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This document provides the supplementary material associated with the NeurIPS 2021 paper entitled
“Heavy Tails in SGD and Compressibility of Overparametrized Neural Networks”. We organize the
document as follows:

• Section S1 describes the experimental setup used in our simulations, together with some
additional experiment results and discussion.

• In Section S2, a generalization bound for an uncompressed network, given that this network
is compressible, is presented.

• Section S3 provides an upper-bound on the change in the network output when there is a
small change in the network weights.

• In Section S4, the relation between compressibility and the tail index is discussed.

• Proofs of the main results of the paper are presented in Section S5.

• Finally, the technical lemmas are proved in Section S6.

S1 Details of the Experiments and Additional Results

Here we provide a more detailed explanation for our experimental setting, as well as the results and
discussion we omitted from the main paper due to space restrictions.

S1.1 Datasets

The experiments were conducted in a supervised learning setting where the task is classification of
images. Each model is trained on CIFAR10 [Kri09] and MNIST [LCB10] datasets. The MNIST is an
image classification dataset where the data is comprised of 28×28 black and white handwritten digits,
belonging to one class from 0 to 9. We use the traditional split defined in the dataset where there
are 60000 training and 10000 test samples. CIFAR10 is also image classification dataset comprising
32 × 32 color images of objects or animals, making up 10 classes. There are 50000 training and
10000 test images, this is the split that we use in the experiments.

S1.2 Models

As described in the main text, in our experiments we use three models: a fully connected network with
4 hidden layers (FCN4), a fully connected network with 6 hidden layers (FCN6), and a convolutional
neural network (CNN). Hidden layer widths are 2048 for the two FCN models. All networks include
ReLU activation functions and none of them include batch normalization, dropout, residual layers,
or any explicit regularization term in the loss function. The convolutional architecture for the CNN
model for the CIFAR10 dataset progresses as below:

64,M, 128,M, 256, 256,M, 512, 512,M, 512, 512,M,

where integers stand for 2-dimensional convolutional layers (and the corresponding number of filters)
with a kernel size of 3 × 3, and M stands for 2 × 2 max-pooling with a stride of 2. Our CNN
architecture follows that of VGG11 model [SZ15] except after the layers presented above we have
only a single linear layer with a softmax output. For the MNIST experiment the first max-pooling
layer was omitted as the dimensions of the MNIST images disallow the previous structure to be used.
Table 1 includes the number of parameters for each model-dataset combination.

S1.3 Training and hyperparameters

All models were trained with SGD until 100% training accuracy and a training negative log-likelihood
less than 5 × 10−5 is acquired, with constant learning rates and no momentum. The training
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FCN4 FCN6 CNN
CIFAR10 18,894,848 27,283,456 9,222,848
MNIST 14,209,024 22,597,632 9,221,696

Table 1: Parameter counts for all model-dataset combinations.

hyperparameters include two batch-sizes (b = 50, 100) and a variety of learning rates (η) to generate
a large range of η/b values. See the table below for the range of η/b values created for each
experiment setting. The ranges vary somewhat since different η/b values might lead to heavy-tailed
behavior (or divergence) under different settings. Table 2 presents these ranges for all experiments.
See the source code for all experiment settings that were presented in the main results.

FCN4 FCN6 CNN
CIFAR10 5× 10−5 to 2.7× 10−3 2.5× 10−5 to 4× 10−3 1× 10−5 to 1.5× 10−3

MNIST 5× 10−5 to 1.14× 10−2 5× 10−5 to 8.8× 10−3 1× 10−5 to 6.35× 10−3

Table 2: η/b ranges for all experiments.

S1.4 Tail index estimation

We use the following multivariate tail index estimator proposed by [MMO15].
Theorem S5 ([MMO15, Corollary 2.4]). Let {Xi}Ki=1 be a collection of i.i.d. random vectors
where each Xi is multivariate strictly stable with tail index α, and K = K1 × K2. Define Yi ,∑K1

j=1Xj+(i−1)K1
for i ∈ J1,K2K. Then, the estimator

1̂

α
,

1

logK1

( 1

K2

K2∑

i=1

log ‖Yi‖ −
1

K

K∑

i=1

log ‖Xi‖
)
. (S1)

converges to 1/α almost surely, as K2 →∞.

This estimator has been used in previous research such as [ŞGN+19] and [TNT18]. We center the
observations using the median values before the estimation. Using the alternative univariate tail index
estimator [MMO15, Corollary 2.2] in the same paper has no qualitative effects on our results, an
additional benefit of our choice is additional analyses it makes possible as presented in Section S1.6.2.
Comparisons with alternative tail index estimators with symmetric α-stable assumption revealed no
dramatic differences between various estimators [SU20].

S1.5 Pruning details

We first provide a review of the pruning methods we use. All three notions of pruning in our
experiments correspond to the magnitude-wise ordering of certain parameters and the ‘pruning’ of
a certain ratio of parameters that correspond to smallest magnitudes3. When the parameters that
are pruned are the weight parameters themselves, this corresponds to magnitude-based pruning
or magnitude pruning as known in the literature, which can be conducted layer-wise or globally
[BOFG20]. Singular value pruning, as described here, corresponds to pruning of the smallest singular
values (and, by implication, the related singular vectors) in the SVD of specific layers. To apply
the SVD to CNN layers, we reshape the parameter tensors into matrices of shape (# channels) × (#
filters ×3× 3). Lastly node pruning corresponds to the pruning of the whole columns in the weight
matrices. Again, CNN counterpart of node pruning is open to interpretation; we choose to prune
specific kernels according to the their norms.

Before any pruning is done, the parameters to be pruned are centered with the estimated median of the
observations, in order to conform with our tail index estimation methodology. We chose median due

3Note that a more relaxed definition of pruning would be ‘systematic removal of model parameters’ to allow
for different scoring methods in pruning [BOFG20]. However, we proceed with our specific definition since this
allows us to communicate our theoretical and experimental results more concisely.
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to its robustness against extreme observations especially with a small sample - however our results
were qualitatively unchanged when the mean was used in the centering. After the pruning (in all three
methods), the median was added to the pruned parameter vectors before testing the performance of
the resulting model. Note that the median (or mean) was usually very small in norm and omitting
centering made no qualitative effect on the results.

Lastly, while ‘remaining parameter ratio’ (κ) or ‘pruning ratio’ (1− κ) are easy to interpret in the
case of magnitude pruning or node pruning, in SVD κ would equal (number of singular value and
vector parameters left) / (number of weight parameters in the layer), and pruning ratio would be
determined accordingly.

S1.6 Additional results and discussion

Here we present additional results and discussion that were referenced in the main text but were not
presented due to space restrictions.

S1.6.1 Causal interpretation of the relationships in question

An appropriate question regarding our theoretical and experimental findings would be: Is a causal
interpretation of the hypothesized relations warranted? Although the relationship among training
hyperparameters, parameter tail index, compressibility, and generalization is inevitably multifaceted,
we believe that there are grounds to interpret the relations causally in this context.

To be more specific, [GŞZ21, Theorem 4, Proposition 5] shows that the tail index is fully determined
by η, b, and the Hessian of the problem in the context of quadratic optimization: the tail index changes
monotonically with respect to both η and b. In this paper we establish the relationship empirically
in the context of neural networks, replicating the results presented in [GŞZ21]. We also show that
the existence of heavy-tailed network parameters leads to compressibility (Theorems 1, 2, and 3),
and thus to arbitrarily small perturbation in the network outputs when pruned (Lemma S1). We
also demonstrate that the more compressible the network is, the smaller its generalization bound is
(Theorem 4).

Using a different, geometric framework, [ŞSDE20, Appendix S1.2] (arxiv:2006.09313) experimen-
tally demonstrated that a lower tail index leads to a better generalization, where they directly varied
the tail index and monitored the generalization error, as the reviewer requested. Given these results
and our experimental findings, we believe that a causal interpretation of the relationships in question
is not without support.

Investigation of tail index and prunability with synthetic data. Experimental manipulation of
tail index directly in the case of neural networks trained with real data is hard to formulate and conduct.
However, to examine this issue further, we conducted a number of experiments with synthetic data.

In this setting, we created neural networks that were structural analogues of FCN6 networks presented
in the original experiments, that is, feedforward neural networks of 6 hidden layers and a width of
2048 units for each hidden layer, with ReLU activation functions after each hidden layer. For the
experiments, for each αi ∈ {1.50, 1.55, 1.60, . . . , 2.00}, we randomly sampled the parameters of
these networks independently from a SαS distribution with an αi tail index parameter. After the
sampling of the layer parameters, each layer was converted to a unit length vector, in order to avoid
the possibly confounding effects of scale between different tail indices. This procedure excluded the
much smaller final layer, which was sampled as in the initialization of the original experiments.

We also created random data for these experiments, in the shape of the MNIST training data, sampled
independently from a standard normal distribution. For each network, the labels for these data were
created by passing the synthetic data through the synthetic network and choosing the label with the
maximum final value. Then, for each network created, we conducted layer-wise magnitude pruning
for different values of κ, and evaluated the performance of the pruned versions of the networks with
their original performances. This was repeated 10 times, and Figure ?? presents the mean of these
accuracy values for each tail index (α) and pruning ratio (1− κ) combination.

The results again support our hypothesis: networks with lower tail indices are more prunable, that is,
more robust to pruning in terms of performance decay. This parallels the conclusion of the original
experiments, where a similar conclusion was reached with networks trained on real data. We leave the
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Figure S1: Accuracy (α) vs. pruning ratio (1− κ) for synthetically generated networks and data.

extension of these experiments for different data generation schemes, layer structures, and pruning
types to future work.

S1.6.2 Investigating the HML condition in synthetic experiments

Recall that in Figure 3 we examined, for a given relative compression error, whether lower tail index
is associated with higher prunability. The results demonstrated that this was indeed the case. Here we
compare our empirical results with some synthetic results to get additional insights regarding whether
HML condition is actually observed in our networks.

For this experiment, we randomly sample tail indices αi ∼ U(1.75, 2), where i ∈ {1, . . . , 250}.
Then for each αi, we sample three different ‘weight matrices’: Wind,i,Wcol,i,Wlay,i ∈ R500×500.
The elements of Wind,i are sampled independently from a SαS with tail index αi; this corresponds
to the case where weight parameters are statistically independent as prescribed by the HML condition.
On the other hand, columns of the Wcol,i are independently sampled from a 500-dimensional
multivariate elliptically contoured SαS with tail index αi. A d-dimensional elliptically contoured
multivariate SαS has the characteristic function

E[exp(i〈ω,X〉)] = exp(−‖ω‖α),

where X,ω ∈ Rd and 〈·, ·〉 stands for inner product. This means that while the columns of the matrix
are independent, column elements can be correlated. Lastly, all elements of Wlay,i are sampled
from a (500× 500)-dimensional elliptically contoured multivariate SαS, creating a case where all
elements of the matrix can be correlated. We repeat the analysis presented in Figure 3 for all three
sets of sampled synthetic layer weights, and present the results in Figure S2.
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Figure S2: Tail index (α) vs. pruning ratio (1 − κ), with relative compression error = 0.1, for
synthetically generated weight matrices.

The results demonstrate two interesting phenomena. First, a comparison of these results with Figure 3
shows that our empirical results show the most similarity with results obtained with Wind,i, showing
support for the existence of the HML condition. Another observation is that as the layer parameters
become correlated, the prunability advantage conferred by heavier tails disappears. This observation
both supports the existence of HML condition in overparametrized neural networks and invites
further discussion on the importance of propagation of chaos phenomenon in such architectures for
compressibility and generalization [DBDFŞ20].
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S1.6.3 Global magnitude pruning and node pruning results

In Figure S3 present the global magnitude pruning results for magnitude pruning. The results are
qualitatively very similar to those of the layer-wise magnitude pruning. Figure S4 presents the results
of node pruning on FCNs. As mentioned in the main text, the less impressive results might have
to do with the layer widths not being sufficient for our theoretical conditions. A more favorable
approach to structured pruning in FCNs would factor in the fact that removal of columns from a layer
is also equivalent to the removal of corresponding rows from the previous layer. When computing
the pruning ratio, factoring in these corresponding rows would produce more benevolent results.
However, we have not done this in our experiments since this is not necessarily implied by our theory.
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Figure S3: Relative test accuracy vs. pruning ratio for global magnitude pruning. Color: mean α̂.
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Figure S4: Relative test accuracy vs. pruning ratio for node pruning in FCNs. Color: mean α̂.

S1.6.4 Experiments with ergodic averaged parameters

In the main article we note that whether the pruning experiments are conducted on the final parameters
or the ergodic averaging thereof does not lead to any concrete differences in the results. The following
Figures S5, S6, and S7, which include results obtained with parameters that were ergodically averaged,
present results that were virtually identical with the originals prsesented in the paper.
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Figure S5: Relative test accuracy vs. pruning ratio for layer-wise magnitude pruning using ergodic
averages. Color: mean α̂.

S1.6.5 Experiments with CIFAR100

We also repeated our original experiments with the CIFAR100 dataset [Kri09]. Since the training
error was much slower to decrease in this case, we changed our convergence criteria to a NLL of
< .01 and an accuracy of > 99%. Even though we were not able to allocate a comparable amount of
resources to these set of experiments due to the total number of experiments that had to be conducted
overall, the experiments we were able to conduct produced results firmly in the direction of our
original experiments’ results, further confirming our hypotheses. Figures S8, S9, S10, S11, and S12
presents these results in a form comparable to the originals.
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Figure S6: Relative test accuracy vs. pruning ratio for layer-wise singular value pruning using ergodic
averages. Color: mean α̂.
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Figure S7: Relative test accuracy vs. pruning ratio for layer-wise node pruning using ergodic averages.
Color: mean α̂.

S1.7 Hardware and other resources

The experiments were conducted on an internal server of a research institute. Nvidia Titan X, 1080
Ti, and 1080 model GPU’s were used roughly equally in running the experiments. Our published
results involve 215 trained models, each of which included GPU-heavy workload, with an average
completion time of approximately 2 hours. Around 30 models diverged (thus were not used in the
results) and in most cases were trained for less than an hour. Total GPU-time could correspondingly
be estimated to equal 460 hours. We also conducted tail index estimation and pruning experiments
on these networks, however the computational load of these experiments are negligible compared to
those of the training of the algorithms, with an estimated CPU time of 48 hours for all estimation and
pruning tasks that were published.

As can be seen in the accompanying code, the experiments were conducted using Python programming
language. The deep learning framework PyTorch [PGM+19] as well as some of its tutorials4 were
used in implementing the experiments.

S2 Generalization bound for the uncompressed network

In this section, in the continuation of Section 4, we establish a generalization bound for an uncom-
pressed network, if this network is compressible using the layer-wise magnitude pruning strategy.
Theorem S6. Assume H1 holds. Then for n : n/ log(n) ≥ max(9L, 81ε−2κ), {dl}Ll=1 : dl ≥ dl,0
and d ≥ 10, and any δ, τ > 0, with probability at least 1− 2e−d/2 − δ − ε,

R0(w) ≤ R̂τ (w) + max
(

2, 24ρε(κ, d)L(τ, δ)R(δ)/
√
d
)√

d log(n)/n. (S2)

where R(δ) and L(τ, δ) are defined in (7), κ := 1
d

∑L
l=1dκldle,

ρε(κ, d) := min
(
ε1−κ exp

(
hb(κ) + h

(1)
b (κ, d)

)
, 1
)
≤ min

(
3ε1−κ, 1

)
,

h
(1)
b (κ, d) :=

dd/2e
d

max(hb(dκd/2e/dd/2e), hb(bκd/2c/dd/2e)).

Note that the function h
(1)
b (κ, d) ≤ log(2)(1/2 + 1/d). Hence ε1−κehb(κ)+h

(1)
b (κ,d) ≤

ε1−κelog(2)(3/2+1/d) ≤ 3ε1−κ, for d ≥ 12. Besides, ρε(1, d) = 1 and ρε(0, d) = ε. Moreover, when
both d and κd are even numbers, then h(1)

b (κ, d) = 1
2hb(κ) and ρε(κ) := ρε(κ, d) is increasing with

4HTTPS://GITHUB.COM/PYTORCH/VISION/BLOB/MASTER/TORCHVISION/MODELS/VGG.PY
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Figure S8: Mean estimated tail index (α̂) vs. η/b for each trained model, using CIFAR100 dataset.
x-axes are log-scaled.
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Figure S9: Relative test accuracy vs. pruning ratio for layer-wise magnitude pruning using ergodic
averages, with CIFAR100 dataset. Color: mean α̂.

respect to κ. To show the latter claim, consider the derivative of g(κ) := ε1−κ exp
(

3
2hb(κ)

)
with

respect to κ. This derivative is equal to zero at κ∗ = 1/
(
1 + ε2/3

)
and is positive for κ < κ∗. In

addition, g(κ∗) =
(
1 + ε2/3

)3/2
> 1. Hence, ρε(κ) = min(g(κ), 1) is increasing with respect to κ.

In Figure S13, ρε(κ) = min
(
ε1−κ exp

(
3
2hb(κ)

)
, 1
)
, together with its upper bound min

(
3ε1−κ, 1

)
are plotted for different values of ε.

It can be observed that if a network is more compressible, then not only the compressed network,
but also the original network has a better generalization bound. This result is consistent with the
findings of [HJTW21, KLG+21]. In [HJTW21], it is shown that if two networks are “close” enough,
a good generalization bound on one of them, would imply a good bound on the other one as well. In
[KLG+21], it is shown that “prunability” of a network captures well the generalization property of
the network.

Finally, it should be noted that when the weights of the network follow a stable distribution, similar
results to Corollary 1 can be established for the original network.

S3 Perturbation Bound

The goal of pruning is to find compressed weights ŵ with low dimensionality that are close enough
to the original weights w, which is measured in this work by the relative error ‖ŵ −w‖/‖w‖. The
following perturbation result guarantees that such pruning strategies also result in small perturbations
on the output of the network. The proof is based on the technique given in [NBS18].

Lemma S1. Let w, ŵ ∈ Rd be two fully connected neural networks. Assume that there exists
{εl}Ll=1 : εl ≥ 0, such that ‖ŵl −wl‖ ≤ εl‖wl‖, for all l ∈ J1, LK. Then, the following inequality
holds:

‖fŵ(x)− fw(x)‖ ≤ B
[∏L

l=1
(1 + εl)− 1

][∏L

l=1
‖wl‖

]
, (S3)

for all x ∈ XB . In particular, if εl = ε for all layers and ‖w‖ ≤ R, then

‖fŵ(x)− fw(x)‖ ≤ B
[
(1 + ε)

L − 1
](
R/
√
L
)L
. (S4)

For derivation of the above bound on the network outputs, the worst case in the propagation of the
errors of each layer is assumed, which results into an exponential dependence on the depth of the
network, similarly to [NBS18].
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Figure S10: Relative test accuracy vs. pruning ratio for singular value pruning using ergodic averages,
with CIFAR100 dataset. Color: mean α̂.
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Figure S11: Relative test accuracy vs. pruning ratio for node pruning using ergodic averages, with
CIFAR100 dataset. Color: mean α̂.

S4 Compression rate and tail index

In this work, different pruning strategies have been investigated by exploiting the compressibility
properties of heavy-tailed distributions. In this section, we show that moreover, in some certain sense,
heavier-tailed distributions are more compressible. However, we must underline that this result is
neither comprehensive, nor directly usable in our framework, as we will discuss after stating it.

Before stating the result, let us define the following quantity. For ε > 0 and w ∈ Rd, let

κp(w, ε) := min
{
κ :
(
‖w(κd) −w‖p/‖w‖p

)
≤ ε
}
. (S5)

Proposition S1. Suppose that w1 ∈ Rd and w2 ∈ Rd are independent vectors of i.i.d. heavy-tailed
random variables with tail indices α1 and α2, respectively. If α1 > α2, then for any κ, ε, δ > 0 and
p < max(α1, α2), there exists d0(δ), such that for d ≥ d0(δ),

E
[
‖w(κd)

1 −w1‖p/‖w1‖p
]

+ δ > E
[
‖w(κd)

2 −w2‖p/‖w2‖p
]
, (S6)

and

E[κp(w1, ε)] + δ > E[κp(w2, ε)]. (S7)

The above proposition shows that for a fixed p-norm of the normalized compression error with p < α,
the heavier-tailed distributions are more compressible. The caveat here is that for p ≥ max(α1, α2),
all terms in (S6) and (S7) go to zero due to Lemma S2 and hence (S6) and (S7) trivially hold.
Therefore, unfortunately we cannot use Proposition S1 in our framework since we are mainly
interested in the case where p ≥ max(α1, α2). Investigating the level of compressibility as a function
of the tail index is a natural next step for our study.

S5 Proofs of the Main Results

In this section we provide proofs of our main results. We shall begin with stating the following result
from [GCD12], which will be repeatedly used in our proofs.

S5.1 Existing Theoretical Results

Many of our results are based on the compressibility of i.i.d. instances of heavy-tailed random
variables. Here, we state a known result regarding this fact.
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Color: training η/b ratio.
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Lemma S2 ([GCD12, Proposition 1, Part 2] ). Let x ∈ R be a random variable and assume that
E|x|α = ∞ for some α ∈ R+. Then for all p ≥ α, 0 < κ ≤ 1 and any sequence κd such that
limd→∞

κd
d = κ, the following identity holds almost surely:

lim
d→∞

(
‖x(κd) − x‖p/‖x‖p

)
= 0, (S8)

where x = (x1, . . . , xd) is a vector of i.i.d. random variables of length d.

A similar result was concurrently proven in [AUM11]. As stated before, this result informally states
that for a large vector of i.i.d. heavy-tailed random variables, the norm of the vector is mainly
determined by a small fraction of its entries. To show this visually, we have generated 104 i.i.d.
random variables {xi}i with SαS(1) distribution where α = 1.7. Then, we have plotted the
histogram of |x| in Figure S14. As can be seen in the figure, the norm of the whole vector is mainly
determined by few number of samples.

S5.2 Proof of Theorem 1

Proof. (i) As {dl}Ll=1 grow, due to HML condition and assumptions of this part of the theorem, w
converges in distribution to a heavy-tailed random vector, denoted as x = (x1, . . . , xd) ∈ Rd,
with i.i.d. elements and tail index α ∈ (0, 2). Hence, for any ε > 0, ε > 0, κ ∈ (0, 1), and
p ≥ α there exists {d′l,0}Ll=1 : d′l,0 ∈ N such that for dl ≥ d′l,0, l ∈ J1, LK,

P
[(
‖x(κd) − x‖p/‖x‖p

)
≤ ε
]
− P

[(
‖w(κd) −w‖p/‖w‖p

)
≤ ε
]
≤ ε. (S9)

Moreover due to Lemma S2, there exists d′′0 ∈ N such that for d ≥ d′′0 ,

P
[(
‖x(κd) − x‖p/‖x‖p

)
≤ ε
]

= 1 (S10)

The results follows from (S9) and (S10) and by choosing dl,0 ≥ d′l,0, for l ∈ J1, LK, such that∑L
l=1 dl,0 ≥ d′′0 .

(ii) The proof is similar to the previous part. As {dl}Ll=1 grow, due to HML condition, for
l ∈ J1, LK, wl converges in distribution to a heavy-tailed random vector, denoted as xl =
(xl,1, . . . , xl,dl) ∈ Rdl , with i.i.d. elements and tail index αl ∈ (0, 2). Hence, for any ε > 0,
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Figure S14: Histogram of |x| for a sequence of i.i.d. random variables distributed according to
SαS(1), where α = 1.7.

{εl}Ll=1 : εl > 0, {κl}Ll=1 : κl ∈ (0, 1), and p ≥ maxl αl there exists {d′l,0}Ll=1 : d′l,0 ∈ N such
that for dl ≥ d′l,0, l ∈ J1, LK,

P
[(
‖x(κldl)

l − xl‖p/‖xl‖p
)
≤ εl

]
− P

[(
‖w(κldl)

l −wl‖p/‖wl‖p
)
≤ εl

]
≤ ε. (S11)

Moreover due to Lemma S2, there exists {d′′l,0}Ll=1 : d′′l,0 ∈ N such that for dl ≥ d′′l,0,

P
[(
‖x(κldl)

l − xl‖p/‖xl‖p
)
≤ εl

]
= 1 (S12)

The results follows from (S12) and (S11) and by choosing dl,0 ≥ max(d′l,0, d
′′
l,0).

S5.3 Proof of Theorem 2

Proof. Fix l ∈ J2, L− 1K and recall that Wl ∈ Rhl×hl−1 with dl = hl × hl−1. Define

Xl :=
1

h
2/αl
l

W>
l Wl (S13)

and denote the eigenvalues of Xl by λl = [λl,1, . . . , λl,hl−1
].

Let Ul ∈ Rhl×hl−1 be a matrix whose entries are independent and identically distributed from a
symmetric stable distribution with tail index αl. Note that Wl converges in distribution to Ul, as
network dimension goes to infinity, due to HML condition and the assumptions of the theorem.
Similarly, define

X′l :=
1

h
2/αl
l

U>l Ul (S14)

and denote the eigenvalues of X′l by λ′l = [λ′l,1, . . . , λ
′
l,hl−1

].

As Wl converges in distribution to Ul, then λl,k also weakly converges to λ′l,k, due to Weyl’s
inequality ([Bha97, Page 63]). Hence, for any ε > 0, {εl}L−1

l=2 : εl > 0, and {κl}L−1
l=2 : κl ∈ (0, 1),

there exists {ĥl,0}L−1
l=1 , such that for every l ∈ J2, L − 1K, and hi ≥ ĥi,0 for all i ∈ J1, lK, the

following holds
∣∣∣∣∣P
[
‖λ(κihi−1)

i − λi‖p
‖λi‖p

≤ ε2
i

]
− P

[
‖λ
′(κihi−1)
i − λ′i‖p
‖λ′i‖p

≤ ε2
i

]∣∣∣∣∣ ≤
ε

2
. (S15)

Moreover, since each [U]i,j is independent and identically distributed from a symmetric stable
distribution with tail index αl, by [TTR+20, Theorem 2.7], as hl → ∞, for each k = 1, . . . , hl−1,

10



the eigenvalue λ′l,k weakly converges to a random variable ξl,k, where the collection {ξl,k}hl−1

k=1

is independent and identically distributed from a positive stable distribution with tail index αl/2.
Denote by ξl := [ξl,1, . . . , ξl,hl−1

] ∈ Rhl−1 the random vector containing the limiting i.i.d. random
variables.

We will now construct a sequence of {hl,0}L−1
l=1 such that the claims will follow for hl ≥ hl,0. Let

us start from the second layer, i.e., set l = 2. Then, by Lemma S2, for any ε2 > 0, κ2 ∈ (0, 1), and
p ≥ α2/2, there exists h′1,0 ∈ N+, such that h1 ≥ h′1,0 implies:

P

[
‖ξ(κ2h1)

2 − ξ2‖p
‖ξ2‖p

≤ ε2
2

]
= 1. (S16)

Let h1,0 = h′1,0 ∨ ĥ1,0. Having fixed h1 ≥ h1,0, we now iterate the following argument from l = 2
to l = L− 1 sequentially. Due to the weak convergence of the eigenvalues, we have:

lim
hl→∞

P

[
‖λ
′(κlhl−1)
l − λ′l‖p
‖λ′l‖p

≤ ε2
l

]
= P

[
‖ξ(κlhl−1)
l − ξl‖p
‖ξl‖p

≤ ε2
l

]
(S17)

= 1. (S18)

Hence, combining with (S15), for any ε > 0, there exists h′′l,0 ∈ N+, such that hl ≥ h′′l,0 ∨ ĥl,0
implies

P

[
‖λ(κlhl−1)

l − λl‖p
‖λl‖p

≤ ε2
l

]
≥ 1− ε. (S19)

If l = L− 1, set hl,0 = h′′l,0 ∨ ĥl ∨ hl−1. If l ≤ L− 2, repeat the previous argument to find a h′l,0,
such that hl ≥ h′l,0 implies

P

[
‖ξ(κl+1hl)
l+1 − ξl+1‖p
‖ξl+1‖p

≤ ε2
l+1

]
= 1, (S20)

and set hl,0 = h′l,0 ∨ h′′l,0 ∨ ĥl,0 ∨ hl−1. This proves the first claim.

To prove the second claim, first notice that we can set p = 1 as maxl αl < 2, hence p = 1 ≥ αl/2 for
all l. Now, fix l ∈ J2, L− 1K, and for a given hl−1 and hl, consider the singular value decomposition
of Wl as:

Wl = UΣV>, (S21)

and define W
[κlhl−1]
l := UΣ(κlhl−1)V>, where Σ(κlhl−1) is the diagonal matrix whose diagonal

entries contain the dκlhl−1e largest singular values (i.e., prune the diagonal part of Σ). By using
(S19) and the fact that the Schatten 2-norm coincides with the Frobenius norm, we have:

‖Wl‖2 = h
1/αl
l ‖λl‖1, and ‖W[κlhl−1]

l −Wl‖2 = h
1/αl
l ‖λ(κlhl−1)

l − λl‖1. (S22)

Hence, we conclude that for hl ≥ hl,0, the following inequality holds for l ∈ J2, L− 1K:

P

[
‖W[κlhl−1]

l −Wl‖
‖Wl‖

≤ εl
]
≥ 1− ε. (S23)

This concludes the proof.

S5.4 Proof of Theorem 3

Proof. For l ∈ J2, LK, let vl,i = ‖Wl(i)‖p, where Wl(i) ∈ Rhl is the i-th column of Wl ∈
Rhl×hl−1 for i ∈ J1, hl−1K. Note that by definition, for any κl ∈ (0, 1)

‖vl‖p = ‖wl‖p, and ‖v(κlhl−1)
l − vl‖p = ‖w{κlhl−1},p

l −wl‖p.
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Hence, it suffices to show that for any ε > 0 and εl > 0, there exists hl−1,0 such that for hl−1 ≥
hl−1,0,

P
[(
‖v(κlhl−1)

l − vl‖p
)
/‖vl‖p ≤ εl

]
≥ 1− ε. (S24)

As network dimensions grow, due to HML condition, wl,j , j ∈ J1, dlK converges in distribution to an
i.i.d. heavy-tailed random variable with tail index αl. Hence, as {hl−1}Ll=2 grows, vl,i also converges
in distribution to a heavy-tailed random variable, denoted as xl = (xl,1, . . . , xl,hl−1

) ∈ Rhl−1 , with
i.i.d. elements and tail index αl ∈ (0, 2). Thus, there exists {h′l−1,0}Ll=2 : h′l−1,0 ∈ N such that for
hl−1 ≥ h′l−1,0, l ∈ J2, LK,

P
[(
‖x(κlhl−1)

l − xl‖p/‖xl‖p
)
≤ εl

]
− P

[(
‖v(κlhl−1)

l − vl‖p/‖vl‖p
)
≤ εl

]
≤ ε. (S25)

Moreover due to Lemma S2, there exists {h′′l−1,0}Ll=2 : h′′l−1,0 ∈ N such that for hl−1 ≥ h′′l−1,0,

P
[(
‖x(κlhl−1)

l − xl‖p/‖xl‖p
)
≤ εl

]
= 1 (S26)

The results follows from (S12) and (S11) and by choosing hl−1,0 ≥ max(h′l−1,0, h
′′
l−1,0).

S5.5 Proof of Theorem 4

Let
D(y, fw(x)) := fw(x)[y]−max

j 6=y
fw(x)[j].

Define the surrogate loss function `γ,τ : Y × Y 7→ [0, 1], with margin loss γ ≥ 0 and continuity
margin τ > 0, for the multiclass classifier fw as:

`γ,τ (y, fw(x)) :=





1, if D(y, fw(x)) ≤ γ,
1− D(y,fw(x))−γ

τ , if γ < D(y, fw(x)) ≤ γ + τ,

0, if γ + τ < D(y, fw(x)).

(S27)

Note that `γ(y, fw(x)) = `γ,0(y, fw(x)). Population and empirical risks of a hypothesis w are
denoted byRγ,τ (w) and R̂γ,τ (w), respectively.

Proof. Recall that for all l ∈ J1, LK, ŵl := w
(κldl)
l . Denote by A the event that w is compressible,

i.e. when for all l ∈ J1, LK, ‖ŵl − wl‖ ≤ ε‖wl‖. Denote its complement by AC and note that
P(AC) ≤ ε, where the probability is with respect to PS,w.

Fix δ, τ > 0. We show that with probability of at least 1− 2e−κd/2 − δ − ε:

R0,τ (ŵ) ≤ R̂0,τ (ŵ) +
(

12L(τ, δ)R(δ) +
√
d
)√ (κ+ εκ)d log(n)

n
, (S28)

and moreover ‖w‖ ≤ R(δ) and ‖ŵl −wl‖ ≤ ε‖wl‖ for all l ∈ J1, LK, simultaneously. Then, under
the latter two conditions,

R0(ŵ) ≤ R0,τ (ŵ),

R̂0,τ (ŵ) ≤ R̂γ(δ,τ)(w),

using Lemma S1, Definition S27, and Lemma S3 that bounds the Lipschitz coefficient of the network.
This completes the proof.

Lemma S3. Suppose that for l ∈ J1, LK and a given υl > 0, we have ‖wl −w′l‖ ≤ υl.

i. Then, for any (x, y), the following relations hold:

‖fw(x)− fw′(x)‖ ≤ B
L∏

l=1

(‖wl‖+ υl)−B
L∏

l=1

‖wl‖,

∣∣`0,τ (y, fw(x))− `0,τ (y, fw′(x))
∣∣ ≤
√

2

τ
‖fw(x)− fw′(x)‖.

12



ii. In particular, if υl = υ ≤ R/
√
L for l ∈ J1, LK and if ‖w‖ ≤ R, then

‖fw(x)− fw′(x)‖ ≤ BL
(

2R√
L

)L−1

υ,

∣∣`0,τ (y, fw(x))− `0,τ (y, fw′(x))
∣∣ ≤ BL

√
2

τ

(
2R√
L

)L−1

υ =: L(τ, δ)υ.

Hence, it remains to show (S28) together with the conditions ‖w‖ ≤ R(δ) and ‖ŵl −wl‖ ≤ ε‖wl‖,
for l ∈ J1, LK, hold with probability at least 1− 2e−κd − δ − ε. Now, first whenever ‖ŵ‖ ≤ R(δ),
we discretize ŵ. Let

Ŵ(R(δ), d, κ) :=
{
ŵ ∈ Rd

∣∣‖ŵ‖ ≤ R(δ), ‖ŵ‖0 ≤ κd
}
,

where ‖ŵ‖0 denotes the number of non-zero components of ŵ. Assume that W̃(R(δ), d, κ) is a
discretization of this space with υ > 0 precision, i.e. for every ŵ ∈ Ŵ(R(δ), d, κ), there exists
w̃ ∈ W̃(R(δ), d, κ) satisfying ‖w̃ − ŵ‖ ≤ υ. Among all such coverings, consider the one with
minimum number of Nυ points.

Lemma S4. Nυ ≤ edhb(κ)
(

3R(δ)
υ

)κd
.

Note that in general ‖ŵ‖ ≤ ‖w‖. Let l := c1(δ, τ)
√

(κ+εκ)d log(n)
n and υ = al

4L(τ,δ) , where

a := 12L(τ,δ)R(δ)

12L(τ,δ)R(δ)+
√
d

. Then

P
(∣∣R0,τ (ŵ)− R̂0,τ (ŵ)

∣∣ ≥ l
⋃
‖w‖ > R(δ)

⋃
AC
)

≤ P
(∣∣R0,τ (ŵ)− R̂0,τ (ŵ)

∣∣ ≥ l
⋂
‖w‖ ≤ R(δ)

)
+ P(‖w‖ ≥ R(δ)) + P

(
AC
)

≤ P
(∣∣R0,τ (ŵ)− R̂0,τ (ŵ)

∣∣ ≥ l
⋂
‖w‖ ≤ R(δ)

)
+ δ + ε

≤ P

(
sup

ŵ∈Ŵ(R(δ),d,κ)

∣∣R0,τ (ŵ)− R̂0,τ (ŵ)
∣∣ ≥ l/2

)
+ δ + ε

(a)

≤ P

(
max

w̃∈W̃(R(δ),d,κ)

∣∣R0,τ (w̃)− R̂0,τ (w̃)
∣∣ ≥ l(1− a)/2

)
+ δ + ε

(b)

≤ Nυ max
w̃∈W̃(R(δ),d,κ)

P
(∣∣R0,τ (w̃)− R̂0,τ (w̃)

∣∣ ≥ l(1− a)/2
)

+ δ + ε

(c)

≤ 2Nυ exp
(
−nl2(1− a)2/2

)
+ δ + ε

(d)

≤ 2 exp

(
−nl2(1− a)2/2 + κd log

(
12L(τ, δ)R(δ)

al

)
+ dhb(κ)

)
+ δ + ε, (S29)

where (a) is derived since

∣∣R0,τ (ŵ)− R̂0,τ (ŵ)
∣∣ ≤

∣∣R0,τ (w̃)− R̂0,τ (w̃)
∣∣+ 2L(τ, δ)υ =

∣∣R0,τ (w̃)− R̂0,τ (w̃)
∣∣+ al/2.

by Lemma S3, given that υ ≤ R/
√
L, and the triangle inequality. The inequality (b) is obtained by

applying the union bound, (c) is derived using Hoeffding’s inequality and since loss is bounded by 1,
and (d) is due to Lemma S4.
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It remains to show that the term in the exponent in (S29) is upper bounded by−κd/2 and υ ≤ R/
√
L.

−nl2(1− a)2/2 + κd log

(
12L(τ, δ)R(δ)

al

)
+ dhb(κ) (S30)

=− c1(δ, τ)2(1− a)2κd log(n)

2
+
κd

2
log(n) (S31)

+ κd log

(
12L(τ, δ)R(δ)

ac1(δ, τ)
√
d

)
(S32)

− c1(δ, τ)2(1− a)2εκd log(n)

2
− κd

2
log(κ+ εκ) + dhb(κ) (S33)

− κd

2
log log(n). (S34)

It can be verified that (S31) and (S32) are non-positive when c1(δ, τ) ≥
(

12L(τ, δ)R(δ) +
√
d
)
/
√
d.

Moreover, with this choice of c1(δ, τ), (S33) is non-positive for εκ = (2hb(κ)− κ log(κ))/(log(n)).
Finally, (S33) is less than −κd/2, for n ≥ 16.

Finally with the chosen value of υ, υ ≤ R/
√
L holds if n/ log(n) ≥ 10L. This completes the

proof.

S5.6 Proof of Corollary 1

For notation convenience, let SαSn(σ) ≡ SαS(σασ), where n stands for normalized and σα :=

(2Γ(−α) cos((2− α)π/2))
1/α. First, we state the Corollary for a more general case, and then we

state the proof of this general result.

Corollary S2. Assume that for l ∈ J1, LK and i ∈ J1, dlK, the conditional distribution of wl,i
i.i.d.∼

SαlSn(σl) with αl ∈ (1, 2). Further assume that σ2 :=
∑L
l=1(dl/d)σ2

l and {αl}Ll=1 do not depend
on S. Then for every ε > 0, κl ∈ (0, 1), l ∈ J1, LK, and β > 0, there exists dl,0 ∈ N, such that for
every n : n/ log(n) ≥ 10L and τ > 0, with probability at least 1− 3d−β ,

R0(ŵ) ≤ R̂γ(w) +
(
a(α)σLd

L(α+2β+2)
2α /τ +

√
d
)√

(κ+ εκ) log(n)/n, (S35)

where {ŵl}l = {w(κdl)
l }l, α:= minl αl, a(α) := 6

√
2B6L4L/α/L(L−3)/2, γ := τ +

bε(α)σLd
L(α+2β+2)

2α /τ , and bε(α) :=
√

2B3L4L/α
(
(1 + ε)L − 1

)
/LL/2.

Proof. First, given any S, we bound the term RS(δ), defined as

RS(δ) := inf
{
R : P

(
‖w‖ ≥ R

∣∣S
)
≤ δ
}
. (S36)

Lemma S5. If for l ∈ J1, LK, xl is an i.i.d. dl-dimensional vector with with SαlSn(σl) distributions
and αl ∈ (1, 2), then for δ < 2d(2−maxl αl)

α

inf{R : P(‖x‖ ≥ R) ≤ δ} ≤ 3σ
√
d

(
4d

δ

)1/α

,

where σ :=
√∑L

l=1(dl/d)σ2
l and α := minl αl.

Hence, RS(δ) ≤ 3σ
√
d
(

4d
δ

)1/α
. Since σ, α, and maxl αl do not depend on S, then this bound is the

same for all S. Thus, for δ < 2d(2−maxl αl)
α,

R(δ) ≤ 3σ
√
d

(
4d

δ

)1/α

. (S37)

Next, due to Lemma S2, the assumption H 1 holds for any ε > 0 and {κl}Ll=1 : κl ∈ (0, 1) and some
{dl,0}Ll=1 : dl,0 ∈ N, with ε = 0. Note that dl,0 does not depend on S as {αl}Ll=1 is independent
of S. The proof follows now by Theorem 4 with δ = d−β and using the relation (S37) when
2dβ+1

0 (2−maxl αl)
α ≥ 1 and d0/ log(d0) ≥ β/κ.
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S5.7 Proof of Theorem S6

Proof. The proof of this theorem is similar to the proof of Theorem 4. Fix δ, τ > 0. We show that
with probability of at least 1− 2e−d/2 − δ − ε:

R0,τ (w) ≤ R̂0,τ (w) + max
(

2, 24ρε(κ, d)L(τ, δ)R(δ)/
√
d
)√

d log(n)/n, (S38)

whereR0,τ (·) and R̂0,τ (·) are defined in (S27). The claim follows then by noting that

R0(w) ≤ R0,τ (w),

R̂0,τ (w) ≤ R̂τ (w),

due to (S27).

Recall that for all l ∈ J1, LK, ŵl := w
(κldl)
l . Denote by A the event that w is compressible, i.e. when

for all l ∈ J1, LK, ‖ŵl −wl‖ ≤ ε‖wl‖. Denote its complement by AC and note that P(AC) ≤ ε,
where the probability is with respect to Pw.

In the following, first we discretize w whenever ‖w‖ ≤ R(δ). Let

W(R(δ), ε, d, κ) :=
{

w ∈ Rd
∣∣‖w‖ ≤ R(δ), ‖w(κd) −w‖ ≤ εR(δ)

}
.

Assume thatW ′(R(δ), ε, d, κ) is the discretization of this space with υ > 0 precision, i.e. for every
w ∈ W(R(δ), ε, d, κ), there exists w′ ∈ W ′(R(δ), ε, d, κ) satisfying ‖w′ −w‖ ≤ υ. Among all
such coverings, consider the one with minimum number of N ′υ points.

Lemma S6. For d ≥ 10, if υ < εR(δ), then N ′υ ≤
(

3ρε(κ,d)R
υ

)d
.

Similar to the proof of Theorem 4 and by letting l := c2(δ, τ, κ)
√

d log(n)
n and υ = al

4L(τ,δ) , where

a := 12ρε(κ,d)L(τ,δ)R(δ)

12ρε(κ,d)L(τ,δ)R(δ)+
√
d

,

P
(∣∣R0,τ (w)−R̂0,τ (w)

∣∣ ≥ l
)

≤ P
(∣∣R0,τ (w)− R̂0,τ (w)

∣∣ ≥ l
⋃
‖w‖ > R(δ)

⋃
AC
)

≤ P
(∣∣R0,τ (w)− R̂0,τ (w)

∣∣ ≥ l
⋂
‖w‖ ≤ R(δ)

⋂
A
)

+ δ + ε

≤ P

(
sup

w∈W(R(δ),ε,d,κ)

∣∣R0,τ (w)− R̂0,τ (w)
∣∣ ≥ l/2

)
+ δ + ε

(a)

≤ N ′υ max
w′∈W′(R(δ),ε,d,κ)

P
(∣∣R0,τ (w′)− R̂0,τ (w′)

∣∣ ≥ l(1− a)/2
)

+ δ + ε

(b)

≤ 2 exp

(
−nl

2(1− a)2

2
+ d log

(
12ρε(κ, d)L(τ, δ)R(δ)

al

))
+ δ + ε, (S39)

where (a) holds when υ ≤ R/
√
L and (b) holds using Lemma S6 if υ < εR(δ).

It remains to show that the term in the exponent in (S39) is upper bounded by −d/2, υ < εR(δ), and
υ ≤ R/

√
L. To show the first claim, we can write

−nl
2(1− a)2

2
+ d log

(
12ρε(κ, d)L(τ, δ)R(δ)

al

)
=− c2(δ, τ, κ)2(1− a)2d log(n)

2
+
d

2
log(n)

(S40)

+ d log

(
12ρε(κ, d)L(τ, δ)R(δ)

ac2(δ, τ, κ)
√
d

)
(S41)

− d

2
log log(n). (S42)
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It can be verified that (S40) and (S41) are non-positive when c2(δ, τ, κ) =(
12ρε(κ, d)L(τ, δ)R(δ) +

√
d
)
/
√
d and (S42) is less than −d/2, for n ≥ 16.

To verify υ < εR(δ), where υ = al
4L(τ,δ) , we have

υ =
12ρε(κ, d)L(τ, δ)R(δ)

12ρε(κ, d)L(τ, δ)R(δ) +
√
d
× 12ρε(κ, d)L(τ, δ)R(δ) +

√
d√

d
×
√
d log(n)/n

4L(τ, δ)

= 3ρε(κ, d)R(δ)
√

log(n)/n

≤ 9ε1−κR(δ)
√

log(n)/n
(a)

≤ εR(δ),

where (a) holds when εκ ≥ 9
√

log(n)/n.

Moreover, with the chosen value of υ, υ ≤ R/
√
L holds if n/ log(n) ≥ 9L. Finally note that(

12ρε(κ, d)L(τ, δ)R(δ) +
√
d
)
≤ max(24ρε(κ, d)L(τ, δ)R(δ), 2

√
d). This completes the proof.

S5.8 Proof of Proposition S1

Proof. For ease of notations, for κ, ε > 0 and w ∈ Rd, let

εp(w, κ) := ‖w(κd) −w‖p/‖w‖p and hence κp(w, ε) := min{κ : εp(w, κ) ≤ ε}. (S43)

Let x = (|w1|, . . . , |wd|) and let xd,i be the corresponding ordered sequence, i.e.

xd,1 ≥ xd,2 ≥ · · · ≥ xd,d.
Let

yd =
1

ad
(xd,1, xd,2, . . . , xd,d, 0, 0, . . .) ∈ R∞,

where ad is a normalizing constant defined in [LWZ81, Equation 3]. Moreover let ei, i = 1, 2, . . ., be
i.i.d. standard exponential random variables with partial sum Γi :=

∑i
l=1 el and let zi(α) := Γ

−1/α
i .

Then, due to [LWZ81, Lemma 1],

lim
d→∞

yd
d
= (z1(α), z2(α), . . .).

where d denotes convergence in distribution.

First, we show that for any κ > 0, εp
(
zd(α), κ

)
is increasing with respec to α. This term can be

written as

εp
(
zd(α), κ

)p
=

d∑
l=dκde+1

zl(α)p

d∑
l=1

zl(α)p
=

d∑
l=dκde+1

Γ
− p
α

l

d∑
l=1

Γ
− p
α

l

=:
u

v
.

Taking the derivative with respect to α gives

∂εp
(
zd(α), κ

)p

∂α
=
vu′ − v′u

v2
,

where

vu′ − v′u =
p

α2



(

d∑

l=1

Γ
− p
α

l

)


d∑

l=dκde+1

Γ
− p
α

l log(Γl)


−

(
d∑

l=1

Γ
− p
α

l log(Γl)

)


d∑

l=dκde+1

Γ
− p
α

l






=
p

α2

dκde∑

l1=1

d∑

l2=dκde+1

Γ
− p
α

l1
Γ
− p
α

l2
(log(Γl2)− log(Γl1))

a.s.
> 0.
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This shows that εp
(
zd(α), κ

)
is almost surely strictly increasing with respect to α, and consequently

κp
(
zd(α), ε

)
is almost surely increasing with respect to α.

Since εp(w, κ) is a bounded function and almost surely continuous with respect to w, E
[
εp
(
wd
i , κ
)]

converges also to E[εp(z
∞
i (αi), κ)], for i = 1, 2. To show (S6), choose d0(δ) large enough, such that

∣∣∣∣E
[
εp
(
wd

1 , κ
)]
− E[εp(z

∞
1 (α1), κ)]

∣∣∣∣ <
δ

4
,

∣∣∣∣E
[
εp
(
wd

2 , κ
)]
− E[εp(z

∞
2 (α2), κ)]

∣∣∣∣ <
δ

4
,

∣∣∣∣E
[
εp
(
zd1, κ

)]
− E[εp(z

∞
1 (α1), κ)]

∣∣∣∣ <
δ

4
,

∣∣∣∣E
[
εp
(
zd2, κ

)]
− E[εp(z

∞
2 (α2), κ)]

∣∣∣∣ ≤
δ

4
.

Then,

E
[
εp
(
wd

2 , κ
)]
− E

[
εp
(
wd

1 , κ
)]
< δ + E

[
εp
(
zd2(α2), κ

)]
− E

[
εp
(
zd1(α1), κ

)]
< δ.

Similarly, (S7) can be concluded.

S6 Proofs of the Technical Lemmas

In this section, we give proofs of all the unproved lemmas stated in the paper.

S6.1 Proof of Lemma S1

Proof. Inequality (S3) can be concluded from part i. of Lemma S3, stated in Section S5.5, by letting
υl = εl‖wl‖. Inequality (S4) can be concluded from (S3) and since when ‖w‖ ≤ R, then

L∏

l=1

‖wl‖ ≤
(
R√
L

)L
.

S6.2 Proof of Lemma S3

Proof. i. Similar to [NBS18], we will show the first inequality by induction. Let f lw(x) denote the
output of the lth layer: f1

w(x) = W1x and f lw(x) = Wlφ
(
f l−1
w (x)

)
. We show that for i ∈ J1, LK,

following relations hold:

‖f iw(x)− f iw′(x)‖ ≤ B
i∏

l=1

(‖wl‖+ υl)−B
i∏

l=1

‖wl‖.

The induction base i = 0 holds trivially. Assume that it holds till layer i. We show that it holds for
layer i+ 1 as well. Note that with our notations wl = vec(Wl) and consequently ‖Wl‖ = ‖wl‖.
∥∥f i+1

w′ (x)− f i+1
w (x)

∥∥
=
∥∥W′

i+1φ
(
f iw′(x)

)
−Wi+1φ

(
f iw(x)

)∥∥
=
∥∥(Wi+1 + W′

i+1 −Wi+1

)(
φ
(
f iw(x)

)
+ φ

(
f iw′(x)

)
− φ

(
f iw(x)

))
−Wi+1φ

(
f iw(x)

)∥∥
≤
∥∥(W′

i+1 −Wi+1

)
φ
(
f iw(x)

)∥∥+
∥∥Wi+1

(
φ
(
f iw′(x)

)
− φ

(
f iw(x)

))∥∥
+
∥∥(W′

i+1 −Wi+1

)(
φ
(
f iw′(x)

)
− φ

(
f iw(x)

))∥∥
(a)

≤ υi+1B

i∏

l=1

‖wl‖+ (‖wi+1‖+ υi+1)

(
B

i∏

l=1

(‖wl‖+ υl)−B
i∏

l=1

‖wl‖
)

= B

i+1∏

l=1

(‖wl‖+ υl)−B
i+1∏

l=1

‖wl‖.
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where (a) is concluded since φ is 1-Lipschitz, φ(0) = 0, and since due to the structure of fw,
‖f iw(x)‖ can be upper bounded as

‖f iw(x)‖ ≤ ‖x‖
i∏

l=1

‖wi‖ ≤ B
i∏

l=1

‖wi‖.

Next, we show the second inequality.
∣∣`0,τ (z, fw)− `0,τ (z, fw′)

∣∣ ≤ 1

τ

∣∣∣∣fw(x)[y]−max
j 6=y

fw(x)[j]− fw′(x)[y] + max
j′ 6=y

fw′(x)[j′]

∣∣∣∣

≤ 1

τ
|fw(x)[y]− fw′(x)[y]|+ 1

τ

∣∣∣∣max
j 6=y

fw(x)[j]−max
j′ 6=y

fw′(x)[j′]

∣∣∣∣

≤ 1

τ
|fw(x)[y]− fw′(x)[y]|+ 1

τ
max
j 6=y
|fw(x)[j]− fw′(x)[j]|

(a)

≤
√

2

τ
‖fw(x)− fw′(x)‖,

where (a) is derived using the relation x+ y ≤
√

2(x2 + y2), for x, y ∈ R+.

ii. To show the first inequality, note that due to symmetry, R.H.S. of part i. is maximized when
‖wl‖ = R/

√
L, for l ∈ J1, LK. Hence,

‖fw(x)− fw′(x)‖ ≤ B
((

R√
L

+ υ

)L
−
(
R√
L

)L)
. (S44)

Next, we show that if a ≥ b ≥ 0 and n ∈ N, then

an − bn ≤ n(a− b)an−1. (S45)

We show this by induction. It trivially holds for n = 1. Suppose that it holds till n ≤ i− 1. We show
that it holds for n = i, as well.

– if i is even, then

ai − bi =
(
a
i
2 − b i2

)(
a
i
2 + b

i
2

) (a)

≤ i

2
(a− b)ai/2−1 × 2ai/2 = i(a− b)ai−1,

where (a) is derived using the induction assumption.
– if i is odd, then

ai − bi = (a− b)
i−1∑

k=0

akbi−1−k ≤ i(a− b)ai−1.

Thus, using (S44) and (S45) and since υ ≥ R/
√
L,

‖fw(x)− fw′(x)‖ ≤ BL
(

2R√
L

)L−1

υ.

This completes the proof for the first inequality. Finally, the second inequality trivially follows from
the first one and part i.

S6.3 Proof of Lemma S4

Proof. Note that there exists
(
d
κd

)
different ways to choose κd coordinates with zero values. Next,

each of the resulting κd-dimensional sub-space can be discretized using at most
(

3R(δ)
υ

)κd
number

of points due to [Wu20, Theorem 14.2.]. Using the following lemma completes the proof.

Lemma S7 ([Gal68, Exercise 5.8.b.]). For n,m ∈ Z+ and m ≤ n,
(
n
m

)
≤ enhb(m/n).
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S6.4 Proof of Lemma S5

Proof. First we show that in general when random variables yi, i ∈ J1,mK are independent and∑m
i=1 ai ≤ a, then

P

(
m∑

i=1

yi ≥ a
)
≤

m∑

i=1

P(yi ≥ ai).

We prove this for the case of m = 2, and the general case follows by an induction.

P(y1 + y2 ≥ a) = P(y1 + y2 ≥ a, y1 ≥ a1) + P(y1 + y2 ≥ a, y1 < a1)

≤ P(y1 ≥ a1) + P(y1 + y2 ≥ a, y1 < a1)

≤ P(y1 ≥ a1) + P(y2 ≥ a− a1, y1 < a1)

≤ P(y1 ≥ a1) + P(y2 ≥ a2).

Next, since stable distributions are continuous distributions, hence P (‖x‖ ≥ R(δ)) = δ.

Now, to show the idea, first show that if x is an i.i.d. d-dimensional vector with SαSn(σ) distributions
and α ∈ (1, 2), then for δ < 2d(2− α)α, R(δ) can be bounded as

R(δ) ≤ 3σ
√
d

(
4d

δ

)1/α

. (S46)

To show this,

δ = P
(
‖x‖2 ≥ R2(δ)

)
≤

d∑

i=1

P
(
‖xi‖2 ≥ R2(δ)/d

)

=

d∑

i=1

P
(
‖xi‖ ≥ R(δ)/

√
d
) (a)

≤ 4d

(
3σ
√
d

R(δ)

)α
, (S47)

where (a) holds when R(δ) ≥ 4σ
√
d/(2 − α) due to the following inequality from [BŁM20,

Theorem 19]. The result is stated for a SαS(σα) ≡ SαSn(1) distribution, where σα :=

(2Γ(−α) cos((2− α)π/2))
1/α. Here, we state the result for arbitrary SαSn(σ). If y ∼ SαSn(σ)

and α ∈ (1, 2), then for a ≥ 4σ/(2− α)

P(y ≥ a) ≤ 16

3

(
2σ

a

)α
≤ 4

(
3σ

a

)α
.

Re-arranging (S47) and considering the condition R(δ) ≥ 4σ
√
d/(2− α), yields

R(δ) ≤ max

(
3σ
√
d

(
4d

δ

)1/α

,
4σ
√
d

(2− α)

)
.

Hence, (S46) holds, at least when

3σ
√
d

(
4d

δ

)1/α

≥ 4σ
√
d

(2− α)
,

which is satisfied when δ < 2d(2− α)α.

Now, to show the lemma, let al := dσ2/σ2
l . Then, similar steps concludes

δ ≤
L∑

l=1

dl∑

i=1

P
(
‖xl,i‖ ≥

R(δ)√
al

)
(a)

≤ 4

L∑

l=1

dl∑

i=1

(
3σ
√
d

R(δ)

)αl
(b)

≤ 4d

(
3σ
√
d

R(δ)

)α
, (S48)

where (a) holds when R(δ) ≥ maxl 4σ
√
d/(2− αl) and (b) holds when R(δ) ≥ 3σ

√
d. Note that

3σ
√
d ≤ 4σ

√
d/(2− αl). Finally, similarly, (S46) holds if δ < 2d(2−maxl αl)

α.
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S6.5 Proof of Lemma S6

Proof. To upper bound N ′υ , first consider the spaceW ′′, defined as5

W ′′ :=
⋃

A
|A|=κd

W ′′A,

W ′′A :=
{
w ∈ Rd

∣∣‖wA‖ ≤ R(δ), ‖wAC‖ ≤ εR(δ)
}
.

Since each of W ′′A is a convex space, then if υ < εR(δ), by [Wu20, Theorem 14.2.], it can be
discretized with υ-precision using at most

(
3

υ

)d Vol(W ′′A)

Vol(Bd)
=

(
3

υ

)d πκd/2Rκd

Γ(κd/2+1) ×
π(1−κ)d/2(εR)(1−κ)d

Γ((1−κ)d/2+1)

πd/2Rd

Γ(d/2+1)

=

(
3ε(1−κ)R

υ

)d
Γ(d/2 + 1)

Γ(κd/2 + 1)Γ((1− κ)d/2 + 1)
,

number of points, where Bd is the d-dimensional unit ball. Now, sinceW(R(δ), ε, d, κ) ⊆ W ′′,

N ′υ ≤
(
d

κd

)(
3ε(1−κ)R

υ

)d
Γ(d/2 + 1)

Γ(κd/2 + 1)Γ((1− κ)d/2 + 1)
,

(a)

≤ e
d
(
hb(κ)+h

(1)
b (κ)

)(
3ε(1−κ)R

υ

)d

(b)
=

(
3ρε(κ, d)R

υ

)d
, (S49)

where (a) is concluded from Lemma S7 and the following lemma and (b) is concluded since one way
to discretizeW(R(δ), ε, d, κ) is to consider the whole sphere with radius R, which needs at most
(3R/υ)d, due to [Wu20, Theorem 14.2.].

Lemma S8. For n,m ∈ Z+, n ≥ m, and n ≥ 10,

Γ(n/2 + 1)

Γ(m/2 + 1)Γ((n−m)/2 + 1)
≤ edn/2emax(hb(dm/2e/dn/2e),hb(bm/2c/dn/2e)).

S6.6 Proof of Lemma S8

Proof. For m = 0 or m = n, the claim holds with equality. Let 1 ≤ m ≤ n− 1. When n and m are
even, then the lemma can be concluded from Lemma S7. Assume, at least one of n and m are odd
numbers. We consider two cases of n being odd and even separately.

Note that for a ∈ N, [Rob55]

Γ(a+ 1) =
√

2πa aae−aera , (S50)

where 1/(12a+ 1) < ra < 1/(12a). Moreover,

Γ

(
a+

1

2

)
=

√
π(2a)!

4aa!

(∗)
=
√

2π aae−aesa , (S51)

where (∗) is derived using (S50) with sa being bounded as

1

24a+ 1
− 1

12a
< sa <

1

24a
− 1

12a+ 1
.

5For a set A = {i1, . . . , ir} ⊆ J1, dK, denote xA := (xi1 , xi2 , . . . , xir ).
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Odd n: Let n = 2k + 1 and m = 2q, where 1 < q ≤ k. Then,

Γ(n/2 + 1)

Γ(m/2 + 1)Γ((n−m)/2 + 1)

(a)
=

esk+1−(rq+sk+1−q)(k + 1)k+1

√
2πq qq(k + 1− q)k+1−q

(b)

≤ (k + 1)k+1

qq(k + 1− q)k+1−q

< e(k+1)hb(q/(k+1))

< edn/2emax(hb(m/2dn/2e),hb(m/2dn/2e)), (S52)

where (a) is derived using (S50) and (S51), and (b) is derived, since

sk+1−(rq + sk+1−q) <
1

24k + 24
− 1

12k + 13
− 1

12q + 1
− 1

24(k − q) + 25
+

1

12(k − q) + 12

≤ 1

24k + 24
− 1

12k + 13
− 1

12k + 1
− 1

25
+

1

12

<
1

12
− 1

25
≤ 0.05.

The case of m being odd is similar.

Even n: Let n = 2k and m = 2q + 1, where 1 < q < k and k ≥ 5. Then,

Γ(n/2 + 1)

Γ(m/2 + 1)Γ((n−m)/2 + 1)

(a)
=

e1+rk−(sq+1+sk−q)
√
k kk√

2π(q + 1)q+1(k − q)k−q
(b)
<

1.17
√
k kk

(q + 1)q+1(k − q)k−q (S53)

where (a) is derived using (S50) and (S51) and (b) is derived since

rk − (sq+1 + sk−q) <
1

12k
− 1

24q + 25
+

1

12q + 12
− 1

24(k − q) + 1
+

1

12(k − q)

≤ 1

6k
− 1

24k + 1
− 1

25
+

1

12
< 0.07,

where the last step holds for k ≥ 5.

Next, for k ≥ 5, either q+ 1 ≥ 1.17
√
k or k− q ≥ 1.17

√
k. Otherwise, we would conclude

k + 1 < 2.34
√
k, which is a contradiction for k ≥ 5.

– If q + 1 ≥ 1.17
√
k, then (S53) is upper bounded by

1.17
√
k kk

(q + 1)q+1(k − q)k−q ≤
kk

(q + 1)q(k − q)k−q

≤ kk

qq(k − q)k−q
≤ ekhb(q/k) = e

n
2 hb(2bm/2c/n).

– If k − q ≥ 1.17
√
k, then (S53) is upper bounded by

1.17
√
k kk

(q + 1)q+1(k − q)k−q ≤
kk

(q + 1)q+1(k − q)k−q−1

≤ kk

(q + 1)q+1(k − q − 1)k−q−1

≤ ekhb((q+1)/k) = e
n
2 hb(2dm/2e/n).
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