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Additional results beyond original paper

Performance of OPeN on additional dataset and imbalance ratios

In addition to CIFAR-10-LT (IR=100) dataset, we compared the performance of OPeN [1]
to DRS [2], RS, and ERM on CIFAR-10-LT (IR=50) and CIFAR-100-LT (IR=100,50) datasets.
Consistent with claim 1, OPeN outperformed the baseline resampling schemes across all
datasets. The original paper did not report the accuracy of deferred resampling (DRS)
[2] for these additional datasets. Nonetheless, we compared OPeN with DRS because
DRS provides a fair baseline, as OPeN uses the same deferred resampling schedule.

Dataset CIFAR-10-LT CIFAR-100-LT
IR 50 100 50
Reported [1] Ours | Reported [1] Ours \ Reported [1] Ours
ERM 84.9 84.9 47.0 47.1 52.4 52.7
RS 82.2 80.9 42.5 41.6 48.0 46.5
DRS - 86.9 - 50.8 - 55.8
OPeN 87.9 87.8 51.5 52.1 56.3 56.5

Table 11. Comparison of accuracy on CIFAR-10-LT (IR=50) and CIFAR-100-LT (IR=100,50).

Hyperparameter Search

Input normalization values — The authors did not specify the mean and standard deviation
used to normalize the dataset. We explored various prior works [2, 3, 9] and discov-
ered that they differed from the values we computed (Tables 12 and 13). Surprisingly,
we found that many prior works use mean values from the full CIFAR-10/100 datasets
instead of the values from the long-tailed variants. This could result in an unfair evalua-
tion, as the statistics from the full training dataset may resemble the validation dataset,
as they are both balanced.
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Table 13. Per-channel mean and standard deviations for experiments on CIFAR-100-LT. Values cal-
culated in this paper are marked by .
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We train a WideResNet network with the default experiment setting in Section 3.3 to
investigate the effect of these values. As shown in Table 14, using the calculated mean
and standard deviation from the long-tailed dataset reduced performance. Regardless,
we do find that OPeN still improves performance over ERM and DRS, supporting the
central claim of Zada, Benou, and Irani [1].

Source | ERM  DRS  OPeN
Baseline [9, 2, 3] 81.18 83.22 85.04
CIFAR-107 80.50 82.39 84.72

CIFAR-10-LT (IR=100)! | 79.28 81.03 84.12

Table 14. Performance on different input normalization values on CIFAR-10-LT (IR=100). Values
calculated in this paper are marked by .

Batch size — Before we communicated with the authors and confirmed that the batch size
used was 128, we performed a hyperparameter search ourselves. In Table 15, we list the
batch sizes and their respective performance. Experiments show that 128 is the best
batch size for the set of hyperparameters.

. Accuracy
Batchsize | peyi RS  OPeN
32 74.38 80.15 80.50
64 78.69 82.89 83.89
128 81.18 83.22 85.04
256 79.11 75.28 82.36
512 75.19 71.39 79.22

Table 15. Hyperparameter search for batch size. Experiment was done on CIFAR-10-LT (IR=100)
with the default setting in Table 2 except for the batch size. Results with highest accuracy for
each method are boldfaced.

Noise ratio — The noise ratio is the hyperparameter that defines the probability of replac-
ing an oversampled image with pure noise. The authors used a noise ratio of § across
all datasets. We compared the performance of OPeN across increasing levels of noise
ratios. Surprisingly, replacing up to 2 of the oversampled images with pure noise contin-
ued to provide higher validation accuracy than DRS, while the train accuracy dropped

with increasing noise ratio, as expected.

Noiseratio | /s | 26 | 36 | 46 | 5/ | S
Accuracy | 83.23 | 85.04 | 84.34 | 84.23 | 83.31 | 80.01

Table 16. Hyperparameter search for noise ratio. Experiment was done on CIFAR-10-LT (IR=100)
with the default setting in Table 2 except for the noise ratio. Result with highest accuracy is bold-
faced.
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Additional Figures

LDAM

Figure 3. Venn diagram showing the intersections of training dataset used by Cui et al. [8] (denoted
Cui), Cao et al. [2] (LDAM), and Kim, Jeong, and Shin [3] (M2m) for CIFAR-10-LT (IR=100).

(@) Image used only by Cuietal.  (b) Image used only by Kim, () Image used only by Cao et al.
[8] for training Jeong, and Shin [3] for training [2] for training

Figure 4. Examples of automobile images only found in one but not the other 2 CIFAR-10-LT
(IR=100) datasets.
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Figure 5. Validation accuracy for CIFAR-10-LT and CIFAR-100-LT with IR=100. Classes partitioned
into 5 groups, where Group 1 is the least frequent and Group 5 is the most frequent. Reproduction
of Figure 6.
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Figure 6. Figure from Zada, Benou, and Irani [1] reporting validation accuracy for CIFAR-10-LT
and CIFAR-100-LT with IR=100 where classes are partitioned into 5 groups. Group 1 is the least
frequent and Group 5 is the most frequent.
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Figure 7. t-SNE of 50 examples from each class in the CIFAR-10 validation dataset, 50 out-of-
distribution images from CIFAR-100 validation dataset, and 50 random pure noise. Images are
embedded with model trained with DRS.
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Figure 8. Histogram of predicted classes for 1000 noise images.
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Figure 9. Histogram of predicted classes for 1000 out-of-distribution images.
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