
A Appendix449

A.1 Proof of Theorem450

Theorem 3.1 states that there exist positive constants cl, ch and δ0 such that for every δ ∈ (0, δ0)451

and for every algorithm A that satisfies a PAC guarantee for (ϵ, δ) and outputs a deterministic policy,452

there is a fixed horizon MDP such that A must collect453
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episodes until its policy is (ϵ, δ)-accurate.454

Proof. An ϵ-accurate pair of policies (πl, πh) satisfies455
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Then once we have both (i) and (ii), we know that after462
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Part (i) Note that only learning the high-level policy when the low-level policy is optimal, is464

equivalent to learning an ϵ-accurate high-level policy interacting with Mh with a stationary transition465

function (since the low-level behaviour is not evolving anymore). Hence we can bound the number466

of episodes Nh required to have: |V ∗
h − V
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h | ≤ ϵ, by directly applying Eq. (4) to the high-level467

MDP to get468
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To be able to use this result to construct the bound of interest, we need to make sure these results are469

valid under the original MDP: |V π∗
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o | ≤ ϵ. In particular, the reward functions are not the470

same for Mo and Mh. By decomposition, rh includes the bonus (or the absence of penalty) the high-471

level gives to the low-level for completing the task. To compensate for that the low-level reward is472

re-scaled with a penalty twice larger per step. This ensure that |V π∗
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Hence after E[Nh] episodes, we have |V ∗
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Part (ii) By a similar argument to Part (i), we can bound the number of episodes in the low-level475

MDP required to obtain an ϵ-optimal low-level policy for a fixed high-level policy πh. In particular, a476

lower bound on the number of episodes Nl required to have |V πh,π
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obtained from Eq. (4):478
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We are interested in comparing the policies when they interact with the original MDP. The issue is479

that there is a difference of scale between V πl,πh
o and V πl,πh

l . Episodes are shorter by a factor of480

Hh in the low-level MDP. So we need to ensure that |V πh,π
∗
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. But by construction,481
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this re-scaling is not necessary as a single episode in the original MDP corresponds to at most Hh482

episodes in the low-level MDP as a single episode in Mo with x sub-goals correspond to x episodes483

in Ml.484

This leads us to a lower bound on the number of episodes needed to obtain an ϵ-accurate pair of485

policies as the one stated in the theorem.486

A.2 Additional experiments487

In the experimental section (Sec. 5) we used several room layouts. In the main paper, we only488

provide learning curves for mazes that are composed of rooms without any obstacles or mazes that489

are composed of all the possible room layouts depicted in the rightmost plot of figure 2. To complete490

our experiment we show below in (Fig. 4 and Fig. 5) the learning curve obtained when mazes are491

built from two or three different room layouts. Note also that those results were used to plot the492

evolution of the bound ratio in the rightmost plot of figure 3.493

Figure 4: Shows learning curves on various maze sizes with two different room instances, either the
room is empty or it has a U-shape obstacle in it. The performance of the agent is measured in the
number of steps it requires to solve the task.

Figure 5: Shows learning curves on various maze sizes with three different room instances, either the
room is empty or it has either a U-shape obstacle or the room is stripped with horizontal walls. The
performance of the agent is measured in the number of steps it requires to solve the task.
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