616

to our results here as well, we focus upon the privacy bounds with respect to zCDP as it is much617

cleaner to work with in providing strong composition bounds. From the proof of Lemma 3.4 in618

Cesar and Rogers (2021) we see that the range-bounded property can give a significant improvement619

in zCDP properties compared to similar DP guarantees.620

Proposition 2 (Cesar and Rogers (2021)). If a mechanism 𝑀 is 𝜀-range-bounded then it is 1

8
𝜀
2-zCDP.621

Our general characterization is already set up to provide range-bounded properties of622

AboveThreshold. This will allow us to give tighter guarantees on the range-boundedness which623

can be translated to better privacy composition bounds.624

Corollary B.2. For a stream of queries {𝑓𝑖} and threshold 𝑇 , Algorithm 1 with Lap, Gumbel, or Expo625

noise is 𝜀-range-bounded where626

𝜀 = max

𝑥∼𝑥
′
(𝜀(𝑥, 𝑥

′
) + 𝜀(𝑥

′
, 𝑥))

and for Gumbel noise we must have 𝜀1 = 𝜀2.627
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Proof. We can rewrite the inequality from Definition B.2 as equivalently628

Pr [𝑀(𝑥) = 𝑦] ⋅ Pr [𝑀(𝑥
′
) = 𝑦

′

] ≤ 𝑒
𝜀Pr [𝑀(𝑥

′
) = 𝑦] ⋅ Pr [𝑀(𝑥) = 𝑦

′

]

Our claim then follows immediately by applying Lemma B.1 and Lemma B.3629

B.3 Improved composition analysis of SVT630

In this section we complete our analysis for improving the privacy bounds for sparse vector631

technique. While our generalized characterization was in a more complex form, we simplify it here632

for general queries and monotonic queries. This will then match up to the privacy guarantees that633

we gave in Section 3 for AboveThreshold.634

Lemma B.4. Given a stream of queries {𝑓𝑖} with sensitivity Δ then for any neighboring datasets635

𝜀(𝑥, 𝑥
′
) ≤ 𝜀1 + 2𝜀2. If the queries are monotonic then for any neighboring datasets 𝜀(𝑥, 𝑥′) ≤ 𝜀1 + 𝜀2,636

and furthermore, 𝜀(𝑥, 𝑥′) + 𝜀(𝑥
′
, 𝑥) ≤ 𝜀1 + 2𝜀2.637

Proof. By Definition 2.2 we must always have Δ𝑘(𝑥, 𝑥
′
) ≤ Δ for any neighboring datasets. Fur-638

thermore, we must also have 𝑓𝑘(𝑥
′
) − 𝑓𝑘(𝑥) ≥ −Δ for any neighboring datasets. This implies639

𝜀(𝑥, 𝑥
′
) ≤ 𝜀1 + 2𝜀2 for any neighboring datasets.640

Now assume the queries are monotonic. Without loss of generality assume 𝑓𝑘(𝑥) ≥ 𝑓𝑘(𝑥
′
) for all641

𝑘. Therefore Δ𝑘(𝑥, 𝑥
′
) = 0 and 𝑓𝑘(𝑥

′
) − 𝑓𝑘(𝑥) ≥ −Δ, which implies 𝜀(𝑥, 𝑥′) ≤ 𝜀2. Similarly we have642

Δ𝑘(𝑥
′
, 𝑥) ≤ Δ but also 𝑓𝑘(𝑥) − 𝑓𝑘(𝑥

′
) ≥ 0, which implies 𝜀(𝑥′, 𝑥) ≤ 𝜀1 + 𝜀2. Combining these implies643

𝜀(𝑥
′
, 𝑥) ≤ 𝜀1 + 𝜀2 and 𝜀(𝑥

′
, 𝑥) + 𝜀(𝑥, 𝑥

′
) ≤ 𝜀1 + 2𝜀2 for any neighboring datasets.644

This lemma along with Corollary B.1 immediately imply Corollary 3.1 and Lemma 3.2645

Proof of Theorem 1. From Lemma B.4 and Corollary B.2 we have that Algorithm 1 is 𝜀1 + 2𝜀2-range-646

bounded. Applying Proposition 2 then gives the zCDP guarantees.647

The sparse vector technique is simply an iterative call to AboveThreshold and as such the privacy648

bounds will come from the composition. By analyzing the composition through zCDP which649

has become commonplace in the privacy community, we can immediately improve the privacy650

guarantees for monotonic queries in the sparse vector technique. Furthermore we can also improve651

the privacy guarantees under the standard definition using the improved composition bounds for652

range-bounded mechanisms from Dong et al. (2020).653

We also note here that the generalized Sparse Vector Technique given in Lyu et al. (2017) only adds654

noise once to the threshold and only has to scale the noise to the number of calls to AboveThreshold655

for the queries and not the threshold. Our analysis can extend to give the same properties for Lap656

and Expo noise, but utilizing advanced composition properties will give far more accuracy. More657

specifically, the threshold and queries having noise proportional to
√

𝑐/𝜀, is preferable to all the658

queries having noise proportional to 𝑐/𝜀, and only the threshold proportional to 1/𝜀, where 𝑐 is the659

number of calls to AboveThreshold.660

B.4 Iterative exponential mechanism661

It is folklore that the peeling exponential mechanism is equivalent to taking the top-𝑘 after adding662

Gumbel noise, as formally shown in Lemma 4.2 of Durfee and Rogers (2019). We show a similar663

property here for AboveThreshold with Gumbel noise that it is equivalent to iteratively running664

the exponential mechanism.665

Lemma B.5. If 𝜀1 = 𝜀2 = 𝜀/2 then Algorithm 1 with Gumbel noise gives the equivalent output666

distribution to Algorithm 3.667

Proof. We first define668

𝑝𝑘 =

exp(
𝜀

2Δ
𝑓𝑘(𝑥))

exp(
𝜀

2Δ
𝑇 ) + ∑

𝑘

𝑖=1
exp(

𝜀

2Δ
𝑓𝑖(𝑥))
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Algorithm 3 Iterative Exponential Mechanism
Require: Input dataset 𝑥 , a stream of queries {𝑓𝑖 ∶  → ℝ} with sensitivity Δ, and a threshold 𝑇

1: for each query 𝑖 do
2: Run exponential mechanism with  = {0, ..., 𝑖} where 𝑞(𝑥, 0) = 𝑇 and 𝑞(𝑥, 𝑗) = 𝑓𝑗 (𝑥) for all

𝑗 > 0

3: if 𝑖 is selected then
4: Output ⊤ and halt
5: else
6: Output ⊥
7: end if
8: end for

By construction, the probability of Algorithm 3 outputting {⊥
𝑘−1

, ⊤} is equal to 𝑝𝑘 ∏
𝑘−1

𝑖=1
(1 − 𝑝𝑖).669

Furthermore, by our definition of 𝑝𝑘 we have670

1 − 𝑝𝑘 =

exp(
𝜀

2Δ
𝑇 ) + ∑

𝑘−1

𝑖=1
exp(

𝜀

2Δ
𝑓𝑖(𝑥))

exp(
𝜀

2Δ
𝑇 ) + ∑

𝑘

𝑖=1
exp(

𝜀

2Δ
𝑓𝑖(𝑥))

Through telescoping cancellation671

𝑘−1

∏

𝑖=1

(1 − 𝑝𝑖) =

exp(
𝜀

2Δ
𝑇 )

exp(
𝜀

2Δ
𝑇 ) + ∑

𝑘−1

𝑖=1
exp(

𝜀

2Δ
𝑓𝑖(𝑥))

From Lemma B.2 we then see that the output probabilities are equivalent.672

673

C Additional unbounded quantile estimation results674

In this section we first extend our method to the fully unbounded setting by simply making two675

calls to AboveThreshold and essentially searching through both positive and negative numbers in676

each respective call. Next we show how our methods can also extend to the add-subtract definition677

of neighboring. Further, we’ll apply our approach to the framework set up in Kaplan et al. (2022)678

for computing multiple quantiles and extend it to the swap definition.679

C.1 Fully unbounded quantile estimation680

Recall that our unbounded quantile estimation algorithm assumed that the data was lower bounded.681

It then slowly increased that bound by a small percentage until the appropriate amount of data fell682

below the threshold for the given quantile. In order to extend to the fully unbounded setting, we683

will simply first apply this guess and check method to the positive numbers and then apply it to the684

negative numbers.685

Algorithm 4 Fully unbounded quantile mechanism
Require: Input dataset 𝑥 , a quantile 𝑞, and parameter 𝛽 > 1

1: Run AboveThreshold with 𝑥 , 𝑇 = 𝑞𝑛 and 𝑓𝑖(𝑥) = |{𝑥𝑗 ∈ 𝑥|𝑥𝑗 + 1 < 𝛽
𝑖
}|

2: Run AboveThreshold with 𝑥 , 𝑇 = (1 − 𝑞)𝑛 and 𝑓𝑖(𝑥) = |{𝑥𝑗 ∈ 𝑥|𝑥𝑗 − 1 > −𝛽
𝑖
}|

3: If the first AboveThreshold halts at 𝑘 > 0 then output 𝛽𝑘
− 1

4: If the second AboveThreshold halts at 𝑘 > 0 then output −𝛽𝑘
+ 1

5: Otherwise return 0

Note that the second call could equivalently be achieved by flipping the sign of all the datapoints686

and again applying queries 𝑓𝑖(𝑥) = |{𝑥𝑗 ∈ 𝑥|𝑥𝑗 + 1 < 𝛽
𝑖
}|. Therefore all our privacy guarantees from687

Section 4 will still apply, but composing over two calls to AboveThreshold, which is the Sparse688

Vector Technique.689
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In the first call to AboveThreshold we are assuming a lower bound of 0, and searching the positive690

numbers. If it terminates immediately then it is likely that more than a 𝑞th fraction of the data691

is below 0. We then symmetrically search through the negative numbers by assuming an upper692

bound of 0. If this halts immediately then it is likely that the quantile is already near 0. We could693

also apply other variants of this, such as three total calls to get the maximum and minimum of the694

data if we wanted full data bounds.695

Further note that computing the smallest quantiles will be challenging for our algorithm because it696

may take many queries to get to the appropriate threshold, but each query will have a reasonable697

chance of terminating if 𝑞 is very small. To account for these queries in the lower-bounded setting,698

we can invert all the datapoints and instead search for quantile 1 − 𝑞 on this transformed data, then699

invert our resulting estimate. We would also need to reduce our parameter 𝛽 a reasonable amount700

in this setting.701

C.2 Extension to add-subtract neighbors702

We also extend our results to the add-subtract definition of neighboring datasets.703

Definition C.1. Datasets 𝑥, 𝑥′ ∈  are neighboring if one of them can be obtained from the other by704

adding or removing one individual’s data.705

Under this definition we see that our threshold 𝑇 = 𝑞𝑛 is no longer fixed, so we will instead set706

each query to be 𝑓𝑖(𝑥) = |{𝑥𝑗 ∈ 𝑥|𝑥𝑗 − 𝓁 + 1 < 𝛽
𝑖
}| − 𝑞𝑛. Unfortunately this query will no longer be707

monotonic, so we will instead take advantage of our more general characterization in Section B.1 to708

further tighten the privacy bounds in this setting.709

Lemma C.1. Given the stream of queries 𝑓𝑖(𝑥) = |{𝑥𝑗 ∈ 𝑥|𝑥𝑗 − 𝓁 + 1 < 𝛽
𝑖
}| − 𝑞𝑛 with sensitivity710

Δ = 1, for any neighboring datasets 𝑥, 𝑥′ under Definition C.1 and quantile 𝑞 ∈ [0, 1] we have711

𝜀(𝑥, 𝑥
′
) ≤ max{(1 − 𝑞)𝜀1, 𝑞𝜀1 + 𝜀2}.712

Proof. Without loss of generality, assume that 𝑥 has one more individuals data, so 𝑥 ∈ ℝ
𝑛 and713

𝑥
′
∈ ℝ

𝑛−1. Let 𝑔𝑖(𝑥) = |{𝑥𝑗 ∈ 𝑥|𝑥𝑗 − 𝓁 + 1 < 𝛽
𝑖
}|. By construction we must have 𝑔𝑖(𝑥) − 𝑔𝑖(𝑥

′
) ∈ {0, 1}714

because 𝑥 has an additional datapoint. Furthermore, because the thresholds are increasing, if715

𝑔𝑘(𝑥) − 𝑔𝑘(𝑥
′
) = 1 then 𝑔𝑖(𝑥) − 𝑔𝑖(𝑥

′
) = 1 for all 𝑖 > 𝑘. Similarly if 𝑔𝑘(𝑥) − 𝑔𝑘(𝑥

′
) = 0 then716

𝑔𝑖(𝑥) − 𝑔𝑖(𝑥
′
) = 0 for all 𝑖 < 𝑘. We further see that 𝑓𝑖(𝑥) − 𝑓𝑖(𝑥

′
) = 𝑔𝑖(𝑥) − 𝑔𝑖(𝑥

′
) − 𝑞 for all 𝑖.717

First consider the case when 𝑔𝑘(𝑥) − 𝑔𝑘(𝑥
′
) = 0. We therefore have 𝑔𝑖(𝑥) − 𝑔𝑖(𝑥

′
) = 0 for all 𝑖 < 𝑘718

so Δ𝑘(𝑥, 𝑥
′
) = 𝑞, and also Δ𝑘(𝑥, 𝑥

′
) − (𝑓𝑘(𝑥

′
) − 𝑓𝑘(𝑥)) = 0, so 𝜀(𝑥, 𝑥

′
) ≤ 𝑞𝜀1. Similarly, we have719

Δ𝑖(𝑥
′
, 𝑥) = 0 and Δ𝑘(𝑥, 𝑥

′
) − (𝑓𝑘(𝑥

′
) − 𝑓𝑘(𝑥)) = 𝑞, so 𝜀(𝑥

′
, 𝑥) ≤ 𝑞𝜀2.720

Next consider the case when 𝑔𝑘(𝑥) − 𝑔𝑘(𝑥
′
) = 1. Therefore we have Δ𝑘(𝑥, 𝑥

′
) ≤ 𝑞 and also721

𝑓𝑘(𝑥
′
) − 𝑓𝑘(𝑥) = 𝑞 − 1 which implies Δ𝑘(𝑥, 𝑥

′
) − (𝑓𝑘(𝑥

′
) − 𝑓𝑘(𝑥)) ≤ 1, so 𝜀(𝑥, 𝑥′) ≤ 𝑞𝜀1 + 𝜀2. Similarly,722

we have that Δ𝑘(𝑥
′
, 𝑥) ≤ 1 − 𝑞, and thus Δ𝑘(𝑥

′
, 𝑥) − (𝑓𝑘(𝑥) − 𝑓𝑘(𝑥

′
)) = 0, so 𝜀(𝑥

′
, 𝑥) ≤ (1 − 𝑞)𝜀1.723

Combining these bounds gives our desired result.724

725

With these improved bounds we can then show that our methods also extend to the add-subtract726

definition of neighboring with tighter privacy guarantees.727

Corollary C.1. If we run Algorithm 2 with 𝜀1 = 𝜀2 for a quantile 𝑞 under Definition C.1 then it is728

(𝑞𝜀1 + 𝜀2)-DP. Further if the noise in AboveThreshold is Gumbel then it achieves 1

8
(𝜀1 + 𝜀2)

2-zCDP.729

Proof. Combining Lemma C.1 and Corollary B.1 immediately imply the first claim. For the second730

claim, we further examine the proof Lemma C.1 and reconsider the case when 𝑔𝑘(𝑥) − 𝑔𝑘(𝑥
′
) = 0.731

Also note the relaxation for Gumbel noise in Lemma B.3. We then have Δ𝑘(𝑥
′
, 𝑥) = −𝑞 and thus732

Δ𝑘(𝑥, 𝑥
′
) − (𝑓𝑘(𝑥

′
) − 𝑓𝑘(𝑥)) = 0, which instead implies 𝜀(𝑥′, 𝑥) ≤ 0 for this case. Therefore under733

these conditions, for neighbors 𝑥, 𝑥′ we have without loss of generality that 𝜀(𝑥, 𝑥′) ≤ 𝑞𝜀1 + 𝜀2 and734

𝜀(𝑥
′
, 𝑥) ≤ (1 − 𝑞)𝜀1. Therefore it must be (𝜀1 + 𝜀2)-range-bounded and applying Proposition 2 gives735

the zCDP guarantees.736

737
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C.3 Extension to multiple quantile estimation738

As previously established, the framework in Kaplan et al. (2022) is agnostic to the single quantile739

estimation method. However their proof is for the add-subtract neighbors, although they note that740

it can be extended easily to the swap neighbors. We also discuss here how it can be extended for741

completeness.742

For the swap neighboring definition, at each level of the recursive partitioning scheme either two743

partitions differ under the add-subtract definition, or one partition differs under the swap definition.744

Applying their framework to our algorithm, we will instead compute all the thresholds in advance745

of the splitting. Accordingly these thresholds will remain fixed. If the thresholds are fixed then we746

can actually further improve our privacy bounds for the add-subtract definition. Once again we747

will use our more general characterization from Section B.1.748

Lemma C.2. Given the stream of queries 𝑓𝑖(𝑥) = |{𝑥𝑗 ∈ 𝑥|𝑥𝑗 − 𝓁 + 1 < 𝛽
𝑖
}| with sensitivity Δ = 1, for749

any neighboring datasets 𝑥, 𝑥′ under Definition C.1 we have 𝜀(𝑥, 𝑥′) ≤ max{𝜀1, 𝜀2}750

Proof. Without loss of generality, assume that 𝑥 has one more individuals data, so 𝑥 ∈ ℝ
𝑛 and751

𝑥
′
∈ ℝ

𝑛−1. By construction we must have 𝑓𝑖(𝑥)−𝑓𝑖(𝑥
′
) ∈ {0, 1} because 𝑥 has an additional datapoint.752

Furthermore, because the thresholds are increasing, if 𝑓𝑘(𝑥) − 𝑓𝑘(𝑥
′
) = 0 then 𝑓𝑖(𝑥) − 𝑓𝑖(𝑥

′
) = 0 for753

all 𝑖 < 𝑘. Thus the case of 𝑓𝑘(𝑥) − 𝑓𝑘(𝑥
′
) = 0 is easy.754

Instead consider 𝑓𝑘(𝑥) − 𝑓𝑘(𝑥
′
) = 1. We know Δ𝑘(𝑥, 𝑥

′
) = 0 so Δ𝑘(𝑥, 𝑥

′
) − (𝑓𝑘(𝑥

′
) − 𝑓𝑘(𝑥)) = 1, so755

𝜀(𝑥, 𝑥
′
) ≤ 𝜀2. Further we must have Δ𝑘(𝑥

′
, 𝑥) ≤ 1 and Δ𝑘(𝑥

′
, 𝑥)−(𝑓𝑘(𝑥)−𝑓𝑘(𝑥

′
)) = 0, so 𝜀(𝑥′, 𝑥) ≤ 𝜀1.756

Combining these implies 𝜀(𝑥′, 𝑥) ≤ max{𝜀1, 𝜀2} for any neighboring datasets.757

758

Applying these bounds we see that applying the framework of Kaplan et al. (2022) to the swap759

definition either leads to one composition of (𝜀1+𝜀2)-DP for the swap definition or two compositions760

of max{𝜀1, 𝜀2} for the add-subtract definition at each level. Setting 𝜀1 = 𝜀2 we then have that the761

privacy cost of computing 𝑚 quantiles with this framework will be equivalent to log(𝑚 + 1)762

compositions of (𝜀1 + 𝜀2)-DP.763

C.4 Applying permute-and-flip framework to EMQ764

It would be an interesting future direction to see if the EMQ method could also instead effectively765

utilize the permute-and-flip framework from McKenna and Sheldon (2020) that was shown to766

improve accuracy. While this framework is equivalent to adding Expo noise for report noisy max,767

the quantile problem requires considering an infinite domain, which makes the Expo noise addition768

procedure impossible. Using this alternate, but equivalent Ding et al. (2021), approach can make this769

possible. If we look at Algorithm 3 from McKenna and Sheldon (2020) we could also extend this to770

drawing a single point uniformly in the interval, then drawing the Bernoulli and removing it from771

the interval. However due to the continuous nature of the interval, it’s unlikely that performing772

this sampling without replacement will have any noticeable improvement over sampling with773

replacement which is equivalent to the exponential mechanism. Furthermore, we cannot run774

this framework as efficiently because there are no corresponding nice closed form expressions775

compared to the exponential mechanism. Ideally, we would modify this approach to draw each776

interval proportional to it’s length, then draw the Bernoulli and remove the interval. However it is777

critical to note that this does not give an identical distribution because the sampling is done without778

replacement. Accordingly this simple modification would not work, but there could potentially be779

other effective changes to fit this framework that we leave to future work.780

Furthermore, we note that adding Expo noise for report noisy max does not achieve the range-781

bounded property that the exponential mechanism enjoys Durfee and Rogers (2019). So the compo-782

sition improvements for zCDP from Proposition 2 could not be applied.783

D Further Experiment Details784

In this section we provide some follow-up details from our empirical evaluation.785

20



D.1 Data histograms786

We provide histograms of our datasets for better understanding in Figure 3.787

(a) Uniform (b) Gaussian (c) Book ratings

(d) Book pages (e) Census ages (f) Census hours

Figure 3: Histograms for each of our datasets.

D.2 Parameter tuning788

We kept our 𝛽 parameter fixed in all experiments for consistency but also to make our method789

data agnostic. However, our choice was aggressively small in order to achieve higher precision in790

the inner quantile estimation comparison in Section 5.2. This choice was still highly resilient to791

changes in 𝜀 for our sum experiments as we see our error only scaled proportional to the increase792

in noise. But for more significant decreases in 𝜀 or in the data size, i.e. the conditions under which793

all private algorithms suffer substantial accuracy loss, this choice of 𝛽 could be too small. Those794

settings imply that the noise added is larger and the distance between queries and threshold shrinks,795

so our method is more likely to terminate earlier than desired. Smaller 𝛽 values will then intensify796

this issue as the candidate values increase more slowly. For the clipping application, we generally797

think using a value of 𝛽 = 1.01 would be a more stable choice. In fact, some preliminary testing798

shows that this setting actually improves our results in Table 1. Furthermore, increasing 𝛽 will also799

reduce the number of queries and thus the computational cost. We leave to future work a more800

thorough analysis of this parameter to determine a good default value that performs well agnostic801

to the input data. Additionally, all our methods and proofs only require an increasing sequence802

of candidate values and it’s possible that other potential sequences would be even more effective.803

For example, if tight upper and lower bounds are known on the data, such as within the recursive804

computation of multiple quantiles, then it likely makes more sense to simply uniformly partition805

the interval and check in increasing order. But we leave more consideration upon this to future806

work as well.807

Our choice of 𝑞 = 0.99 in the differentially private sum experiments was also to maintain consistency808

with the choices for the previous method but also to keep variance of the estimates lower. This809

will create some negative bias as we then expect to clip the data. As we can see in our illustrative810

example Figure 2, the PDF will exponentially decrease once we pass the true quantile value, but811

will do so less sharply once all the queries have value 𝑛. Accordingly, setting 𝑞 = 1.0 would add812

slightly more variance to the estimation but initial testing showed improvement in error. However,813

if the user would prefer slightly higher variance to avoid negative bias, then setting the threshold814

at 𝑛 or even 𝑛 + 1/𝜀, would make it far more likely that the process terminates with a value slightly815

above the maximum. This is particularly useful for heavy-tailed data, where clipping at the 99th816

percentile can have an out-sized impact on the bias. We leave a more rigorous examination of these817

bias-variance tradeoffs for good default settings to future work.818
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D.3 Implementation code819

For ease of implementation, we provide some simple python code to run our method with access820

to the respective Noise generator of the users choosing. In our experiments we used exponential821

noise from the numpy library.822

823
def unboundedQuantile(data , l, b, q, eps_1 ,eps_2):824

d = defaultdict(int)825

for x in data:826

i = math.log(x-l+1,b) // 1827

d[i] += 1828

829

t = q * len(data) + noise(1/eps_1)830

cur , i = 0, 0831

while True:832

cur += d[i]833

i += 1834

if cur + noise(1/eps_2) > t:835

break836

return b**i - l + 1837838
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