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Enhancing Transformer-based Semantic Matching for Few-shot
Learning through Weakly Contrastive Pre-training

Anonymous Author(s)

ABSTRACT
The task of semantic text matching focuses on measuring the se-
mantic similarity between two distinct texts and is widely applied
in search and ranking scenarios. In recent years, pre-trained models
based on the Transformer architecture have demonstrated powerful
semantic representation capabilities and have become the main-
stream method for text representation. The pipeline of fine-tuning
pre-trained language models on downstream semantic matching
tasks has achieved promising results and widespread adoption.
However, practical downstream scenarios often face severe chal-
lenges in terms of data quality and quantity. Ensuring high-quality
and large quantities of samples is often difficult. Current research
on enhancing pre-trained models for few-shot semantic text match-
ing tasks is still not advanced enough. Therefore, this paper fo-
cuses on providing a general enhancement scheme for few-shot
semantic text matching tasks. Specifically, we propose an Enhanced
Transformer-based Semantic Matching method for few-shot learn-
ing through weakly contrastive pre-training, which is named as
EBSIM. Firstly, considering the characteristics of semantic text
matching tasks, we design a simple and cost-effective data augmen-
tation method for constructing weakly supervised samples. Then,
we design a contrastive learning objective based on alignment-
aspect to achieve effective semantic matching by optimizing the
bidirectional semantic perception between constructed texts. We
conduct comprehensive experiments on five Chinese and English
semantic text matching datasets using various Transformer-based
pre-trained models. The experimental results confirm that our pro-
posed method significantly improves the model’s performance on
semantic text matching tasks. Further ablation experiments and
case studies validate the effectiveness of our approach. Our code
and data will be made publicly available at a later stage.
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 Constructing

Doc-Level Corpus Sentence-Triplet Corpus

BERTs BERT + EBSIM

Enhancing Fine-Tuning

Adapt to STS Tasks

(Retrieval & Drop Synonyms)

(Contrastive pre-training)

Figure 1: Illustration of the EBSIM’s pipeline. Firstly, the
sentence-triplet corpus is constructed from a large-scale
document-level corpus via token level and structure level
data augmentation. Then, the BERTs are further pre-trained
through contrastive objectives on the weakly-supervised cor-
pus. Finally, the enhanced BERTs adapt to STS tasks in the
fine-tuning stage. The subgraph of the BERT’s structure is
derived from Devlin et al. [16].

1 INTRODUCTION
The semantic text similarity (STS) [20, 31, 40] task measures the se-
mantic similarity between texts. It is a fundamental task in natural
language processing (NLP). And it plays an essential role in various
fields, such as information retrieval and machine translation evalu-
ation. Plenty of methods have been proposed for the task, including
traditional feature engineering techniques, hybrid approaches, and
purely neural architectures [6, 33, 46, 54, 61].

Recently, pre-trained languagemodels (PLMs) have led to impres-
sive performance gains across various NLP tasks, such as sentiment
classification [18, 52], natural language inference [10, 25], named
entity recognition [27, 43] and so on. In detail, people generally
load the PLM such as BERT [16], RoBERTa [38], then fine-tune it
on the specific downstream task to obtain better performances. In
this way, PLMs can be fine-tuned with just one additional output
layer to create state-of-the-art models.

Despite the numerous research efforts that have introduced var-
ious pre-trained language models (PLMs) to enhance the perfor-
mance of semantic matching tasks, there remain several critical
issues that have not been effectively addressed. Firstly, there exists a
natural gap between the learning objectives during the pre-training
stage and those during the fine-tuning stage. The pre-training phase
primarily focuses on languagemodeling aspects, such as themasked
language model (MLM) in BERT, dynamic masking in RoBERTa, or
sentence ordering relations modeling, exemplified by tasks like next
sentence prediction (NSP) in BERT and sentence order prediction
(SOP) in ALBERT [32]. However, semantic matching tasks during
the fine-tuning stage are primarily concerned with learning seman-
tic similarity between texts. The significant differences in learning
objectives can easily constrain the performance of PLMs on down-
stream tasks. Secondly, obtaining high-quality and high-quantity
downstream task datasets for fine-tuning presents a significant

2024-04-13 12:33. Page 1 of 1–10.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

MM ’24, October 28 - November 01, 2024, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

challenge. The most critical factor affecting fine-tuning model ef-
fectiveness is the quality of training samples. Limited, noisy, and
low-quality training samples can hinder model convergence and po-
tentially disrupt the general language knowledge acquired during
pre-training. The question of how to design effective pre-trained
language models to endow them with strong text representation
capabilities in few-shot learning scenarios is a pivotal issue.

In addition, semantic matching tasks place a greater emphasis on
a model’s ability to judge the semantic similarity between texts, as
opposed to textual similarity judgments. Currently, there is limited
research focused on designing pre-training models that are more
tailored to downstream semantic matching tasks. To enhance a
model’s ability to recognize semantic consistency in textual con-
tent, a recent study introduced an approach involving the inclusion
of sentiment recognition auxiliary tasks during the pre-training
phase. Given the ubiquity and importance of semantic matching
tasks, the development of pre-training methods specifically tailored
to such tasks is a significant and valuable endeavor. Furthermore,
when confronted with situations where two texts share the same
synonyms, models can easily make inaccurate semantic judgments
due to the presence of identical tokens. Therefore, devising effective
pre-training strategies to mitigate a model’s overreliance on syn-
onyms and enhance its capacity for learning semantic structures is
also a crucial consideration.

To address the aforementioned issues, this paper focuses on pro-
viding a general enhancement pre-training approach tailored to
semantic text matching tasks with limited samples. Specifically,
we propose an Enhanced Transformer-based Semantic Matching
method for Few-shot Learning through Weakly Contrastive Pre-
training, which is named as EBSIM. Firstly, to improve the align-
ment between the learning objectives in the pre-training and fine-
tuning stages, we design a weakly supervised dataset for semantic
text matching tasks based on general corpora. Considering the
need to align the enhanced samples and training objectives with
the characteristics of semantic text matching, we devise a triplet
data augmentation method based on both text token-level and sen-
tence structure-level. Particularly, we leverage high-quality article
headlines from general corpora, such as Wikipedia, as anchors. We
select relevant samples from the articles based on the similarity at
the token level to construct pairs of samples. Given that models
can be easily perturbed by similar sentence structures in matching
tasks, we adopt a sentence structure-level approach by masking
synonymous entity words to preserve the sentence structures in
the text. This process helps construct pairs of samples.

Next, to effectively leverage the information from the weakly
supervised dataset for consistent learning between pre-training and
fine-tuning, we introduce a multi-aspect contrastive pre-training
enhancement approach. We approach this from a relation-aspect
perspective, utilizing the global semantic space obtained through
Transformer encoding of text. We construct contrastive learning
objectives based on the semantic representations of text pairs.
Subsequently, we design contrastive learning objectives based on
Alignment-Aspect, facilitating bidirectional semantic alignment
between texts to achieve effective semantic matching. By enhanc-
ing Transformer-based pre-training models within this adaptable
framework, we achieve improved performance in semantic text
matching tasks. During the fine-tuning stage, there is no need to

introduce additional network structures or modify pre-trained mod-
els; training and predictions can be directly performed based on
downstream datasets. The whole pipeline of EBSIM is given in
Figure 1.

The major contributions can be summarized as follows:
• Wehave designed a low cost and efficientWeakly-Supervised
Data Augmentation method. From both text token-level and
sentence structure-level perspectives, we have constructed
triplets composed of anchor text, positive text, and negative
text as augmented dataset. This dataset has been validated to
significantly enhance the performance of pre-trained models.
We intend to make this dataset publicly available.

• Wepropose an Enhanced Transformer-based SemanticMatch-
ing method, designed for few-shot learning through weakly
contrastive pre-training. EBSIM employs a plug-and-play
contrastive pre-training module during the training phase,
based on relation-aspect and Alignment-Aspect, to optimize
the bidirectional semantic understanding between texts.

• We conducted comprehensive experiments on five Chinese
and English semantic matching datasets using multiple pre-
trained language models. The experimental results confirm
that our enhanced pre-training method significantly im-
proves the model’s performance on semantic matching tasks.
Our source code and data will be publicly released.

2 RELATEDWORK
2.1 Semantic Text Similarity Methods
Generally, deep semantic text similarity (STS) modeling includes
two kinds ofmethods: interaction-basedmethod and representation-
based method. The former usually constructs feature interactions
between two sentences, and further obtains the matching result
[13, 19, 64], which obtain better performances with interaction
mechanisms. The latter usually learns a representation and calcu-
lates the similarity score through a deep learning model [1, 9, 34].

In recent years, STS has rapidly developed with the help of pre-
training models. Based on pre-trained BERT models, two kinds of
fine-tuned architecture are typically used: bi-encoders and cross-
encoders. A lot of work aims to balance these two methods in terms
of efficiency and performance [24, 28, 41, 47]. Different from the
above works, we focus on enhancing pre-training for STS tasks.
We utilize the cross-encoders fine-tuning method, and this stage is
identical to the fine-tuning of the conventional PLMs.

2.2 Pre-training Language Models
PLMs can capture rich language information from the text and
benefit many applications by fine-tuning [45]. Previous PLMs focus
on the general language model, most of which are following BERT
[16]. BERT-wwm[15] adapts whole word masking in Chinese text,
masking the whole word instead of masking Chinese characters.
RoBERTa [38] is an improved version of BERT, including the use of
dynamic masking and more training data, while removing the next
sentence prediction.

More related to our work is the enhancement of pre-training
for specific tasks. MWA [35] enhances pre-trained Chinese char-
acter representation with the word-aligned attention. SKEP [53]
introduces sentiment knowledge enhanced pre-training to learn
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a unified sentiment representation. To better model dialogue be-
haviors, TOD-BERT [58] proposes a contrastive objective function
to simulate the response selection task. TaskPT [21] adds a task-
guided pre-training stage with selective masking to capture the
domain-specific and task-specific patterns. Similar but different to
these works, we are the first to enhance pre-training for the STS
tasks. There has not been the same job before.

2.3 Contrastive Learning
In recent years, contrastive learning plays an important role in
self-supervised learning for computer vision, natural language pro-
cessing, and other domains [26, 56, 65]. Contrast visual representa-
tion learning focuses on generating effective visual representations
[23, 42]. Recent methods have produced results comparable to the
state-of-the-art supervised method on some tasks [4, 11, 22]. More-
over, some previous works solve specific tasks through contrastive
learning. LS-Score[59] evaluates the quality of abstracts through un-
supervised contrastive learning. GCL[3] solves the neural dialogue
generation with group-wise contrastive learning.

More related to our work is the language representation learning.
Contrastive learning assumes that observed pairs of text are more
semantically similar than randomly sampled text[2]. Some methods
try to model the language representation learning with the idea
of contrastive learning [12, 30, 60]. Unlike these previous works,
we construct sentence pairs and design the contrast objectives to
enhance the sentence similarity relation modeling.

3 ENHANCING PRE-TRAINING FOR
SEMANTIC TEXT SIMILARITY

This section will describe the proposed method in detail. Section 3.1
formalizes STS task and the pipeline of our method, followed by
weakly-supervised text similarity corpus construction in Section 3.2.
Finally, contrastive learning objectives are described in Section 3.3.

3.1 Overview
In this section, we formalize the semantic text similarity (STS)
task and describe the pipeline of EBSIM. Given a data set D =

{(𝑠𝑎1, 𝑠𝑏1), (𝑠𝑎2, 𝑠𝑏2), ..., (𝑠𝑎𝑛, 𝑠𝑏𝑛)}, (𝑛 ∈ 𝑁 ), we aim to learn a sim-
ilarity model M from D. Thus,M(𝑠𝑎, 𝑠𝑏 ) measures the similarity
degree between 𝑠𝑎 and 𝑠𝑏 for any new sentence pair (𝑠𝑎, 𝑠𝑏 ), where
the similarity degree is a regression score or classification label. In
BERT-based semantic text similarity measurement, we use the em-
bedding of ‘[CLS]’ tokens to predict similarity labels. The pipeline
we propose for enhanced pre-training in semantic matching mainly
consists of three stages, as outlined in Figure 1.

3.2 Large-scale Weakly-supervised Data
Augmentation

As previously analyzed, there exists a natural gap between pre-
training learning objectives like the masked language model, sen-
tence order prediction, and semantic matching objectives. To en-
hance the consistency between the pre-training and fine-tuning
stages, optimization is required from both the pre-training data
and pre-training methods. A critical challenge is to design effec-
tive data augmentation and training methods that align with the

characteristics of semantic matching tasks. This allows models to
capture semantic relationships between texts from the augmented
data and accurately recognize semantics through enhanced training
methods.

In particular, semantic similarity primarily focuses on the se-
mantic connections between texts or concepts rather than surface
similarity. Models in semantic similarity tasks can easily be misled
by two types of similar schemes, namely token-level similarity and
sentence structure-level similarity. Token-level similarity refers
to situations where two texts share similar or overlapping words
in their textual forms. In such cases, models may mistakenly as-
sume that tokens with similar forms also share similar semantics.
Sentence structure-level similarity pertains to situations where
two texts have similar sentence structures or expressions. In these
cases, models may incorrectly assume that texts with similar struc-
tures also convey similar semantics. Therefore, we design two data
enhancement methods to construct weakly supervised data sets
from the perspective of enhancing the model’s ability to recognize
these two schemes. Subsequently, we guide the model’s learning
through finely designed enhancement pre-training objectives that
correspond to these two schemes.

3.2.1 Token-level Similarity Scheme. In order to construct sam-
ples with token-level similarity for enhancing pre-training, a cost-
effective data augmentation method needs to be designed. Given
that titles and sentence contents in chapter-level corpora simulta-
neously possess rich semantic and token similarity relationships,
we build samples based on general pre-training corpora such as
Wikipedia.

For each article, including the title 𝑡 and the content set of sen-
tences 𝑆 , we consider retrieving related sentences through its title.
We encode the title 𝑡 and all sentences in content {𝑠1, 𝑠2, ..., 𝑠𝐾 } ∈ 𝑆
through a sentence encoder, where 𝐾 is the number of sentences in
the current article content. Then we calculate the similarity and sort
these sentence vectors {𝑣1, 𝑣2, ..., 𝑣𝐾 } ∈ 𝑉 using cosine similarity:

𝑆𝑖𝑚(𝑣𝑎, 𝑣𝑏 ) |𝑐𝑜𝑠 =
𝑣𝑎 · 𝑣𝑏

max
(
∥𝑣𝑎 ∥2 · ∥𝑣𝑏 ∥2 , 𝜖

) (1)

where 𝑣𝑎 and 𝑣𝑏 are sentence vectors, and 𝜖 is a small value to avoid
division by zero. In our work, we obtain the sentence vector by
computing the mean of all output vectors of PLMs.

After sorting, we can get relevant candidates. These relevant
candidates can be combined with the title to form sentence pairs.
The order of candidates represents the similarity order of sentence-
pairs: 

< title, relevant1 >

< title, relevant2 >

...

< title, relevant𝐾 >

(2)

where < 𝑡𝑖𝑡𝑙𝑒, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡1 > is more similar than < 𝑡𝑖𝑡𝑙𝑒, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑥 >

(1 < 𝑥 ≤ 𝐾). As a result, we can construct the weakly-supervised
sentence triples < 𝑡𝑖𝑡𝑙𝑒, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡1, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑥 >.

3.2.2 Structure-level Similarity Scheme. Considering the impact
of similar sentence structures on semantic matching effectiveness,
we construct augmented samples based on sentences with similar
structures to aid model training. One simple and effective way is
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to mask synonym entities in the text while preserving other to-
kens, thereby retaining similar sentence patterns and structures.
Since the < 𝑡𝑖𝑡𝑙𝑒, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡1 > pairs obtained earlier are of high
quality, we directly perform data augmentation on such sample
pairs. Specifically, we calculate the word similarity between the
title and relevant1 based on the text representation vectors. Then,
we mask words in 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡1 with a similarity greater than a cer-
tain threshold, resulting in a new text 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑑𝑟𝑜𝑝 )1 , with similar
sentence structures. The function for constructing similar sentence
structures can be represented as follows:

𝑠
′
𝑖, 𝑗 = 𝑓𝑑𝑟𝑜𝑝 (𝑠𝑖, 𝑗 ) =

{
𝑠𝑖, 𝑗 if 𝑠𝑖𝑚(𝑠𝑖, 𝑗 , ∗) < 𝜂,

[𝑀𝐴𝑆𝐾] if 𝑠𝑖𝑚(𝑠𝑖, 𝑗 , ∗) ≥ 𝜂.
(3)

where 𝑠𝑖, 𝑗 represents the 𝑗-th word in the sentence 𝑠𝑖 , which is
expressed as 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡1 above. 𝑠

′
𝑖, 𝑗

denotes the generated word by

structure similar function, which is expressed as 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 (𝑑𝑟𝑜𝑝 )1
above. [𝑀𝐴𝑆𝐾] token represents a meaningless placeholder token,
just like in other general pre-trained language models. 𝑠𝑖𝑚(𝑠𝑖, 𝑗 , ∗)
denotes the similarity between the 𝑗-th word in 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡1 and the
word in 𝑡𝑖𝑡𝑙𝑒 calculated by cosine similarity. 𝜂 indicates the simi-
larity threshold used as a hyperparameter to control the level of
masking.

Based on sentence pair < 𝑡𝑖𝑡𝑙𝑒, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡1 >, we can use the
similar sentence structure component method above to get the
second kind of weakly supervised augmentation sample as follows:

< 𝑡𝑖𝑡𝑙𝑒, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡1, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡
(𝑑𝑟𝑜𝑝 )
1 > (4)

This kind of sentence triples makes the model face the challenge
of similar sentence structure during training, so as to help the
model recognize semantically similar information more accurately.
It is worth mentioning that for < 𝑡𝑖𝑡𝑙𝑒, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡1 >, if there are no
synonyms that exceed the threshold, no triples will be constructed.
Therefore, for each document, 1-2 triples are constructed.

3.3 Multi-Aspects Contrastive Pre-training
Compared to the labeled high-quality similar sentences, the similar-
ity labels of weakly-supervised sentence pairs above are relatively
weak in reliability. As a result, it can’t be used directly for optimiz-
ing the classification objective. Inspired by contrastive learning’s
success, we find the order of similarity is valuable and trustworthy.
Therefore, we introduce the comparative prediction task, which is
helpful for similarity relation learning.

Given the input sentence triple < 𝑡, 𝑠𝑝 , 𝑠𝑛 >, where 𝑠𝑝 is more
similar to 𝑡 than 𝑠𝑛 . We want to learn a classifying function with the
ability to identify 𝑠𝑝 is more similar than 𝑠𝑛 . A more common prac-
tice is Triplet Loss [49], which encourages a large margin between
the similarity of the anchor 𝑡 and its positive 𝑠𝑝 and the similarity
of the anchor and negative 𝑠𝑛 . Mathematically, we minimize the
following loss function:

L(𝑡, 𝑠𝑝 , 𝑠𝑛, 𝜉, 𝛽 ) = max
(
𝜉 (𝑡, 𝑠𝑛 ) − 𝜉 (𝑡, 𝑠𝑝 ) + 𝛽, 0

)
(5)

where 𝜉 is the similarity measurement function. Margin 𝛽 ensures
that 𝑠𝑝 is at least closer to 𝑡 with gap 𝛽 than 𝑠𝑛 , and we set 𝛽 = 1 in
our experiments.

Consequently, our goal is to define the appropriate function 𝜉 ,
which can better model the semantic similarity relation between
sentences. Our proposed contrastive objectives are committed to
multiple mapping functions.

In the process of BERT-based semantic text similarity, we first
concatenate two sentences to the required format. ‘[SEP]’ is adopted
to concatenate two sentences, and ‘[CLS]’ is added at beginning. In
detail, we concatenate a sentence pair < 𝑠𝑎, 𝑠𝑏 > and fed them into
the PLM. With the help of semantic knowledge of PLM, the hidden
states are calculated as follows:

𝐻𝑠𝑎 :𝑠𝑏 , ℎ𝑐𝑙𝑠 = BERT(𝑠𝑎, 𝑠𝑏 ) (6)

where ℎ𝑐𝑙𝑠 denotes the representation of the first token ‘[CLS]’.
𝐻𝑠𝑎 :𝑠𝑏 represents the sequence representation of the whole input.
In this paper, we aim to make full use of ℎ𝑐𝑙𝑠 and 𝐻𝑠𝑎 :𝑠𝑏 to model
the semantic similarity relation between 𝑠𝑎 and 𝑠𝑏 via multi-aspect
contrast.

3.3.1 Relation-Aspect Contrast. The representation of token ‘[CLS]’
is regarded as the global representation of semantic relations, which
contains the current sentence relation information and serves as
the input for the classification layer in the fine-tuning stage. As
a result, our first object is to model the similarity of sentences in
the relation aspect. Through a distance transformation matrix, we
simulate to calculate the distance of sentence pairs:

D(𝑠𝑎, 𝑠𝑏 ) = 𝜎 (𝑊𝑑 · ℎ𝑐𝑙𝑠 + 𝑏𝑑 ) (7)

where𝑊𝑑 , 𝑏𝑑 are learnable parameters and𝜎 is the sigmoid function.
Finally, we redefine the mapping function as the similarity function
of the triple loss function:

𝜉𝑅𝐴 (𝑠𝑎, 𝑠𝑏 ) = −D(𝑠𝑎, 𝑠𝑏 ) (8)

The Relation-Aspect (RA) contrastive objective is:

L𝑅𝐴 = L(𝑡, 𝑠𝑝 , 𝑠𝑛, 𝜉𝑅𝐴) (9)

3.3.2 Alignment-Aspect Contrast. The relation-aspect contrast fo-
cuses on the relationship between sentence pairs based on BERTs
with multi-head self-attention. However, for each concatenated sen-
tence pair, the global relation-aspect encoding relies mainly on the
whole tokens’ self-attention mechanism. There lacks of attention to
local sentence alignment, which leads to insufficient interaction be-
tween the two sentences. A simple form of alignment based on the
attention mechanism is used following [61] with minor modifica-
tion to help the BERT-based STS. In this subsection, we leverage the
alignment mechanism and propose an alignment-aspect contrast
strategy to enhance interaction between sentences.

The alignment component takes features from 𝐻𝑠𝑎 :𝑠𝑏 as input
and computes the aligned representations as output. Input from
the first sentence 𝑠𝑎 of length 𝑙𝑎 is denoted as 𝑠𝑎 = (𝑎1, 𝑎2, ..., 𝑎𝑙𝑎 )
and input from the second sentence 𝑠𝑏 of length 𝑙𝑏 is denoted as
𝑠𝑏 = (𝑏1, 𝑏2, ..., 𝑏𝑙𝑏 ). The output representation 𝑎

′
and 𝑏

′
are com-

puted by weighted summation of representations. The summation
is weighted by attention scores between the current position and

2024-04-13 12:33. Page 4 of 1–10.
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the corresponding positions in another sentence:

𝑎′𝑖 =
𝑙𝑏∑︁
𝑗=1

exp(𝑎𝑖 · 𝑏 𝑗 )∑𝑙𝑏
𝑘=1 exp(𝑎𝑖 · 𝑏𝑘 )

𝑏 𝑗

𝑏′𝑗 =
𝑙𝑎∑︁
𝑖=1

exp(𝑎𝑖 · 𝑏 𝑗 )∑𝑙𝑎
𝑘=1 exp(𝑎𝑘 · 𝑏 𝑗 )

𝑎𝑖

(10)

The fusion layer compares raw token and aligned representations
from two perspectives (· and −). The fusion result of sentence 𝑠𝑎 is
computed by:

𝑎
𝑓

𝑖
=𝑊𝑓 ∗ [𝑎𝑖 ;𝑎′𝑖 ;𝑎𝑖 ◦ 𝑎

′
𝑖 ;𝑎𝑖 − 𝑎

′
𝑖 ] + 𝑏 𝑓 (11)

where𝑊𝑓 , 𝑏 𝑓 are learnable parameters, and ◦ denotes element-
wise multiplication. The subtraction operator highlights the differ-
ence between the two vectors while the multiplication highlights
similarity. Then, we obtain 𝑠 𝑓𝑎 = MaxPooling(𝐴𝑓 ) and 𝑠 𝑓

𝑏
omitted

here. We simulate to calculate the similarity confidence of sentence
pairs based on the alignment mechanism:

A(𝑠𝑎, 𝑠𝑏 ) = 𝜎 (𝑊A · [𝑠 𝑓𝑎 ◦ 𝑠 𝑓
𝑏

; 𝑠 𝑓𝑎 − 𝑠 𝑓
𝑏
] + 𝑏A ) (12)

The Alignment-Aspect (AA) contrastive objective is:

𝜉𝐴𝐴 (𝑠𝑎, 𝑠𝑏 ) = A(𝑠𝑎, 𝑠𝑏 )
L𝐴𝐴 = L(𝑡, 𝑠𝑝 , 𝑠𝑛, 𝜉𝐴𝐴)

(13)

The overall objective function is:

L = L𝑅𝐴 + L𝐴𝐴 (14)

3.4 Semantic Matching Fine-tuning
In the fine-tuning phase, our primary focus is on training and
testing the model for semantic text matching tasks. To simplify, we
consider the semantic text matching task as determining whether
two texts have similar semantic information, which can be defined
as a classification problem. If two texts are semantically similar, the
corresponding label is set to 1. If two texts do not share semantic
similarity, the corresponding label is set to 0. The model’s task is
to predict the probability of semantic similarity between the two
input texts.

Based on the encoded [CLS] representation ℎ𝑐𝑙𝑠 , we can obtain
the semantic similarity probability as:

𝑟𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝐿𝑃 (ℎ𝑐𝑙𝑠 )) (15)

where 𝑔 represents the similarity function, which is replaced by the
inner product. Let 𝑦𝑖 ∈ {0, 1} represent the real label of the sample.
The cross entropy loss function can be expressed as:

𝐿 = − 1
𝑁

𝑛∑︁
𝑖=1

[𝑦𝑖𝑙𝑜𝑔𝑟𝑖 + (1 − 𝑦𝑖 )𝑙𝑜𝑔(1 − 𝑟𝑖 )] (16)

where 𝑦𝑖 represents the label of the sample. 𝑁 denotes the number
of training samples.

4 EXPERIMENTS
In this section, we conduct extensive experiments to answer the
following questions:

• RQ1What kind of effect does our proposed EBSIM enhance-
ment pretraining framework have on pretrained language
models in semantic matching tasks?

• RQ2 Can our proposed EBSIM improve the effectiveness of
few shot learning on downstream semantic matching tasks?

• RQ3 What impact do the designed contrastive pre-training
modules based on relation-aspect and alignment-aspect have
on the model effect?

• RQ4 Does our constructed weakly supervised samples help
to improve the effect of the pre-trained model? What is the
effect of different training sample scales on the model effect?

• RQ5 Can the training method based on alignment-aspect
contrast learning objective help the model improve the ac-
curacy of semantic recognition?

4.1 Experimental Settings
4.1.1 Datasets. To verify the effectiveness of our EBSIM, we con-
duct experiments on Chinese and English corpus respectively. We
collect five different STS datasets. The dataset statistics are shown
in Table 1. BQ is the largest manually annotated Chinese public
corpus in the bank domain [7]. LCQMC is a large-scale Chinese
question matching corpus [36]. Followed with Chen et al. [7], we
mainly report Accuracy scores for BQ and LCQMC. MRPC is a
corpus of sentence pairs automatically extracted from online news
sources [17]. QQP is a collection of question pairs from the commu-
nity question-answering website Quora1. STS-B consists of English
datasets used in the semantic textual similarity tasks, which are
organized in the context of SemEval between 2012 and 2017 [5].
We follow common practice and report both Pearson and Spear-
man scores. Following Wang et al. [57], we use the training set,
validation set and test set corresponding to the dataset. Because
the classes in MRPC(68% positive) and QQP(37% negative) are im-
balanced, we follow common practice and report both Accuracy
and F1 scores.

4.1.2 Implementation Details. All the experiments are executed on
the base model (12 layers, hidden size 768), including BERT-base,
BERT-wwm-ext-base, RoBERTa-base, and so on. All the experi-
ments are tested on five random seeds. We report the average score
to evaluate the performance of these models.

CorpusConstruction.During constructing theweakly-supervised
corpus, we use BERT𝑏𝑎𝑠𝑒 as a encoder to obtain the sentence em-
bedding. The document-level corpus include English corpus [55]
and Chinese corpus2. We construct weakly-supervised sentence
triples < 𝑡𝑖𝑡𝑙𝑒, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡1, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡2 > as described in Section 3.2.
During the synonyms dropping, the embedding size is set to 200.
For Chinese corpus, we initialize the Chinese word embedding from
Tencent Embedding Corpus3. For English corpus, word2vec [39]
is initialized randomly and fine-tuned on our English corpus. The
similarity threshold for word pairs to be masked is 0.8. The number
of masked words does not exceed 50% of the entire sentence. For
all experiments, the number of documents is 100w, except Table 4
uses different scales (200,000 and 500,000). After the weakly super-
vised dataset construction as described in 3.2, the numbers of final

1https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
2https://github.com/brightmart/nlp_chinese_corpus
3https://ai.tencent.com/ailab/nlp/en/index.html
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Dataset MaxLen Batch Size Epoch Learning rate Train Dev Test Language
BQ 128 64 3 3e-5 100k 10k 10k Chinese

LCQMC 128 64 3 2e-5 240k 8.8k 12.5k Chinese
MRPC 128 32 3 5e-5 3.7k 408 1.7k English
QQP 128 32 3 5e-5 390k 5k 5k English
STS-B 128 32 3 5e-5 5.7k 1.5k 1.4k English

Table 1: Benchmarks Settings. The Train, Dev and Test denote the size of corresponding dataset respectively. k represents the
numerical value one thousand.

Model MRPC QQP STS-B
Acc F1 Acc F1 Pearson Spearman

Previous Systems
ERNIE2.0 [51] 86.1 89.9 - - 87.6 86.5
R2-Net [63] 84.3 - 91.6 - - -
tBERT [44] - 88.4 - 90.5 - -
Re-Implementation
DistilBERT𝑏𝑎𝑠𝑒 [48] 82.72 87.67 90.09 90.04 82.67 81.62
XLNET [62] 85.28 89.08 90.95 90.87 86.04 85.24
ALBERT𝑏𝑎𝑠𝑒 [32] 86.55 89.98 91.20 91.10 87.92 86.85
Our Implementation
BERT𝑏𝑎𝑠𝑒 [16] 84.70 88.64 90.86 90.71 85.44 84.31
+ EBSIM 85.39 89.47 91.42 91.38 87.12 86.24
RoBERTa𝑏𝑎𝑠𝑒 [38] 87.36 90.63 91.02 90.95 88.84 88.11
+ EBSIM 87.65 90.81 91.41 91.35 89.42 88.76

Table 2: The Accuracy(%) and F1(%) for semantic text similarity on the MRPC, QQP and STS-B datasets.

triples: 1,750,000(English), 1,750,000(Chinese). These final triples
include 1,000,000 triples constructed through retrieval and others
constructed by synonyms deletion.

Pre-Training and Fine-TuningConfiguration.The pre-training
is based on the initialization parameters of existing PLMs such
as BERT, RoBERTa. During further pre-training, We use Adam
optimizer[29]. The learning rate is set to 5e-6, and the batch size
is 32. We choose the best pre-trained model for the fine-tuning
according to the dev set, including 20,000 samples. This fine-tuning
stage remains unchanged. For the hyper-parameters of fine-tuning,
we refer to the followed existing works [15, 16, 37, 51] and explore
the most suitable ones. The details of fine-tuning for benchmarks
are as Table 1.

4.1.3 Baselines. To evaluate the effectiveness of our approach, we
compare the model with the following baselines: ERNIE2.0 [51],
R2-Net [63], tBERT [44], DistilBERT[48], XLNET [62], ALBERT
[32], BiMPM[57], BERT-wwm [15], BERT-wwm-ext [15], RoBERTa-
wwm-ext [15], MacBERT [14], ERNIE [50], ERNIE2.0 [51], GMN-
BERT[8], BERT[16], BERT-wwm-ext [15], RoBERTa [38].

4.2 Overall Performance (RQ1)
In order to achieve fair and objective performance evaluation, we
conducted enhanced pretraining experiments on three represen-
tative Transformer-based models, namely BERT, BERT-wwm-ext
[15] , and RoBERTa [38], on the aforementioned five Chinese and
English datasets. The experimental results for the Chinese datasets
are presented in Table 2, while the results for the English datasets

can be found in Table 3. Based on the experimental comparisons,
we made the following observations:

• For the Chinese semantic matching tasks, BQ and LCQMC,
our proposed enhanced pretraining method, EBSIM, resulted
in significant performance improvements. Specifically, for
the BQ dataset, the enhanced BERT-base model achieved an
accuracy improvement of 0.5%, the BERT-wwm-ext model
improved by 0.69%, and the RoBERTa model improved by
0.93%. Due to the relatively large sample size of the LCQMC
dataset, the improvement range for the three pretrained lan-
guage models ranged from 0.36% to 0.63%. The experimental
results effectively confirm the effectiveness of our weakly
supervised contrastive enhancement pretraining method.
It’s worth noting that our weakly supervised dataset was
constructed based on the original training data of these pre-
trained language models.

• For the English semantic matching tasks, MRPC, QQP, and
STS-B, our method also demonstrated superior performance.
Specifically, for the high-quality STS-B dataset, the enhanced
BERT-base model achieved a 1.68% improvement in Pearson
correlation, while the enhanced RoBERTa model improved
by 0.58%. For the MRPC and QQP datasets, the accuracy
improvement of the enhanced pretrained language models
ranged from 0.22% to 0.69%. Whether in tasks with larger
sample sizes or smaller semantic matching tasks, our en-
hanced pretraining strategy provided noticeable benefits to
the models.
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Model BQ LCQMC
Previous Systems
BiMPM[57] 81.9 83.4
BERT-wwm [15] 85.2 87.0
BERT-wwm-ext [15] 85.3 87.1
RoBERTa-wwm-ext [15] 85.0 86.4
MacBERT [14] 85.2 87.0
ERNIE [50] 84.8 87.4
ERNIE2.0 [51] 85.0 87.9
GMN-BERT[8] 85.6 87.3
Our Implementation
BERT𝑏𝑎𝑠𝑒 [16] 84.87 87.05
+ EBSIM 85.37 87.47
BERT-wwm-ext [15] 84.95 87.02
+ EBSIM 85.64 87.38
RoBERTa𝑏𝑎𝑠𝑒 [38] 84.42 86.59
+ EBSIM 85.35 87.22

Table 3: The Accuracy(%) for semantic text similarity on the
BQ and LCQMC datasets.

4.3 Few-shot Learning Performance (RQ2)
One of the research objectives of this study is to enhance pretrained
language models for semantic matching, so that they can maintain
strong representational capabilities in the downstream few-shot
learning scenario, where the training samples are limited. For the
QQP dataset with 390K training samples, we conducted experi-
ments with subsets of the original training set containing 20%,
40%, 60%, 80%, and 100% of the samples for fine-tuning, followed
by testing the model’s performance on the original test set. The
model’s performance under different proportions of training sam-
ples is presented in Figure 2. Additionally, to investigate whether
our proposed method also helps with the convergence of models on
semantic matching tasks, we calculated the model’s performance on
the test set based on different training steps, as shown in Figure 3.

• Visually, it can be observed that our method not only out-
performs the original BERT model when using 100% of the
training samples but also maintains a stable advantage even
when using only 60% or 20% of the training samples. This
indicates that our proposed enhanced pretraining method
indeed effectively aids the model in accurately recognizing
semantic similarity, regardless of the scale of the training
sample.

• It is evident that our proposed method achieves significantly
higher performance when using a limited number of train-
ing samples. Particularly, the model enhanced by EBSIM
achieves better performance with only 60% of the training
samples compared to the original pretrained model using
100% of the training samples. In other words, our proposed
method can directly improve the few-shot learning perfor-
mance on consistent downstream tasks solely through effec-
tive enhancement in the pretraining phase.

• Based on the test results corresponding to different training
steps shown in Figure 3, EBSIM accelerates the model’s con-
vergence during the fine-tuning phase. In the initial 5000

Figure 2: The F1 scores of different QQP training set scales in
the fine-tuning stage. The EBSIM’s improvement are stable
with different training set scales.

steps, the model enhanced by EBSIM already exhibits sig-
nificantly better performance than the original pretrained
language model.

4.4 Ablation Experimental Study (RQ3)
In order to validate the effectiveness of our contrastive pretraining
optimization objectives based on relation-aspect (RA) andAlignment-
Aspect (AA), we conducted ablation experiments. The experimental
results are presented in Table 5, where we removed each of the two
contrastive learning objectives separately. The results show a sig-
nificant drop in performance on the BQ and MRPC datasets when
we removed both contrastive learning objectives. This indicates
that our adopted weakly supervised training method can indeed
help the model improve its judgment of semantic similarity. Further
observation reveals that RA has a greater impact on the model’s
performance compared to AA. This is because RA primarily utilizes
global multi-head attention to perceive semantic tokens, which
inherently contains global semantic information between the two
texts. On the other hand, the introduction of AA mainly helps the
model align more fine-grained token information between the two
texts, compensating for the insufficient perception of some local to-
kens caused by global attention. In fact, since our weakly supervised
samples were constructed while considering the characteristics of
semantic matching tasks, our weakly supervised training objectives
capture the modeling approach for semantic similarity. Therefore,
the combination of these two objectives has a significant effect.

4.5 Pre-training Sample Scale Analysis (RQ4)
The goal of this paper is to explore a low-cost training strategy for
enhancing existing pretrained language models. In order to gain a
more detailed understanding of the impact of enhanced pretrained
samples on model performance, we conducted an in-depth analysis
of the effect of pretrained sample size. Specifically, we performed
model-enhanced pretraining using weakly supervised samples of
200,000, 500,000, and 1,000,000. We then tested the performance
of models with different pretrained sample sizes on downstream
semantic matching tasks. For convenience, we used BERT-base as
the pretrained language model for validation. The experimental
results are shown in Table 4. It can be observed that as the number of
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Model BQ LCQMC MRPC QQP STS-B
Acc F1 Acc F1 Acc F1 Acc F1 Pearson Spearman

BERT𝑏𝑎𝑠𝑒 84.87 84.77 87.05 87.97 84.70 88.64 90.86 90.71 85.44 84.31
BERT𝑏𝑎𝑠𝑒 + EBSIM(20w) 85.10 84.85 87.14 88.07 84.93 89.15 91.15 91.03 86.41 85.20
BERT𝑏𝑎𝑠𝑒 + EBSIM(50w) 85.49 85.35 87.34 88.17 85.10 89.22 91.09 90.99 86.68 85.58
BERT𝑏𝑎𝑠𝑒 + EBSIM(100w) 85.37 85.18 87.47 88.28 85.39 89.47 91.42 91.38 87.12 86.24

Table 4: The experimental results with different scale datasets in the pre-training stage. 20w, 50w, 100w refer to the number of
documents. For each document, 1-2 triples are constructed as described in Section 3.2. w represents the numerical value ten
thousand.

Model BQ MRPC
Acc F1 Acc F1

BERT𝑏𝑎𝑠𝑒 + EBSIM 85.37 85.18 85.39 89.47
−AA 85.06↓ 84.95↓ 85.10↓ 89.07↓
−AA − RA 84.87↓ 84.77↓ 84.70↓ 88.64↓

Table 5: The experimental results of different ablation
strategies. AA and RA refers to the pre-training objectives:
Alignment-Aspect and Relation-Aspect.

Figure 3: The F1 scores of BERT and EBSIM on QQP dev set
when trained for up to 35000 steps. In fewer training steps,
the EBSIM can also achieve better results than BERT.

weakly supervised samples used for enhanced pretraining increases,
the model’s performance shows an upward trend. When training
with the complete 1,000,000 samples, the model achieves optimal
performance on both datasets. The experimental results validate
the effectiveness of the weakly supervised samples we constructed
and demonstrate that this type of sample can consistently improve
the model’s performance as the quantity increases.

4.6 Alignment Mechanism Analysis (RQ5)
The main purpose of introducing the Alignment-Aspect in the
contrastive pretraining optimization objective is to achieve fine-
grained semantic alignment between tokens in the text, thereby
assisting the model in accurate semantic matching recognition.
We aim to optimize the model’s semantic perception of certain
keywords more effectively. Therefore, we conducted a case study

to further explore the enhanced model’s capabilities. By visualizing
the distribution of attention weights among different models in
Figure 4, we can observe that by introducing the alignment-aspect
contrastive mechanism, our model can focus more on key words
in sentences, which may be the reason why the alignment-aspect
contrastive mechanism improves the performance. In this case, in
order to judge the semantic similarity of two sentences: How do I
quit smoking and How do I give up on cigarette smoking, EBSIM pays
more attention to quit smoking and give up on cigarette smoking
than BERT. They are keywords to identify the similarity.

BERT+EBSIM

Figure 4: The distribution of alignment attention weights
between BERT (Up) and EBSIM (Down).

5 CONCLUSION
In this paper, we propose a contrastive pre-training method to
enhance Transformer-based semantic text similarity called EBSIM
on the weakly-supervised corpus, which fills the gap between the
pre-training and the fine-tuning in this area. Plenty of comparative
experiments show the effectiveness of the proposed strategy. In
the future, we will investigate the possibility that the enhanced
mechanism is applied on other tasks.
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