
Sample Complexity of Goal-Conditioned Hierarchical
Reinforcement Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Hierarchical Reinforcement Learning (HRL) algorithms can perform planning at1

multiple levels of abstraction. Empirical results have shown that state or temporal2

abstractions might significantly improve the sample efficiency of algorithms. Yet,3

we still do not have a complete understanding of the basis of those efficiency4

gains, nor any theoretically-grounded design rules. In this paper, we derive a5

lower bound on the sample complexity for the proposed class of goal-conditioned6

HRL algorithms (e.g. Dot-2-Dot) that lead us to a novel Q-learning algorithm and7

clearly establishes the relationship between the properties of the decomposition8

and the sample complexity. Specifically, the proposed lower bound on the sample9

complexity of such HRL algorithms allows to quantify the benefits of hierarchical10

decomposition. We build upon this to formulate a simple Q-learning-type algo-11

rithm that leverages goal hierarchical decomposition. We empirically validate12

our theoretical findings by investigating the sample complexity of the proposed13

hierarchical algorithm on a spectrum of tasks. The tasks were designed to allow14

us to dial up or down their complexity over multiple orders of magnitude. Our15

theory and algorithmic findings provide a step towards answering the foundational16

question of quantifying the improvement hierarchical decomposition offers over17

monolithic solutions in reinforcement learning.18

1 Motivation19

Hierarchical Reinforcement Learning (HRL) [25, 7, 8, 3] leverages the hierarchical decomposition20

of a problem to build algorithms that are more sample efficient. While there is significant empirical21

evidence that hierarchical implementations can drastically improve the sample efficiency of Rein-22

forcement Learning (RL) algorithms [18, 19, 27, 7], there are also cases where temporal abstraction23

worsens the empirical sample complexity [15]. Therefore, a natural question to ask is when does24

HRL lead to improved sample complexity and how much of an improvement can it provide?25

Theoretical work on sample-complexity bounds in Machine Learning has been integral to the devel-26

opment of the field. Moreover, theoretical results (e.g. [6, 16, 2, 14, 24]) often uncover interesting27

principles that are useful for improving algorithm design. For example, the Q-learning algorithm28

analysed in [14] improved our understanding of exploration strategies in model-free RL and the29

policy gradient theorem [24] gave birth to a wide range of new RL methods. In contrast, there are few30

theoretical results in hierarchical RL and many key studies are empirical in nature, e.g. hierarchies of31

states [7, 9], time [21], or action [26, 20, 1].32

To address this gap in the literature, we consider a tabular version of the goal-based approach to33

HRL [18, 3] and we analyze the induced MDP decomposition to derive a lower bound on the sample34

complexity of this specific HRL framework. This lower bound allows us to understand when a35

hierarchical decomposition is beneficial and motivates a new hierarchical Q-learning algorithm that36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

Environment

high-level policy
πh

low-level policy
πl

(sh, rh)

gsub

a

(s
l ,r

l) MO = ⟨S,A, P, r, p0, H⟩

Mh = ⟨Sh,Ah, Ph, rh, p0,h, Hh⟩Ml = ⟨Sl ×Ah,A, Pl, rl, p0,l, Hl⟩

Figure 1: The leftmost diagram depicts the interaction between the different components of a goal-
conditioned hierarchical agent. The pair (sh, rh) denotes the high-level state and reward, while
gsub, rl denotes the sub-goal chosen by the high-level policy as well as the reward associated with
it. Sl is the low-level state space and lastly, a is the primitive action used by the low-level policy to
interact with the environment. The rightmost diagram illustrates the MDP decomposition considered.

can leverage the hierarchical structure to improve its sample efficiency. In the goal-based HRL37

framework that we consider, a high-level policy and a low-level policy are jointly learned to solve38

an overarching goal together. In such a goal-hierarchical RL system, the high-level policy chooses39

a sub-goal for the low-level policy, which in turn executes primitive actions in order to solve the40

sub-goal (Fig. 1, left diagram). This natural way to break down tasks is universal (i.e. can be applied41

to a wide range of tasks) and it induces a decomposition of the original MDP into two sub-MDPs42

(detailed in Sec. 2.2).43

This paper improves our understanding of HRL through the following contributions:44

• We provide a lower bound on the sample complexity associated with the hierarchical45

decomposition (see Sec. 3). This lower bound allows practitioners to quantify the efficiency46

gain they might obtain from decomposing their task.47

• We proposes a simple, yet novel, Q-learning-type algorithm for goal-hierarchical RL,48

inspired by the type of decomposition considered (see Sec. 4).49

• We empirically validate the theoretical findings using a synthetic task with hierarchical50

properties that can be scaled in complexity (see Sec. 5). This evidence confirms that the51

derived bound is able to successfully identify instances where a hierarchical decomposition52

could be beneficial (see Sec. 5).53

2 Background54

Online reinforcement learning [23] algorithms aim to learn an optimal policy (i.e. a policy that55

maximizes the reward accumulated) only through interactions with the environment. When a task is56

too complex, the number of interactions required to learn a near-optimal policy becomes prohibitive.57

The task complexity typically depends on the difficulty of temporal credit assignment (which is58

directly related to the episode length) and the size of the state space [17]. To address this complexity,59

HRL leverages temporal abstractions [25] and state abstractions [7] to improve sample efficiency60

when learning an optimal policy. There exists a wide range of HRL frameworks, see [13] for a61

survey. In this paper, we focus on the goal-conditioned HRL framework [18, 3]. Of the other62

HRL frameworks, only the options framework [25] and the resulting semi-Markov Decision Process63

[11, 28, 4, 10] are supported by a well-developed theory. However, in practice, the goal-conditioned64

hierarchical framework presented in figure 1 is often preferred. Unlike the options framework, the65

goal-conditioned HRL framework requires no prior knowledge about the task [13] and introduces the66

opportunity to generalize over the goal space, leading to significant performance gains in benchmark67

tasks [27, 18, 12]. Additionally, the option framework does not directly allow for state abstraction68

and often considers that the transition function is known. These differences mean that we cannot69

directly apply the analysis in the options literature [10, 11, 28] to our goal-conditioned HRL setting,70

where we consider state abstraction, action abstraction, time abstraction and jointly learn all level of71

the hierarchy through interaction with the environment.72

For the remainder of this section, we define episodic finite-horizon MDPs and the hierarchical73

decomposition we consider.74

2

2.1 Episodic finite-horizon Markov Decision Process75

An episodic finite-horizon Markov Decision Process (MDP) is defined by the following tuple:76

M = ⟨S,A, r, P, p0, H⟩. Where S is a finite state space of size |S| and A is a finite action space77

of size |A|. The goal of the task is encoded in a terminal state g ∈ S. We assume the reward78

function r(s, g) ∈ [−a, b] (for a, b ≥ 0) is known ∀s ∈ S, g ∈ S . The initial state distribution p0 is a79

distribution over states that is used to determine in which state an episode starts. The learner interacts80

with the MDP in episodes of at most H time steps. The starting state s0 ∼ p0 of the episode is drawn81

from the initial state distribution. In each time step t = 0, . . . ,H − 1 the learner observes a state st82

and chooses an action at. Given a state action pair (st, at) the next state st+1 ∼ P (·|st, at) is drawn83

from the transition kernel. Eventually, the episode ends either because the agent reaches the terminal84

state, or because it interacted with the environment for H time-steps.85

The objective of the agent is to select actions that maximize the expected return over the duration of86

an episode. We typically assume actions are chosen according to a policy, at ∼ π(st), where π is a87

function that maps each state and time step pair to a distribution over actions π : S × [H − 1] → ∆A,88

and ∆A is the set of all probability distributions over A. The agents aim is to select a policy π to89

maximize the sum of expected rewards, E[
∑H

t=1 rt|at ∼ π(st)], where the expectation is over the90

initial state distribution, the policy and the stochastic transitions. Note, that it is usually the case91

for finite-horizon MDPs that the policy also depends on the current time step, however to simplify92

notation we do not make this relation explicit.93

For a given policy π, we define the value function, V π
τ (s), and the Q-function, Qπ

τ (s, a), at time step94

τ ∈ [H − 1] as follows:95

V π
τ (s) = E

[H−1∑
t=τ

rt|sτ = s, aτ :H−1 ∼ π

]
(1)

Qπ
τ (s, a) = E

[H−1∑
t=τ

rt|sτ = s, aτ = a, aτ+1:H−1 ∼ π

]
, (2)

where s ∈ S denotes the state, a ∈ A is the action and the notation aτ :H−1 ∼ π is used to specify96

that actions between time step τ and time step H − 1 were selected using π. The optimal policy π∗97

is the policy with the highest value function for every time step and every state, V π∗

τ (s) = V ∗
τ (s) =98

maxπ V
π
τ (s)∀τ ∈ [H − 1],∀s ∈ S. There is always a deterministic Markov policy that maximizes99

the total expected reward in a finite-horizon MDP [22].100

In this article, we assess the quality of a policy by its expected value at the beginning of an episode.101

To lighten the notation, we define V π = Es0∼p0
[V π

0 (s)] to be the expected value from the beginning102

of an episode where the expectation is taken over initial states.103

2.2 Episodic finite-horizon hierarchical MDP104

For a given episodic finite-horizon MDP Mo we assume it can be hierarchically decomposed into a105

pair of MDPs (Ml,Mh) as illustrated on right diagram of figure 1. To avoid any ambiguity, when106

necessary, we use the following notation: the subscript o denotes the original MDP, while subscripts l107

and h denote low-level and high-level MDPs, respectively.108

The low-level and high-level MDPs consist of the following tuples Ml = ⟨Sl×Ah,A, rl, Pl, p0,l, Hl⟩109

and Mh = ⟨Sh,Ah, rh, Ph, p0,h, Hh⟩, respectively. In order to be a valid hierarchical decomposition110

we require that these MDPs satisfy the following set of conditions:111

Action space: The low-level action space consists of the set of primitive actions that the agent can use112

to interact with the environment. It is equivalent to the original MDP action space A. The high-level113

action space Ah is the set of the sub-goals the high-level agent can instruct to the low-level agent.114

Note that the set of available actions Ah(sh) depends on the current high-level state sh. To simplify115

our notation we do not make this relationship explicit.116

State spaces: The low-level state sl and the high-level state sh contain all necessary information to117

reconstruct the corresponding state, s, in the original MDP. States s ∈ S ⊂ Rd are usually described118

as multi-dimensional vectors, where each dimension encodes a specific characteristic. For example,119

a state description can be factored in a tuple (sl, sh) ∈ Sl × Sh with a part of the state description120

that belongs to the low-level MDP and another part to the high-level MDP. Hence any state s ∈ So121

3

can be represented by a tuple (sl, sh) ∈ Sl × Sh. Additionally, since the low-level policy is goal122

conditioned, its state space also contains the goal description leading to the following state space for123

the low-level MDP: Sl ×Ah, a complete low-level state consist of the concatenation of the low-level124

state description sl and the sub-goal description ah.125

Initial state distribution: The high-level initial state distribution p0,h is a restriction of the original126

state distribution p0 on Sh. The low-level initial state distribution p0,l(·|sh,0) is conditioned on the127

initial high-level state sh,0 and spans the low-level space, ensuring that p0(s) = p0,h(sh)p0,l(sl|sh),128

where sl and sh are the decomposition of s.129

Transition functions: The low-level transition function Pl is the restriction of P on Sl ×Ah. One130

challenge in HRL is that the high-level transition function, Ph, depends on the low-level policy131

since the quality of the low-level policy influences the likelihood of reaching a sub-goal state. The132

high-level transition probability Ph(s
′
h|sh, ah, πl) is the probability that the agent transitions to s′h133

given the current high-level state sh, the sub-goal ah and low level policy πl. Since Ph depends on134

the low-level policy it is non-stationary, making the learning task more challenging.135

Reward functions: Since the terminal states for the original MDP belong to S and the sub-goals for136

the low-level MDP lie in Sl. The low-level reward function can be obtained from the original reward137

function, rl(sl, gsub) = 2r(s, g), where s and g are the reconstruction of the low-level state and the138

sub-goal in the original MDP, using the current high-level state. The high-level reward function is the139

sum of rewards obtained by the low level during the sub-episode, where the high-level action plays140

the role of a sub-goal: rh(s, ah) =
∑Hl

t=1 rl(st, ah).141

Horizons: The original MDP allows for an episode to last at most H steps. Consequently, the horizons142

of the high-level, Hh, and low-level, Hl, MDPs must satisfy the following equality H = HhHl.143

Note that we can always find a decomposition that satisfies these assumptions; a naive way to144

decompose any MDP would be to consider a high-level agent whose only action encodes the end-goal145

of the task and a low-level with complete state information (i.e. it does not use state abstraction).146

While this decomposition is valid, it is not necessarily useful. Here, our goal is to identify when a147

given decomposition is useful, specifically in terms of improvements in the sample efficiency.148

We denote by πl a policy interacting with the low-level MDP Ml, and πh a policy interacting with149

the high-level MDP Mh. In goal-conditioned HRL, the low-level policy maps a (low-level state,150

sub-goal) pair to an action: πl : Sl × Ah → Al and the high-level policy maps a high-level state151

to a high-level action: πh : Sh → Ah. Each policy can be evaluated using the corresponding152

high and low level value functions V πl

l and V πh

h . Similar to the non-hierarchical case, we can153

define optimal high-level and low-level policies as π∗
l = argmaxπl

V πl

l for the low-level policy and154

π∗
l = argmaxπh

V πh

h for the high-level policy. Moreover, as we show below, every pair of policies155

(πl, πh) can be combined to produce a policy π that interacts with the original MDP Mo.156

Definition 2.1. A hierarchical policy consists of a pair (πl, πh) that can be mapped to a policy π in157

the original MDP Mo as follows:158

π(a|s) = π(a|sl, sh) =
∑

ah∈Ah

πh(ah|sh)πl(a|ah, sl). (3)

The optimal hierarchical policy denotes the policy obtained when merging (π∗
l , π

∗
h). It is important159

to note that not all policies π in the original MDP have a corresponding decomposition (πl, πh), and160

in particular, there is no guarantee that the optimal policy in the original MDP can be decomposed.161

Our goal is to understand when a hierarchical decomposition of the MDP allows us to learn a near-162

optimal policy faster. Therefore, we are interested in evaluating the performance of the combination163

of πl and πh while they interact with the original MDP Mo. To convey the fact that we are evaluating164

a hierarchical policy in the original MDP, we use the following notation: given a pair of policies165

(πl, πh) and their associated policy in the original MDP, π, the value function of the hierarchical166

policy is denoted by V πl,πh
o = Es0∼p0

[V π
o,0(s0)], where the subscript o is a reminder that we are167

evaluating a policy on the original MDP Mo.168

When learning in a decomposed MDP, the learner has to learn two policies, the high-level policy,169

πh, and the low-level policy, πl. This is done in an episodic setting where an episode unfolds as170

follows. Firstly, the learner observes the initial state and uses the high-level policy to find the most171

appropriate sub-goal. For the next Hl time steps the low-level policy attempts to solve the sub-goal.172

The low-level agent updates its policy at the end of each low-level steps. Once the Hl time steps are173

over or if the sub-goal has been reached, the high-level agent observes a new high-level state and174

4

can finally perform an update to its policy. If the overall task is not completed, the high-level agent175

instructs a new sub-goal. These interactions are repeated until the task is completed or the horizon H176

is reached. We can now think of HRL as two agents that interact with the environment. Often, each177

agent will try to find the policy that maximizes their own value function, maxπl
V πl

l and maxπh
V πh

h .178

2.3 Probably-Approximately Correct RL179

Our aim is to find, in as few episodes as possible, a pair of policies (πl, πh) which have a near-optimal180

value. To formalize this, we introduce the Probably-Approximately Correct (PAC) RL notion. We181

denote by ∆k the sub-optimality gap, that is the difference between the optimal (non-hierarchical)182

policy π∗ and the current hierarchical policy (πk
l , π

k
h): ∆k = V ∗

o − V
πk
l ,π

k
h

o . Note that both policies183

are evaluated on the original MDP Mo. The PAC guarantee in this paper follows the definition in [5].184

Definition 2.2. An algorithm satisfies a PAC bound N if for a given input ϵ, δ > 0, it satisfies the185

following condition for any episodic fixed-horizon MDP: with probability at least 1− δ, the algorithm186

plays policies that are at least ϵ-optimal after at most N episodes. That is, with probability at least187

1− δ,188

max{k ∈ N : ∆k > ϵ} ≤ N,

where N is a polynomial that can depend on the properties of the problem instance.189

In the Section 3, we will bound the sample complexity of HRL algorithms. In this context, the sample190

complexity refers to the number of episodes, N , during which the algorithm may not follow a policy191

that is at least ϵ-optimal with probability at least 1− δ.192

2.4 Running Example193

We consider the following companion example. The original MDP describes the task of solving a194

maze in a grid-world environment. The state consists of a tuple (R,C) that indicates in which room,195

R, and which cell within that room, C, the agent is currently in. The reward function incurs a small196

cost, −a, at each time step unless the agent reaches the absorbing goal state. Once the goal state is197

reached, the agent stops receiving penalties and receives a reward of 0 for all the remaining time steps.198

Mathematically, r(s) = −a1{s ̸= g} where g ∈ S is the goal state, and 1 is the indicator function.199

We can decompose this MDP as follows. The high-level MDP describes a similar maze, but instead200

of moving from cell to cell the agent is moving from room to room so the state is just the current201

room it is in. The aim of the high-level agent is to find the sequence of rooms that lead to the goal.202

Hence at each (high-level) time step, it indicates the most valuable exit the low-level agent should203

take from the room. As specified in section 2.2 the high-level reward for a sub-goal is the sum of the204

rewards accumulated by the low-level agent during that sub-episode. The low-level agent is myopic205

to other rooms - it only sees the current room and the exit it has to reach, and it receives a penalty206

of −2a for each action it takes unless it reaches the sub-goal, in which case it does not receive any207

penalty. Hence, if gsub is the sub-goal, it receives reward r(s) = −2a1{s ̸= gsub}.208

We will return to this example throughout the paper, but it should be noted that the framework we209

consider is general enough to be applied to a wide range of tasks. One such example is robotics,210

where the low-level agent would be tasked to control the joints of the robot to produce movements211

selected by the high-level policy whose goal is to perform tasks that require a sequence of distinct212

movements (i.e. navigational tasks, manipulation tasks or a combination of both).213

3 Lower bound on the sample complexity of HRL214

It has been proven in [6] that, for any RL algorithm, the number of sample episodes necessary to215

obtain an (ϵ, δ)-accurate policy (in the original MDP) is lower bounded by:216

E[N] = Ω

(
|S||A|H2

ϵ2
ln

(1

δ + c

))
, (4)

where c is a positive constant.217

We now extend this result to hierarchical MDPs. Before doing so, it is important to notice that even the218

best hierarchical policy (as constructed in Eq. (3)) might be sub-optimal. This a direct consequence219

5

of the goal-conditioned architecture. If while executing a sub-episode it appears that another sub-goal220

becomes more valuable the architecture proposed do not allow interruptions. The agent will first have221

to complete the current sub-episode before being able to adapt to the new circumstances. Let V π∗
l ,π

∗
h

o222

denote the value of the optimal hierarchical policy value function in the original MDP. Then, the223

sub-optimality gap is larger than the gap between the current policy pair and the optimal hierarchical224

policy ∆k = V ∗
o − V

πk
l ,π

k
h

o ≥ V
π∗
l ,π

∗
h

o − V
πk
l ,π

k
h

o . Therefore, if for some N , V π∗
l ,π

∗
h

o − V
πk
l ,π

k
h

o ≥ ϵ225

for at least N episodes, it must also be the case that ∆k ≥ ϵ for at least N episodes. Hence, N is a226

lower bound on the number of episodes where the algorithm must follow a sub-optimal policy.227

In the following theorem, we lower bound the number of episodes required to learn a pair of policies228

(πl, πh) which are ϵ-accurate with respect to the optimal hierarchical policy (π∗
l , π

∗
h). By the above229

argument, this will also be a lower bound on the number of episodes necessary to learn an ϵ-accurate230

policy with respect to the optimal policy π∗.231

Theorem 3.1. There exist positive constants cl, ch and δ0 such that for every δ ∈ (0, δ0) and for232

every algorithm A that satisfies a PAC guarantee for (ϵ, δ) and outputs a deterministic policy, there233

is a fixed horizon MDP such that A must interact for234

E[N] = Ω

(
max

(
|Sl||Ah||A|H2

l

ϵ2
ln

(1

δ + cl

)
,
|Sh||Ah|H2

h

ϵ2
ln
(1

δ + ch

)))
(5)

episodes until the policy is (ϵ, δ)-accurate.235

The complete proof is given in Appendix A.1. In the following we highlight the main steps.236

Sketch of the proof: An ϵ-accurate pair of policies must satisfy the following inequality, |V π∗
l ,π

∗
h

o −237

V πl,πh
o | ≤ ϵ. To find a lower bound on the number of episodes N before we obtain an ϵ-accurate pair238

of policies (πl, πh) we used the following steps:239

(i) We decompose the objective using the triangle inequality, |V π∗
l ,π

∗
h

o − V
π∗
l ,πh

o | + |V π∗
l ,πh

o −240

V πl,πh
o | ≤ ϵ.241

(ii) We show that the number of samples required to guarantee |V π∗
l ,π

∗
h

o −V
π∗
l ,πh

o | ≤ ϵ/2 is bounded242

by Ω

(
|Sh||Ah|H2

h

ϵ2 ln
(

1
δ+ch

))
243

(iii) We show that the number of samples required to guarantee |V π∗
l ,πh

o −V πl,πh
o | ≤ ϵ/2 is bounded244

by Ω

(
|Sl||AH ||A|H2

l

ϵ2 ln
(

1
δ+cl

))
245

Combining these three steps together gives us the result in Theorem 3.1, see A.1 for more details.246

Interpretation of the sample complexity bound: By comparing this lower bound1 to that in the247

original MDP, we can clearly identify the problem characteristics that might lead to improved sample248

efficiency. We discuss some of the key insights below:249

State abstraction: Only one of the two state space cardinalities will dominate the bound in eq. 5. This250

suggest that an efficient decomposition must separate the original state space as evenly as possible251

between the two level of the hierarchy. Another phenomena at stake is the low-level re-usability.252

Due to the state abstraction the low-level agent can re-use its learned policy in different states (i.e.253

different states s1, s2 ∈ S whose low-level component sl are the same). We rewrite the lower bound254

5 in terms of the re-usability index κ = |S|
|Sl| .255

E[N] = Ω

(
max

(|S×AH |
κ |A|H2

l

ϵ2
ln

(1

δ + cl

)
,
|SH ||AH |H2

h

ϵ2
ln

(1

δ + ch

)))
. (6)

Equation 6 clearly highlights that a large re-usability index improve the sample efficiency.256

Temporal abstraction: Similarly, only one of the two time horizons will dominate the bound,257

1Note that this is a lower bound - we still do not know if there exist algorithms which achieve this lower
bound.

6

again suggesting a fair repartition of the load. The temporal abstraction (reducing H to Hh and Hl)258

simplifies the credit assignment problem for both (the high-level and the low-level) policies by giving259

denser feedback. The low-level agent is rewarded for successfully completing sub-tasks that are260

significantly shorter than the original task and the high-level trajectory consists of significantly fewer261

(high-level) steps than a trajectory in the original MDP.262

High-level action space: This is the only term that appears on both side of the max(·, ·) in eq. 5.263

This suggests that both the high-level and the low-level benefit from a small high-level action space.264

As explained above, there are aspects where both agents are aligned (i.e. small high-level action265

space) and other aspects where an equilibrium needs to be found as both agents would benefit from266

short horizon and small state space.267

The above discussion highlights properties of the heirachical decomposition that could improve268

sample complexity. Note however, that our bound also shows that a hierarchical decomposition269

does not always improve the sample efficiency. Indeed, there will be some settings where using a270

“bad” hierarchical decomposition does not lead to any improvement in the sample complexity. Our271

bound can therefore provide a sanity check to determine whether a hierarchical decomposition could272

lead to an improved sample complexity. Although we note that finding an algorithm that achieves273

this improved sample complexity can still be challenging. In section 5, we consider several MDP274

decompositions and empirically validate that when our bound suggests the hierarchical decomposition275

is beneficial, our algorithm (see Sec. 4) leverages this to achieve lower sample complexity.276

4 Stationary Hierarchical Q-learning277

Algorithm 1: Stationary Hierarchical Q-learning
(SHQL)

Input: QL
:,:,: = 0, QH

:,: = 0, doneH = False,
t = k = 0

1 while not doneH and k < K do
2 Observe sHk , sLt
3 while not doneL and t < T do
4 aLt = πL(sLt)

5 Observe sLt+1, rLt
6 LowLevelUpdate((sLt , aLt , rLt , sLt+1, gsub))
7 st = st+1

8 t = t+ 1

9 Observe sHk+1 rHk
10 if doneL then
11 QH

nxt = max
a

QH
sHk+1,a

12 QL
sk,ak

= QH
sk,ak

+ α ∗ (rHk + γQH
nxt)

13 Function LowLevelUpdate(st, at, rt, st+1 gsub):
14 QL

nxt = max
a

QL
gsub,st+1,a

15 QL
gsub,st,at

= QL
gsub,st,at

+ α ∗ (rLt + γQL
nxt)

16 return QL

Once we know that we are in an MDP278

where the hierarchical decomposition279

could lead to improved sample com-280

plexity, the next challenge is to design281

an algorithm which can exploit this. In282

this section, we propose the Station-283

ary Hierarchical Q-learning algorithm284

(SHQL) for this purpose.285

One of the most challenging aspects286

of jointly learning a pair of policies is287

the non-stationarity of the high-level288

transition dynamics, Ph. It was briefly289

mentioned (in Sec. 2.2) that the high-290

level transition function, Ph, is non-291

stationary since it depends on the low-292

level policy, πl with the next high-level293

state depending on whether πl man-294

aged to reach the sub-goal. To address295

this issue, we leverage the fact that296

the algorithm knows what a success-297

ful sub-episode is, i.e. it knows if the298

low-level agent managed to arrive at299

the desired sub-goal. Therefore, the300

algorithm only makes an update if the301

low-level agent is behaving reasonably302

well (i.e. solving the sub-goal). In this303

way, the algorithm filters all bad examples from the training set and the behaviour of Ph is more304

stable. Note however that the reward function of the high-level agent remains non-stationary. At305

first, sub-goals won’t be solved optimally, incurring a small reward to the high-level agent, but as the306

low-level agent learns to solve sub-goals more efficiently the associated reward will increase.307

As detailed in the function LowLevelUpdate in algorithm 1 the low-level agent simply performs308

Q-learning updates on the observed low-level transitions and rewards. The high-level agent also309

performs Q-learning updates, but only on successful transitions, as specified at line 15 of algorithm 1.310

7

Figure 2: The grid of plots on the left-hand side depicts, on the top row, the mazes whose size ranges
from 4 rooms to 1024 rooms. The bottom row shows the number of steps required for SHQL (in
blue) and Q-learning (in red) to complete the maze. The standard deviation is obtained by running 10
different seeds. The right-hand side of the plot shows the different room profiles used to build the
mazes.

5 Experiments311

We now empirically evaluate2 the impact of the decomposition on various MDPs in order to validate312

the lower bound found in section 3 and evaluate the performance of our proposed SHQL algorithm.313

To satisfy the assumption of hierarchical structure, the environments considered are a generalization314

of the four-room problem with an arbitrary number of rooms. The entire maze is built by arranging315

an arbitrary number of rooms on a grid. The high-level task would consist of learning the shortest316

sequence of rooms that lead the agent from the starting position (the top left room) to the goal room317

(the bottom right room). The low-level task is to learn how to navigate within each room and to reach318

the instructed hallway. To further modulate the difficulty of the task (in addition to the maze size), we319

vary the room profiles used, as depicted in the right most plot of figure 2.320

The set of MDPs generated by these environments are the following:321

The original MDP: This is a standard grid-world MDP, where the state space indicates the cell where322

the agent is located and the action space allows the agent to move one cell in any cardinal direction323

(North, South, East, West). To obtain stochastic environments, each action has a success probability324

of psuccess = 4/5. In case of failure, the action will be chosen at random.325

The high-level MDP: The high-level state space is restricted to the room where the agent is currently326

located, and the exact position of the agent within that room is abstracted away. The high-level327

actions consist of instructing the low-level to reach one of the available hallways. Note that not all328

rooms have access to the four hallways.329

The low-level MDP: The low-level agent only observes the current location of the agent within a330

room and the goal instructed by the high-level agent (one of the reachable hallways). It then uses the331

primitive action space (the four cardinal directions) to reach the desired hallway.332

5.1 Identical rooms333

We first introduce the experimental setting in its simplest form. The environments considered in this334

subsection are mazes that are built by assembling identical rooms without any obstacles (i.e. the335

top room profile in Fig. 2). Figure 2 illustrates the empirical performance of our SHQL algorithm336

against Q-learning in the original MDP. As expected for simple mazes (e.g. with 4 or 16 rooms) the337

hierarchical decomposition does not provide much improvement, but as the problems grow more338

difficult, the empirical evaluation suggests a significant improvement in sampling efficiency. This is339

also confirmed by our bound (yellow curve on the rightmost plot of Fig. 3) which highlights that the340

efficiency gain of HRL is mostly achievable in complex MDPs. It is important to notice that in this341

experiment, the low-level decomposition remain constant for a given set of room profiles. This is the342

reason why the benefit of HRL increases with the number of rooms until a plateau is reached. Once343

2Experiments were run on a 12th Gen Intel Core i7 with 16GB of RAM, to train the agents on the largest
maze considered takes ∼ 7 minutes.

8

Figure 3: Left-hand plots are similar to figure 2, showing the performance obtained on mazes built
from four different room layouts. The right-hand plot shows the evolution of the ratio between the
RL bound Eq. (4) and the HRL bound Eq. (5) for various mazes and different room profiles. The
curves are color coded such that a darker curve indicates more room profiles were considered.

the bound is dominated by the high-level MDP, the unchanging complexity of the low-level MDP344

causes the ratio between the RL bound (Eq. 4) and the high-level part of the HRL bound (Eq. 5),345
|S||A|H

|SH ||AH |HH
, to remain constant (despite the fact that number of room might still grow).346

5.2 Different rooms347

To make the task more challenging we next increase the number of room profiles used to construct the348

mazes. As depicted in the rightmost plot of figure 2 we considered four different room profiles, each349

one with a different obstacle in the room. The low-level agent must now learn to navigate through350

multiple types of room to reach the sub-goal instructed by the high-level agent. The performance of351

the algorithms with different rooms is shown in figure 3. The introduction of different room profiles352

allows us to modulate the complexity of the low-level MDP, in contrast to varying the number of353

rooms which only affects the complexity of the high-level MDP. This additional complexity results354

in a larger state space Sl but may also result in a longer horizon Hl as the optimal trajectory might355

require more time to successfully navigate around obstacles to reach the instructed hallway. While356

it has very little effect on the standard Q-learning, this added difficulty postpones the efficiency357

gain of the hierarchical machinery, as seen in figure 3. The evolution of the bound ratio (HRL/RL)358

for the various MDPs considered is shown in the rightmost plot of figure 3.It shows that when the359

maze consists of a small number of rooms, the bound is dominated by the low-level agent. However,360

the curves clearly indicate that as the high-level MDP becomes more complex (i. e. balancing the361

complexity between the two level of the hierarchy) the expected sample efficiency improve. This362

result is also supported by empirical evidence as illustrated in figures 2 (left plot), 3 (left plot), and363

figures4 and 5 in appendix A.2.364

6 Conclusion365

In this work, we analysed the sample complexity of goal-conditioned HRL. To the best of our366

knowledge it is the first result that provide an analysis of the intrinsic decomposition induced by goal-367

conditioned HRL. In particular, our lower bound provides a useful tool for practitioners that illustrates368

whether they should consider an hierarchical decomposition for their problems. We also implemented369

a set of hierarchical tasks and designed a novel algorithm that could leverage the hierarchy to improve370

its sample efficiency. This experimental setting further emphasizes the usefulness of the proposed371

bound since empirical efficiency gains are supported by our theoretical findings.372

Although this paper has taken a significant first step in bettering our understanding of the benefits373

of hierarchical decomposition, there is still scope for further work in this area. An immediate open374

question is whether our lower bound could be refined by explicitly accounting for the interactions375

between the low-level and the high-level agent. Moreover, the insights we proposed are framed in376

a tabular setting and does not yet apply in a continuous setting were function approximation could377

be leveraged to allow the low-level to generalise over sub-goals. Overcoming those limitations are378

interesting direction for future work.379

9

References380

[1] Ekaterina Abramova, Luke Dickens, Daniel Kuhn, and Aldo Faisal. Hierarchical, heterogeneous381

control of non-linear dynamical systems using reinforcement learning. In European Workshop382

On Reinforcement Learning, at ICML, volume 2012, 2012.383

[2] Peter Auer and Ronald Ortner. Online regret bounds for a new reinforcement learning algorithm.384

In 1st Austrian Cognitive Vision Workshop, pages 35–42. Österr. Computer-Ges., 2005.385

[3] Benjamin Beyret, Ali Shafti, and A Aldo Faisal. Dot-to-dot: Explainable hierarchical rein-386

forcement learning for robotic manipulation. In 2019 IEEE/RSJ International Conference on387

Intelligent Robots and Systems (IROS), pages 5014–5019. IEEE, 2019.388

[4] Emma Brunskill and Lihong Li. Pac-inspired option discovery in lifelong reinforcement learning.389

In International conference on machine learning, pages 316–324. PMLR, 2014.390

[5] Christoph Dann. Strategic Exploration in Reinforcement Learning-New Algorithms and Learn-391

ing Guarantees. PhD thesis, Google, 2019.392

[6] Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon reinforce-393

ment learning. Advances in Neural Information Processing Systems, 28, 2015.394

[7] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in neural395

information processing systems, 5, 1992.396

[8] Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function397

decomposition. Journal of artificial intelligence research, 13:227–303, 2000.398

[9] Thomas G Dietterich et al. The maxq method for hierarchical reinforcement learning. In ICML,399

volume 98, pages 118–126, 1998.400

[10] Ronan Fruit and Alessandro Lazaric. Exploration-exploitation in mdps with options. In Artificial401

intelligence and statistics, pages 576–584. PMLR, 2017.402

[11] Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Emma Brunskill. Regret minimization403

in mdps with options without prior knowledge. Advances in Neural Information Processing404

Systems, 30, 2017.405

[12] Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. Latent space policies406

for hierarchical reinforcement learning. In International Conference on Machine Learning,407

pages 1851–1860. PMLR, 2018.408

[13] Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. Hierarchical reinforcement learning:409

A survey and open research challenges. Machine Learning and Knowledge Extraction, 4(1):172–410

221, 2022.411

[14] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably412

efficient? Advances in neural information processing systems, 31, 2018.413

[15] Nicholas K Jong, Todd Hester, and Peter Stone. The utility of temporal abstraction in reinforce-414

ment learning. In AAMAS (1), pages 299–306, 2008.415

[16] Gen Li, Laixi Shi, Yuxin Chen, Yuejie Chi, and Yuting Wei. Settling the sample complexity of416

model-based offline reinforcement learning. arXiv preprint arXiv:2204.05275, 2022.417

[17] Amy McGovern, Richard S Sutton, and Andrew H Fagg. Roles of macro-actions in accelerating418

reinforcement learning. In Grace Hopper celebration of women in computing, volume 1317,419

page 15, 1997.420

[18] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical421

reinforcement learning. Advances in neural information processing systems, 31, 2018.422

[19] Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and Sergey Levine.423

Why does hierarchy (sometimes) work so well in reinforcement learning? arXiv preprint424

arXiv:1909.10618, 2019.425

10

[20] Marc Pickett and Andrew G Barto. Policyblocks: An algorithm for creating useful macro-actions426

in reinforcement learning. In ICML, volume 19, pages 506–513, 2002.427

[21] Doina Precup and Richard S Sutton. Multi-time models for temporally abstract planning.428

Advances in neural information processing systems, 10, 1997.429

[22] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming.430

John Wiley & Sons, 2014.431

[23] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,432

2018.433

[24] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-434

ods for reinforcement learning with function approximation. Advances in neural information435

processing systems, 12, 1999.436

[25] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A437

framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-438

2):181–211, 1999.439

[26] Alexander Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves, Oriol Vinyals, John440

Agapiou, et al. Strategic attentive writer for learning macro-actions. Advances in neural441

information processing systems, 29, 2016.442

[27] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg,443

David Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning.444

In International Conference on Machine Learning, pages 3540–3549. PMLR, 2017.445

[28] Zheng Wen, Doina Precup, Morteza Ibrahimi, Andre Barreto, Benjamin Van Roy, and Satinder446

Singh. On efficiency in hierarchical reinforcement learning. Advances in Neural Information447

Processing Systems, 33:6708–6718, 2020.448

11

A Appendix449

A.1 Proof of Theorem450

Theorem 3.1 states that there exist positive constants cl, ch and δ0 such that for every δ ∈ (0, δ0)451

and for every algorithm A that satisfies a PAC guarantee for (ϵ, δ) and outputs a deterministic policy,452

there is a fixed horizon MDP such that A must collect453

E[Ne] = Ω

(
max

(
|Sl||Ah||A|H2

l

ϵ2
ln

(1

δ + cl

)
,
|Sh||Ah|H2

h

ϵ2
ln
(1

δ + ch

)))
(7)

episodes until its policy is (ϵ, δ)-accurate.454

Proof. An ϵ-accurate pair of policies (πl, πh) satisfies455

|V π∗
l ,π

∗
h

o − V πl,πh
o | ≤ ϵ. Note that by the triangle inequality, if |V π∗

l ,π
∗
h

o − V
π∗
l ,πh

o | + |V π∗
l ,πh

o −456

V πl,πh
o | ≤ ϵ, then we will have |V π∗

l ,π
∗
h

o − V πl,πh
o | ≤ ϵ. We, therefore, focus on showing:457

(i) the number of samples required to guarantee |V π∗
l ,π

∗
h

o − V
π∗
l ,πh

o | ≤ ϵ/2 is bounded by458

Ω

(
|Sh||Ah|H2

h

ϵ2 ln
(

1
δ+ch

))
459

(ii) the number of samples required to guarantee |V π∗
l ,πh

o − V πl,πh
o | ≤ ϵ/2 is bounded by460

Ω

(
|Sl||AH ||A|H2

l

ϵ2 ln
(

1
δ+cl

))
461

Then once we have both (i) and (ii), we know that after462

Ω

(
max

(
|SL||AH ||A|H2

L

ϵ2
ln

(1

δ + cl

)
,
|SH ||AH |H2

H

ϵ2
ln

(1

δ + ch

)))
episodes, we will have |V π∗

l ,π
∗
h

o − V
π∗
l ,πh

o |+ |V π∗
l ,πh

o − V πl,πh
o | ≤ ϵ and so |V π∗

l ,π
∗
h

o − V πl,πh
o | ≤ ϵ.463

Part (i) Note that only learning the high-level policy when the low-level policy is optimal, is464

equivalent to learning an ϵ-accurate high-level policy interacting with Mh with a stationary transition465

function (since the low-level behaviour is not evolving anymore). Hence we can bound the number466

of episodes Nh required to have: |V ∗
h − V

π∗
l ,πh

h | ≤ ϵ, by directly applying Eq. (4) to the high-level467

MDP to get468

E[Nh] = Ω

(
|Sh||Ah|H2

h

ϵ2
ln
(1

δ + ch

))
To be able to use this result to construct the bound of interest, we need to make sure these results are469

valid under the original MDP: |V π∗
l ,π

∗
h

o − V
π∗
l ,πh

o | ≤ ϵ. In particular, the reward functions are not the470

same for Mo and Mh. By decomposition, rh includes the bonus (or the absence of penalty) the high-471

level gives to the low-level for completing the task. To compensate for that the low-level reward is472

re-scaled with a penalty twice larger per step. This ensure that |V π∗
l ,π

∗
h

o −V
π∗
l ,πh

o | ≤ 2|V ∗
h −V

π∗
l ,πh

h |.473

Hence after E[Nh] episodes, we have |V ∗
o − V

π∗
l ,πh

o | ≤ 2ϵ474

Part (ii) By a similar argument to Part (i), we can bound the number of episodes in the low-level475

MDP required to obtain an ϵ-optimal low-level policy for a fixed high-level policy πh. In particular, a476

lower bound on the number of episodes Nl required to have |V πh,π
∗
l

l − V πl,πh

l | ≤ ϵ can directly be477

obtained from Eq. (4):478

E[Nl] = Ω

(
|Sl||AH ||A|H2

l

ϵ2
ln

(1

δ + cl

))
.

We are interested in comparing the policies when they interact with the original MDP. The issue is479

that there is a difference of scale between V πl,πh
o and V πl,πh

l . Episodes are shorter by a factor of480

Hh in the low-level MDP. So we need to ensure that |V πh,π
∗
l

l − V πl,πh

l | ≤ ϵ
Hh

. But by construction,481

12

this re-scaling is not necessary as a single episode in the original MDP corresponds to at most Hh482

episodes in the low-level MDP as a single episode in Mo with x sub-goals correspond to x episodes483

in Ml.484

This leads us to a lower bound on the number of episodes needed to obtain an ϵ-accurate pair of485

policies as the one stated in the theorem.486

A.2 Additional experiments487

In the experimental section (Sec. 5) we used several room layouts. In the main paper, we only488

provide learning curves for mazes that are composed of rooms without any obstacles or mazes that489

are composed of all the possible room layouts depicted in the rightmost plot of figure 2. To complete490

our experiment we show below in (Fig. 4 and Fig. 5) the learning curve obtained when mazes are491

built from two or three different room layouts. Note also that those results were used to plot the492

evolution of the bound ratio in the rightmost plot of figure 3.493

Figure 4: Shows learning curves on various maze sizes with two different room instances, either the
room is empty or it has a U-shape obstacle in it. The performance of the agent is measured in the
number of steps it requires to solve the task.

Figure 5: Shows learning curves on various maze sizes with three different room instances, either the
room is empty or it has either a U-shape obstacle or the room is stripped with horizontal walls. The
performance of the agent is measured in the number of steps it requires to solve the task.

13

	Motivation
	Background
	Episodic finite-horizon Markov Decision Process
	Episodic finite-horizon hierarchical MDP
	Probably-Approximately Correct RL
	Running Example

	Lower bound on the sample complexity of HRL
	Stationary Hierarchical Q-learning
	Experiments
	Identical rooms
	Different rooms

	Conclusion
	Appendix
	Proof of Theorem
	Additional experiments

