
Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 DIMENSIONALITY ANALYSIS UNDER DISTRIBUTION SHIFT

Figure 8: Effective dimensionalities of the recurrent, input and full state-space trajectories collected
during online testing, under the noise distribution shift (for details, refer to A.11), as measured by
the explained variance of the top 5 principal components. a) CfC state-space dynamics (±1 SE). b)
RNN state-space dynamics (±1 SE). c) LSTM state-space dynamics (±1 SE).

Recall in Figure 6, we computed the effective dimensionalities of the recurrent, input and full state-
space trajectories across models, ranks and sparsities collected during an online, closed-loop simu-
lations of the agents in an in-distribution setting. In doing so, we found that the input and full state
space dimensionalities were not particularly affected by changes in the recurrent rank or sparsity.
Here, we will show that the same does not hold under distribution shift and understand why this is a
desirable property of the parameterization of recurrent connectivity.

In Figure 8, we find that in CfCs, RNNs and LSTMs, the effective dimensionalities of the input
and full state spaces increases with the rank of the recurrent weights. This is interesting as it
demonstrates the ability of the parameterization to modulate state-space dynamics outside of the
recurrently-driven subspace of activity. But it also begs the question as to why we do not observe
this effect in the in-distribution setting.

The primary distinction is that under distribution shift, we can imagine that adding noise to the inputs
causes the input state-space trajectory to evolve in random directions, raising its dimensionality.
Having a robust recurrent state presumably allows for the filtration of some of this noise, which
reduces the effect it has on future model inputs. Furthermore, since we examine these trajectories
in the context of a closed loop system, the input is itself a function of the previous hidden state. By
making this function more robust via our low-rank prior, this in turn reduces the dimensionality of
the input state-space trajectory (and by proxy the full state-space trajectory as well).

One final note is that while we observe this trend as a function of rank, we do not observe it as
a function of sparsity. In particular, modulations in the dimensionality of the recurrent state-space
via changes in the sparsity of the recurrent weights do not appear to impact the dimensionality of

14

Under review as a conference paper at ICLR 2024

input or full state-spaces (Figure 8). While this certainly requires further exploration, one possible
hypothesis is that this is caused by the counteracting effects of sparsity on robustness. Namely,
recall that sparsity both reduces the spectral radius which shortens the temporal attention span of
the network, making the model more robust across time. However, it also reduces the decay rate
of the singular value spectrum, making it less robust at any given point in time. These two effects
potentially offset one another and prevent the sparsity in the recurrent weights from modulating the
dimensionality of the input trajectory.

A.2 TIME CONSTANT ANALYSIS

Figure 9: Average absolute deviation from 0.5 of time constant vectors in trained CfC models.

In Section 4.3, we demonstrated that on average, CfCs both learn lower spectral norms in their re-
current weights and express lower dimensional state-space trajectories than RNNs. Recall, the func-
tional form of a CfC differs from an RNN via the time constant network F (ht−1,xt) which learns
a vector of weights used to interpolate between G and H . Note that if F (ht−1,xt) = [1, 1, . . . , 1],
the network reduces to that of an RNN by placing all of its weight on a single trajectory. Because the
time-constant learned by F is a function of the input, the network can dynamically adapt its inter-
polation weights under distribution shift by changing how much it weighs the trajectory induced by
G versus the trajectory induced by H . While rationale beyond the effects of the time-constant mod-
ule on the overall network dynamics warrants further exploration, the notion of gating mechanisms
improving performance in neural networks is not a new one; recent work done in convolutional
language models shows similar findings (Poli et al., 2023).

In any case, to better understand the time constant network, here we provide an analysis on what
role modulating recurrent sparsity and rank has on the learned interpolation weights. In particular,
let wt denote the interpolation weights that are the output of F at time t. We compute

|wt − 0.5| =
∑T

t=1

∑h
i=1 |wti − 0.5|
hT

which measures the average deviation of the weights from 0.5. We consider this metric as a means
of understanding how much the interpolation between G and H tends to rely upon only one of the
trajectories (as we observe in the case of an RNN) versus evenly combining them (as would be the
case if F learns to output [12 ,

1
2 , . . . ,

1
2]). We find that as a function of increasing rank, the deviation

of the time constant from 0.5 decreases (Figure 9). This means that low-rank CfCs tend to place
more of their weight on one trajectory than the other which demonstrates the ability of the time
constant network to align with the simpler recurrent dynamics promoted in the low-rank setting.

A.3 TASK DIMENSION CONTINUED

Here, we provide some additional commentary on our discussion of the task dimension gap in Sec-
tion 4.4.

15

Under review as a conference paper at ICLR 2024

At a high level, the notion of a task dimension gap which characterizes the disconnect between
agents learning passively in the offline setting and learning actively in the online setting warrants
further exploration and formalization. Furthermore, we note that, the notion of task dimension put
forth by Schuessler et al. (2020) itself is more aptly decomposed into recurrent task dimension and
input task dimension. In particular, as we have shown, changes in recurrent connectivity are not nec-
essarily synonymous with changes in input connectivity (Figure 6). A given task may necessitate
learning connectivities of different ranks along the input axis and recurrent axis: disentangling the
two is a necessity in understanding the dynamics of recurrent neural networks. Another point to note
is that recurrent task dimension is distinct from attention span along the recurrent axis, which can
also be considered a function of the task. We showed that while rank and sparsity both reduce tem-
poral attention span, they have opposing effects on the dimensionality of recurrently-driven activity.
Noting this distinction is pivotal in properly characterizing recurrent dynamics.

A.4 DERIVING RECURRENT GRADIENTS

In this section, we provide details on the derivation for Jt = ∂ht

∂ht−1
in RNNs, LSTMs and CfCs.

Jt is the Jacobian of the hidden-state dynamics which captures information about the rate at which
the gradient is propagated across time. We motivate this further when we discuss the relationship
between Jt and the memory-horizon of a recurrent network in Section A.5.

A.4.1 RNN

Recall that the functional form of an RNN is given by

ht = tanh(Whht−1 +Wixt + b)

where Wh denotes the recurrent weights, Wi denotes the input weights and b denotes the bias.
Then, if we let ⊙ denote row-wise multiplication in the case of a vector and matrix, then we have
that

∂ht

∂ht−1
= (1− tanh2(ht−1))⊙Wh

A.4.2 LSTM

The functional form of an LSTM is given by

it = σ(Wiixt +Whiht−1 + bi)

ft = σ(Wifxt +Whfht−1 + bf)

ot = σ(Wioxt +Whoht−1 + bo)

gt = tanh(Wicxt +Whcht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

Following the notation from Vogt et al. (2020), if we let

y∗ = Wi∗xt +Wh∗ht−1 + b∗

where ∗ is determined by the gate and ⊙ denotes elementwise multiplication in the case of two
vectors and row-wise multiplication in the case of a vector and matrix, then we have that

16

Under review as a conference paper at ICLR 2024

∂ft

∂ht−1
= [σ(yf)⊙ (1− σ(yf))]

T ⊙Whf

∂it
∂ht−1

= [σ(yi)⊙ (1− σ(yi))]
T ⊙Whi

∂ot

∂ht−1
= [σ(yo)⊙ (1− σ(yo))]

T ⊙Who

∂gt
∂ht−1

= [(1− tanh2(yc))]
T ⊙Whc

∂ct
∂ht−1

=
∂ft

∂ht−1
⊙ ct−1 +

∂it
∂ht−1

⊙ tanh(yc) + it ⊙ (1− tanh2(yc))⊙Whc + ft

∂ht

∂ht−1
=

∂ot

∂ht−1
⊙ tanh(ct) + ot ⊙ (1− tanh2(ct))⊙

∂ct
∂ht−1

A.4.3 CFC

The functional form of a CfC is given by

h(t) = σ(F (ht−1,xt, θF))⊙G(ht−1,xt, θG) + [1− σ(F (ht−1,xt, θf)]⊙H(ht−1,xt, θH)

where θF , θG, θH refer to the parameters in each module as given by the following equations:

F (ht−1,xt, θF) = Wifxt +Whfht−1 + bf

G(ht−1,xt, θG) = tanh(Wigxt +Whght−1 + bg)

H(ht−1,xt, θH) = tanh(Wihxt +Whhht−1 + bh)

We note that in the work that originally proposed the CfC architecture (Hasani et al., 2021), F is
referred to as a liquid time constant network due to its motivation as a time constant in a dynamical
system. In general, time constants are more thoroughly motivated in the continuous-time setting
in which a neural network is used to model the derivative of the hidden state as opposed to the
hidden state itself (Chen et al., 2018). In that setting, a time constant represents a parameter that
characterizes the speed and coupling sensitivity of an ODE that models a system. However, our
work exists in the discrete-time setting in which we can no longer interpret the time constant as a
parameter of a continuous-time system. Instead, we interpret F as an adaptive gating mechanism,
as discussed in Section 4.

If we let
y∗ = Wi∗xt +Wh∗ht−1 + b∗

where ∗ is determined by the gate, then it follows that

∂ht

∂ht−1
= σ(yf)⊙ (1− tanh2(yg))Whg + tanh(yg)⊙ [σ(yf)⊙ (1− σ(yf))⊙Whf]

+ [1− σ(yf)]⊙ (1− tanh2(yh))Whh + tanh(yh)⊙ [1− (σ(yf)⊙ (1− σ(yf))⊙Whf)]

A.5 MOTIVATING SPECTRAL ANALYSES OF RECURRENT MODELS

In this section, we motivate the analyses employed in this paper in order to analyze the dynamics
of the various recurrent networks we examined. In particular, we will motivate the low-rank, sparse
parameterization of Wrec from the perspective of modulating the spectral radius and spectral norm
(and more generally the eigenspectrum and singular value spectrum) of the recurrent weights at
initialization and then extend this line of reasoning to the analyses performed on the trained models.
For specifics on the implementation details and computation performed for these analyses, refer to
A.11.5.

17

Under review as a conference paper at ICLR 2024

A.5.1 RECURRENT MEMORY HORIZON

We leverage our parameterization of Wrec(r, s) as a function of rank and sparsity in order to mod-
ulate the spectral radius, spectral norm and singular value spectrum of the recurrent weights.

Here, we argue that the spectral radius of Wrec(r, s) is a pertinent measure for the memory horizon
of the network across time. We will demonstrate why in the context of an RNN as the computations
are most tractable under this functional form. In particular, in an RNN, the recurrent gradient in
Jt = ∂ht

∂ht−1
reflects how much the network’s hidden state is updated based on information from

the past. A higher recurrent gradient suggests the network is paying more attention to distant inputs
during training, while a lower recurrent gradient implies less reliance on such distant information.

The relevant quantity in backpropagation through time in an RNN is

∂ht

∂hk
=

∏
t≥i≥k

∂hi

∂hi−1
=

∏
t≥i≥k

(1− tanh2(ht−1))⊙Wh

(refer to A.4 for details on the derivation of RNN recurrent gradient). We can re-express the element-
wise product in the expression for ∂hi

∂hi−1
as the product of two matrices as follows:

diag[(1− tanh2(ht−1))]Wh

where the diag(v) operator constructs a diagonal matrix where the elements of v are placed along
the diagonal. Then, we have that∥∥∥∥ ∂hi

∂hi−1

∥∥∥∥ ≤
∥∥diag[(1− tanh2(ht−1))]

∥∥ ∥Wh∥

by the sub-multiplicativity of a matrix norm. As a function of rank and sparsity, if we assume that∥∥diag[(1− tanh2(ht−1))]
∥∥ is reasonably unaffected by the changes in Wrec(r, s) at initialization,

then variation in the bound arises only from ∥Wh∥.

Drawing from the analysis presented in Pascanu et al. (2012), if we assume that the relevant variation
in the bound as a function of rank and sparsity comes only from ∥Wh∥ and that Wh = PDP−1 is
diagonalizable, then we approximately have that

∂ht

∂hk
≤

∥∥∥∥∥∥
∏

t≥i≥k

diag[(1− tanh2(hi−1))]Wh

∥∥∥∥∥∥ ≈
∥∥(Wh)

t−k
∥∥ =

∥∥PDt−kP−1
∥∥

where P denotes a matrix of eigenvectors and D denotes a diagonal matrix with the eigenvalues
on the diagonal. It follows that for sufficiently large ℓ = t − k,

∥∥PDt−kP−1
∥∥ is dominated by

the eigenvalue of leading magnitude. One can argue this more formally using the power iteration
method, details of which can be found in Pascanu et al. (2012). We further note that this notion of
modifying the spectral radius in order to modulate attention across the time in recurrent networks
is not a new one. One prominent example can be found in echo state networks which like our
parameterization induces sparsity in the recurrent weights in order to control how much attention
the model pays to distant inputs.

Extending this mathematical argument to LSTMs and CfCs is less straightforward given the more
intricate gating mechanisms present in the functional forms of each model. While it is reason-
able to hypothesize that decreasing the spectral radius in these architectures will result in a faster
decay of gradients across time, it is unclear how fast/slow this decay is relative to the analysis pre-
sented above for an RNN. Furthermore, the assumption made in the argument above for gradient
decay in RNNs rested upon ignoring the portion of the gradient influenced by the hidden state:∥∥diag[(1− tanh2(ht−1))]

∥∥. This assumption becomes less reasonable after training as the network
could potentially learn hidden-state vectors of small magnitude, causing the gradients to decay even
faster. And this assumption is even less reasonable in LSTMs and CfCs after training, again due to
the nuanced gating present in each architecture.

Thus, while we still examine the spectral radii of each architecture, we also conduct a more nuanced
recurrent memory analysis on all the architectures by computing the norm of the recurrent gradients

18

Under review as a conference paper at ICLR 2024

backpropagated through time. In particular, if we let Jt = ∂ht

∂ht−1
denote the recurrent Jacobian,

then we can take the cumulative product of the Jacobians as follows:

[Jt,JtJt−1, · · · ,JtJt−1 . . .J1]

Taking the norm of each of the matrices in the list above gives us a concrete measure of the extent
to which a given model attends to its past observations as a function of time. This enables us
to evaluate the effect of the recurrent weight’s spectral radius on the memory-horizon of a given
architecture which allows us to make comparisons not only within a given architecture across ranks
and sparsities, but also across the different recurrent architectures we analyze (i.e. RNN vs LSTM
vs CfC).

A.5.2 ROBUSTNESS UNDER DISTRIBUTION SHIFT

In the last section, we motivated the parameterization of Wrec(r, s) from the perspective of the
spectral radius and the implications it has on the attention profile of the network across time. In
this section, we will motivate the parameterization instead from the perspective of the singular value
spectrum of Wrec(r, s) and understand the implications it has on the robustness of the network under
distribution shift.

Before motivating the analysis of the singular value spectrum, we first clarify the nature of the dis-
tribution shifts in the context of this work. Here, distribution shifts are applied to the input image,
which is then fed through a set of convolutional layers before entering the recurrent portion of the
network. The perturbed input denoted by x∗

t then corrupts the hidden state h∗
t via the update rule

for the hidden state specified by the recurrent model. To simplify our robustness analysis, we do not
consider the convolutional layers and instead restrict the scope of our analysis to the input weights
and recurrent weights of the recurrent network. Since both xt and ht are affected by distribution
shift, in practice we care about the robustness induced by both Winp and Wrec. However, recall
that our parameterization only constructs Wrec(r, s) as a function of rank and sparsity, while main-
taining the structure of Winp as full-rank and fully-connected. We note that we did try extending
the parameterization as a function of rank and sparsity to Winp, but found that doing so was quite
detrimental to performance (results not shown). Thus, at initialization, we only modulate the robust-
ness across the recurrent axis via the recurrent weights. Nonetheless, we still examine the spectral
properties of the input weights after training to understand whether modulating the rank and sparsity
of the recurrent weights implicitly affects the input weights during learning.

Consider a perturbation e applied to the hidden state ht such that ∥e∥ = 1 (in practice recall that the
perturbation is actually applied to xt which later corrupts ht, but we apply the perturbation directly
to ht to simplify our argument). Under distribution shift, we care about our robustness against all
possible perturbations since we can imagine e being sampled from some arbitrary distribution over
unit vectors. In particular, we want to understand how Wrecht differs from Wrec(ht + e). To
motivate the importance of the singular value spectrum, consider an SVD on Wrec as follows:

Wrec(ht + e) = UΣV T (ht + e) = UΣV Tht +UΣV Te

Note that the quantity we care about for measuring robustness is UΣV Te. Since V T is a unitary
matrix, V Te = e∗ has the same magnitude as e. Similarly, U is also a unitary matrix, so the only
transformation that affects the magnitude of e is the scaling performed by the singular value matrix
Σ. Now, we can reduce the robustness of Wrec to two things: the magnitude of the expansion
induced by Σ and the effective number of directions in which e is expanded.

First, we will discuss our approach to measuring the magnitude of the expansion induced by the
recurrent weights. A canonical measure of the expansion induced by a matrix is given by the spectral
norm which is equivalent to the leading singular value. In this case, the spectral norm of Wrec tells
us that Wrec(ht + e) deviates most from Wrecht if e is the norm-1 vector parallel to the singular
vector corresponding to the largest singular value of Wrecht. We can interpret this as a worst-case
(i.e. adversarial) analysis of robustness. The spectral norm of Wrec is further tied to robustness
via its relationship to the Lipschitz constant of the full network – a measure of the smoothness of
the function learned by the network. In particular, a trivial upper bound for the global Lipschitz
constant of a neural network is computed by multiplying the spectral norms of all the weights in
the network ((Szegedy et al., 2014)). However, this has been shown in many cases to be a poor
proxy for network robustness due to the looseness of the bound (Huster et al., 2018). Unfortunately,

19

Under review as a conference paper at ICLR 2024

since computing tight bounds for network-wide Lipschitz constants is NP-hard (Scaman & Virmaux,
2019), we maintain that it is reasonable to assume that a lower spectral norm in the recurrent weights
results in a lower global Lipschitz constant at initialization. Of course, it is possible that during
training, the spectral norm of other weights in the network increase and potentially counteract a
decrease in the spectral norm of the recurrent weights induced at initialization. In practice, since the
distribution shift is applied to the network input, it is also pertinent to analyze the input weights Winp

in the recurrent module. One thing to note is the limitation of this analysis when making comparisons
across architectures. In particular, recall that we have made the assumption that within a given
architecture, across ranks and sparsities, models that have input and recurrent weights with lower
spectral norms tend to express functions with lower Lipschitz constants (in which case a perturbation
applied to the input would have less of an effect on the output). However, this assumption becomes
less reasonable across architectures given the fact that the functional form varies significantly across
RNNs, LSTMs and CfCs. Optimally, we would actually compute the Lipschitz constants in order
to make such comparisons more viable, however we are unable to do this given the NP-hardness of
the problem. Hence, while we still aim to make comparisons across architectures via an analysis
of the spectral norm of the weights, it is important to acknowledge the potential limitation in this
approach.

Next, we will discuss our approach to quantifying the effective number of directions in which e is
expanded. Note that in order to remain robust against the many potential directions the perturbation
vector e can lie in, it is desirable for the singular values of Wrec to decay rapidly, as this implies
that only a few singular values (i.e. only a few directions corresponding to the top singular vectors)
contribute significantly to the transformation. Hence, we analyze the decay of the sorted spectrum
of singular values normalized by the leading singular value as a proxy for the effective numbers
of dimensions that contribute to the transformation of e by Wrec. Again, it is possible that during
training, the singular value spectrum of the input weights Winp counteracts the prior induced on
the recurrent singular value spectrum at initialization and thus also must be examined. As with the
spectral norm analysis discussed above, we also acknowledge the potential limitation in making
comparisons of spectral decay across different recurrent architectures.

While the decay of the singular value spectrum provides a good proxy for the directionality com-
ponent of robustness, it does so only for a single point in time. In actuality, we want to understand
the directions the hidden state evolves in across the entire trajectory of our model in order to have a
robustness measurement that takes into account all points in time. To do so, we perform a dimen-
sionality analysis on the hidden state-space trajectories collected over the course of a simulation in
the closed-loop environment. In particular, we are interested in three state-spaces: the recurrently-
driven state-space, input-driven state-space and full state-space. A canonical state-space trajectory
analysis collects the ht over time (i.e. the full state-space) and performs PCA in order to measure
the effective dimensionality of the trajectory. We extend this analysis by decomposing the full state-
space into the portion driven by the recurrent weights, Wrecht and the portion driven by the input
weights Winpxt. This allows us to disentangle the effects of the proposed parameterization of the
recurrent weights into its individual effects on the recurrent and input state-spaces. Furthermore,
note that this dimensionality analysis enables us to make viable comparisons across recurrent ar-
chitectures whereas this is a potential limitation of analyzing only the decay of the singular value
spectra in the recurrent and input weights.

So, we have now motivated the spectral norm and decay of the singular value spectrum of both the
recurrent and input weights from the perspective of constructing a model that is robust to distribution
shift. This was done under the framework of assuming a perturbation applied to xt which also results
in a perturbation applied to ht which affects the output decision of the model at time step t. However,
we can also ask how does this perturbation affect the model into the future: namely, how does the
perturbation applied to ht affect ht∗ for t∗ > t. We can answer this question by understanding
how information is propagated through the network across time. But note that this is precisely the
intention of analyzing the time-horizon of the recurrent memory discussed in A.5.1. So, not only
does modulating the recurrent memory of the model serve the purpose of enforcing a short-horizon
temporal prior necessary to model the short-term causality inherent to closed-loop environment, it
also makes the network more robust across the time dimension. Thus, we have two measures of
robustness: one at the current point in time and another for all time points into the future.

20

Under review as a conference paper at ICLR 2024

A.6 THEORETICAL ANALYSIS OF SPECTRAL RADIUS AND SPECTRAL NORM AT
INITIALIZATION

In this section we provide proofs for the spectral radius and spectral norm, ρ(W), ||W ||, respec-
tively, for connectivity matrices W at initialization. For clarity, we iterate that ρ(W) = maxi |λi|,
i.e. the largest norm of eigenvalues of W , and ||W || = maxi σi, the largest singular value of W .
We consider sparse networks with Glorot uniform initialization and orthogonal initialization in ap-
pendices A.6.2 and A.6.4, respectively, and orthogonal low-rank matrices in appendix A.6.3. Note
that in our experiments, we only consider networks with orthogonally initialized recurrent weights
which we motivate further in A.10. Also, note that in the cases where we are unable to provide
proof, we still perform an empirical analysis.

A.6.1 GLOROT UNIFORM AND SPARSE

0.0 0.2 0.4 0.6 0.8 1.0
Sparsity, s

0.0

0.2

0.4

0.6

0.8

1.0

(W
)

Spectral radius of W, (W)

0.0 0.2 0.4 0.6 0.8 1.0
Sparsity, s

0.0

0.5

1.0

1.5

2.0

||W
||

Spectral norm of W, ||W||

Theoretical value

Glorot Uniform + Sparse

Figure 10: Spectral radius and spectral norm of uniform-sparse matrices as a function of sparsity, s,
for matrices initialized with Glorot uniform initialization, with n = 512. We additionally plot the
theoretical predicted value for large n.

We consider weight matrices W with dimension n × n and consider the limit as n → ∞.
Recall that Glorot uniform initialization scheme initializes weights with entries iid Wij ∼
Unif

(
−

√
3√
n
,+

√
3√
n

)
, resulting in an entry-wise variance of 1

n . We generate a sparse matrix by

element-wise multiplying a matrix, W 0 sampled from the Glorot uniform initialization by a spar-
sity map M , where Mij ∼ Bernoulli(p = 1 − s), with s being the sparse factor. Our final
weight matrix is given by W = W 0 ⊙M . For sparsity s, the resulting variance of entries is given
by 1−s

n . As the entries of W are all iid, we can apply the Girko-Ginibri circular law for large n,
which states that the eigenvalues of W converge to a uniform disk in the complex plane with radius√
1− s, so we expect ρ(s) =

√
1− s. This analysis follows closely with that of Herbert & Ostojic

(2022).

For ||W ||, we apply the Marchenko-Pastur law, which states that the distribution of eigenvalues of
1
nAAT values converges to pAAT (λ) = 1

2πσ2

√
(λ+−λ)(λ−λ−)

λ 1λ∈[λ−,λ+], with λ± = σ2(1 ± 1)2,
if A has entries iid from a distribution with zero mean and variance σ2. For our setting we let
A =

√
nW , so σ2 = 1 − s. We see that the maximal eigenvalue of AAT is thus λ+ = 4(1 − s),

and so the upper bound for the largest singular value of W is ||W || = 2
√
(1− s). We observe

good empirical agreement with these values in Figure 10.

A.6.2 ORTHOGONAL AND SPARSE

In the orthogonal-sparse case, we cannot apply the same arguments in appendix A.6.4, as the entries
of an orthogonal matrix are no longer iid. However, we note that the entries of orthogonal matrices
are approximately Gaussian when considered individually (Życzkowski & Sommers, 1999). Thus,
we expect with high sparsity, the correlations between entries break down and the entries of the
matrix behave iid. Thus, we expect for large values of s, ρ(W) and ||W || to have the same behavior

21

Under review as a conference paper at ICLR 2024

0.0 0.2 0.4 0.6 0.8 1.0
Sparsity, s

0.0

0.2

0.4

0.6

0.8

1.0

(W
)

Spectral radius of W, (W)

0.0 0.2 0.4 0.6 0.8 1.0
Sparsity, s

0.0

0.5

1.0

1.5

2.0

||W
||

Spectral norm of W, ||W||

Uniform + Sparse Theoretical value

Orthogonal + Sparse

Figure 11: Spectral radius and spectral norm of orthogonal-sparse matrices as a function of sparsity,
s, with n = 512. We additionally plot the theoretical predicted value for large n for the uniform-
sparse initialization. We see that orthogonal-sparse matrices behave like uniform-sparse ones at high
sparsities.

as in appendix A.6.4. We verify this empirically in Figure 11, where we see that for large values
of s, ρ(W) ≈

√
1− s and ||W || ≈ 2

√
1− s, as with appendix A.6.4. Interestingly, ||W || is non-

monotonic in s. Calculating the exact forms of ρ(W) and ||W || is an interesting direction for future
work.

A.6.3 ORTHOGONAL AND LOW RANK

0.0 0.2 0.4 0.6 0.8 1.0
Rank ratio, r

0.2

0.4

0.6

0.8

1.0

(W
)

Spectral radius of W, (W)

0.0 0.2 0.4 0.6 0.8 1.0
Rank ratio, r

0.96

0.98

1.00

1.02

1.04

||W
||

Spectral norm of W, ||W||

Theoretical value

Orthogonal + Low Rank

Figure 12: Spectral radius and spectral norm of orthogonal-low-rank matrices as a function of rank
ratio, r, with n = 512. We additionally plot the theoretical predicted value for large n.

Recall that to generate our low rank connectivity matrix W , we first generate an orthogonal matrix
W 0, then perform an SVD of it W = USV T =

∑n
i

∑n
i uiv

T
i , and then truncate it at rank k

to get W =
∑k

i uiv
T
i with k ≤ n. For ||W ||, we note that because all the singular values are 1,

truncating the SVD does not change the maximum singular value so ||W || = 1 for all rank ratios
r = k

n .

For ρ(W), we note that one valid SVD of W 0 is W 0 = W 0II , with U = W 0, S = I and V = I .
It is sufficient to consider this particular SVD, as other SVDs correspond to arbitrary rotations of
U and V , which will not affect the final eigenvalue distribution in expectation. For this particular
SVD, W = [W 0

1 ,W
0
2 , . . . ,W

0
k , 0, . . . , 0], i.e. we take the first k columns of W 0, and replace

the remaining entries with 0. Due to the large zero block in this matrix, W has the same non-zero
eigenvectors and eigenvalues as the k × k principal submatrix of W 0: W 0

1:k,1:k
1. Życzkowski &

Sommers (1999) studies the eigenvalues of the principal submatrix of random orthogonal matrices
1for eigenvectors we need to concatenate the remaining n− k zeros to have the correct dimension

22

Under review as a conference paper at ICLR 2024

and shows that the distribution of these eigenvalues has mean E[λ] =
√
r for rank ratio r = k

n .
Furthermore, Var[λ] → 0 as n → ∞ at fixed r (Życzkowski & Sommers, 1999), so we have
ρ(W) =

√
r for large n. Empirical verification of this is provided in Figure 12 for n = 512.

A.6.4 GLOROT UNIFORM AND LOW RANK

0.0 0.2 0.4 0.6 0.8 1.0
Rank ratio, r

0.2

0.4

0.6

0.8

1.0

(W
)

Spectral radius of W, (W)

0.0 0.2 0.4 0.6 0.8 1.0
Rank ratio, r

0.0

0.5

1.0

1.5

2.0

||W
||

Spectral norm of W, ||W||
Glorot Uniform + Low Rank

Figure 13: Spectral radius and spectral norm of uniform-low-rank matrices as a function of rank
ratio, r, with n = 512.

As with the orthogonal-low-rank case, low-rank approximation does not affect the spectral norm
of W when using a Glorot Uniform initialization scheme. Proving results for the spectral radius of
low-rank uniform initialization is more difficult due to the more complex eigenstructure of uniformly
initialized matrices compared to orthogonal ones. Thus, we leave it to future work to formally prove
the relationship between rank ratio and spectral radius. We observe empirically in Figure 13 that
spectral radius is increasing with rank ratio, like with the orthogonal-low-rank case.

A.7 SINGULAR VALUE SPECTRUM AND EIGENSPECTRUM AT INITIALIZATION

Recall in A.6, we provided theoretical results for the spectral norm and spectral radius of randomly
initialized matrices as a function of rank and sparsity in order to provide theoretical guarantees
regarding the proposed parameterization of the recurrent weights Wrec(r, s) at initialization. As
explained in A.5.2, we also motivated the parameterization with respect to the entire the spectrum of
singular values due to its connection with robustness. Our theoretical results regarding the spectral
norm as a function of rank and sparsity do not extend to the full spectrum of singular values. So, here
we provide empirical evidence regarding the decay of the singular value spectrum of the recurrent
weights as a function of rank and sparsity (we also provide plots of the decay of the eigenspectrum
of the recurrent weights to demonstrate the similarity between the two related, yet distinct spectra).

A.7.1 ORTHOGONAL INITIALIZATION

Here, we examine the singular value spectrum for the orthogonally initialized recurrent weights
across various ranks and sparsities. We note that as sparsity increases, the rate at which the sin-
gular value spectrum decays decrease (Figure 14). As discussed in A.5.2, this raises the effective
dimensionality of the transformation induced by the recurrent weights on the hidden-state vector.
Similarly, as rank increase, the rate at which the singular value spectrum decays also decreases
(Figure 14). This is interesting as increasing sparsity removes parameters from the model, whereas
increases rank adds parameters to the model. Hence, we observe that pruning by increasing sparsity
and pruning by decreasing rank are distinct with respect to the decay each induces in the singular
value spectrum of the recurrent weights. Furthermore, note that we observe the exact same patterns
with respect to the recurrent eigenspectra as well (Figure 15).

23

Under review as a conference paper at ICLR 2024

Figure 14: Singular value spectra of orthogonally initialized recurrent weights across various ranks
and sparsities sorted in decreasing order.

Figure 15: Eigenspectra of orthogonally initialized recurrent weights across various ranks and spar-
sities sorted in decreasing order.

A.7.2 GLOROT UNIFORM INITIALIZATION

Here, we examine the singular value spectrum for the Glorot uniform initialized recurrent weights
across various ranks and sparsities. The decay patterns observed with respect to the singular value
and eigenvalue spectra in the orthogonally initialized weights hold here as well (Figures 16, 17).

Figure 16: Singular value spectra of Glorot uniform initialized recurrent weights across various
ranks and sparsities sorted in decreasing order.

Figure 17: Eigenspectra of Glorot uniform initialized recurrent weights across various ranks and
sparsities sorted in decreasing order.

24

Under review as a conference paper at ICLR 2024

A.8 TRAINED NETWORK DYNAMICS RESULTS

In this section, we provide plots for various analyses we conducted on the trained networks that were
not included in the main portion of the paper.

Figure 18: Effective dimensionality of RNN state-space trajectories across various ranks and spar-
sities. Note that the dynamics of RNNs are higher-dimensional than the dynamics we observe in
CfCs. This, alongside the disparity in spectral norm, offers intuition as to why we find that CfCs
tend to outperform RNNs under distribution shift.

Figure 19: a) Spectral radius of recurrent weights Wrec(r, s) in trained RNN networks across ranks
and sparsities. b) Frobenius norm of recurrent gradients Gt as a function of time. Note that the
norms are plotted in log space and translated to decay from 0 to enable easier comparison. For
details on the computation, refer to A.11.

Figure 20: Spectral norm of the input weights across models, ranks and sparsities.

25

Under review as a conference paper at ICLR 2024

Figure 21: Decay of the recurrent singular value spectrum across models, ranks and sparsities as
measured by normalizing the sorted spectrum by the spectral norm. We find that the prior induced
at initialization holds at convergence: namely, as sparsity increases the rate of decay of the spectrum
decreases and as rank decreases the rate of decay of the spectrum increases.

Figure 22: Decay of the input singular value spectrum across models, ranks and sparsities as mea-
sured by normalizing the sorted spectrum by the spectral norm. We find that the decay is quite
similar across models, sparsities and ranks, which aligns with many of our findings suggesting that
the input weights are little affected by changes in the rank and sparsity of the recurrent weights.

26

Under review as a conference paper at ICLR 2024

Figure 23: Singular value spectrum of the recurrent weights of the trained models across various
ranks and sparsities sorted in decreasing order.

Figure 24: Singular value spectrum of the input weights of the trained models across various ranks
and sparsities sorted in decreasing order.

27

Under review as a conference paper at ICLR 2024

Figure 25: Eigenspectrum of the recurrent weights of the trained models across various ranks and
sparsities sorted in decreasing order of magnitude.

Figure 26: Dimensionality analysis of full state-space trajectories collected from the online, closed-
loop in-distribution simulation analyzed in Figure 6. Here, we plot the explained variance curve
over all principal components to provide a more complete view of the effective dimensionality of
the trajectories, as opposed to only the top 5 PCs.

28

Under review as a conference paper at ICLR 2024

A.9 FULL RESULTS

A.9.1 ONLINE AND OFFLINE PERFORMANCE

Here, we provide offline validation/test loss, online in-distribution rewards and online rewards under
distribution shift for each Gym environment (Brockman et al., 2016) that we ran experiments on:
Seaquest, Alien and HalfCheetah. For each environment, we considered 5 types of models: CfCs,
RNNs, LSTMs, GRUs and CNNs. For each of the recurrent architectures we considered models of
various 5 different ranks and 4 different sparsities. Full details on the experimental setup are given
in A.11.

Figure 27: Online and offline performance of recurrent networks under different ranks and sparsities
in the Seaquest environment. Note that online performance of Seaquest was presented in the main
portion of the paper, but here we include it alongside the offline losses evaluated on validation/test
set. a) In-distribution rewards in the online, closed-loop setting normalized by obtained by the expert
in-distribution. b) Rewards averaged across 5 distribution shifts, normalized by rewards obtained by
the expert under distribution shift. c) Loss of model evaluated on a validation/test set.

29

Under review as a conference paper at ICLR 2024

Sparsity
Model Rank

0 0.2 0.5 0.8

CfC 1 0.86 (0.03) 0.93 (0.04) 0.88 (0.03) 0.8 (0.05)
5 0.81 (0.06) 0.86 (0.05) 0.79 (0.06) 0.71 (0.06)
16 1.01 (0.06) 0.92 (0.06) 0.79 (0.05) 0.9 (0.05)
27 0.91 (0.06) 0.97 (0.04) 0.88 (0.06) 0.83 (0.06)
full 0.97 (0.04) 0.76 (0.08) 0.7 (0.05) 0.76 (0.06)

LSTM 1 0.99 (0.04) 0.83 (0.04) 0.9 (0.06) 0.92 (0.05)
5 0.94 (0.03) 0.94 (0.05) 0.88 (0.06) 0.88 (0.05)
16 0.94 (0.04) 0.94 (0.07) 0.9 (0.06) 0.9 (0.07)
27 1.0 (0.03) 0.99 (0.05) 0.9 (0.06) 0.88 (0.06)
full 0.9 (0.05) 0.98 (0.03) 0.9 (0.06) 0.9 (0.06)

RNN 1 0.94 (0.06) 0.92 (0.06) 0.89 (0.05) 0.9 (0.05)
5 0.96 (0.05) 0.86 (0.05) 0.94 (0.06) 0.92 (0.06)
16 0.94 (0.06) 0.9 (0.05) 0.88 (0.06) 1.07 (0.02)
27 0.88 (0.05) 0.83 (0.05) 1.01 (0.06) 0.91 (0.03)
full 0.92 (0.04) 0.92 (0.04) 0.92 (0.05) 0.86 (0.06)

GRU 1 0.81 (0.06) 1.04 (0.04) 1.0 (0.05) 0.9 (0.04)
5 0.85 (0.04) 0.84 (0.06) 0.85 (0.06) 0.91 (0.04)
16 0.92 (0.06) 0.92 (0.05) 0.78 (0.05) 0.94 (0.05)
27 0.79 (0.05) 0.95 (0.06) 0.79 (0.06) 0.84 (0.05)
full 0.82 (0.04) 0.95 (0.06) 0.93 (0.06) 0.94 (0.05)

CNN 1 — — — —
5 — — — —
16 — — — —
27 — — — —
full 0.77 (0.05) — — —

Table 1: Mean episodic in-distribution rewards in Seaquest environment normalized by rewards
obtained by expert policy. Normalized rewards are given ±1 SE which is shown in parentheses.

30

Under review as a conference paper at ICLR 2024

Sparsity
Model Rank

0 0.2 0.5 0.8

CfC 1 1.12 (0.05) 1.03 (0.03) 0.95 (0.02) 0.93 (0.03)
5 1.12 (0.03) 1.26 (0.03) 0.83 (0.02) 0.76 (0.03)

16 0.76 (0.03) 0.85 (0.03) 0.73 (0.03) 0.8 (0.03)
27 0.95 (0.02) 0.91 (0.03) 0.74 (0.02) 0.77 (0.03)
full 1.28 (0.03) 0.95 (0.03) 0.59 (0.04) 0.98 (0.03)

LSTM 1 0.77 (0.03) 0.68 (0.04) 0.76 (0.03) 0.91 (0.02)
5 0.67 (0.04) 0.71 (0.04) 0.82 (0.03) 0.89 (0.02)

16 0.66 (0.05) 0.64 (0.04) 0.62 (0.05) 0.62 (0.05)
27 0.7 (0.04) 0.63 (0.05) 0.74 (0.04) 0.66 (0.05)
full 0.58 (0.05) 0.67 (0.04) 0.69 (0.04) 0.78 (0.05)

RNN 1 0.78 (0.02) 0.96 (0.02) 0.7 (0.04) 0.87 (0.02)
5 0.78 (0.02) 0.82 (0.02) 0.7 (0.03) 0.83 (0.03)

16 0.96 (0.02) 0.76 (0.03) 0.73 (0.03) 0.73 (0.03)
27 0.71 (0.04) 0.68 (0.04) 0.62 (0.04) 0.71 (0.04)
full 0.51 (0.03) 0.61 (0.04) 0.61 (0.04) 0.78 (0.04)

GRU 1 0.8 (0.05) 0.67 (0.05) 0.61 (0.04) 0.67 (0.04)
5 0.84 (0.05) 0.8 (0.05) 0.76 (0.04) 0.66 (0.04)

16 0.76 (0.04) 0.66 (0.04) 0.62 (0.04) 0.69 (0.04)
27 0.73 (0.05) 0.69 (0.04) 0.67 (0.04) 0.73 (0.04)
full 0.78 (0.04) 0.76 (0.04) 0.7 (0.04) 0.6 (0.04)

CNN 1 — — — —
5 — — — —

16 — — — —
27 — — — —
full 0.58 (0.04) — — —

Table 2: Mean episodic rewards under distribution shift in Seaquest environment normalized by
performance of the expert policy under distribution shift. Rewards are given ±1 SE which is shown
in parentheses.

31

Under review as a conference paper at ICLR 2024

Figure 28: Online and offline performance of recurrent networks under different ranks and sparsities
in the Alien environment. a) In-distribution rewards in the online, closed-loop setting normalized by
expert’s reward. b) Rewards averaged across 5 distribution shifts, normalized by rewards obtained
by the expert under distribution shift. c) Loss of model evaluated on a validation/test set.

32

Under review as a conference paper at ICLR 2024

Sparsity
Model Rank

0 0.2 0.5 0.8

CfC 1 0.59 (0.07) 0.81 (0.14) 0.95 (0.11) 0.83 (0.19)
5 0.52 (0.1) 0.84 (0.14) 0.66 (0.13) 0.98 (0.14)

16 0.94 (0.14) 0.45 (0.05) 0.42 (0.05) 0.47 (0.04)
27 1.1 (0.18) 0.94 (0.19) 1.01 (0.17) 0.58 (0.08)
full 1.2 (0.21) 0.64 (0.12) 0.47 (0.07) 0.7 (0.11)

LSTM 1 0.92 (0.12) 0.8 (0.12) 0.92 (0.12) 0.81 (0.12)
5 0.9 (0.12) 0.93 (0.15) 0.8 (0.15) 1.1 (0.18)

16 0.87 (0.13) 0.9 (0.12) 1.09 (0.13) 0.84 (0.16)
27 1.11 (0.14) 1.12 (0.15) 0.8 (0.14) 0.92 (0.12)
full 1.0 (0.14) 0.95 (0.14) 1.15 (0.12) 0.88 (0.17)

RNN 1 0.77 (0.12) 0.73 (0.11) 0.8 (0.1) 0.8 (0.11)
5 0.96 (0.11) 0.64 (0.11) 0.82 (0.1) 0.78 (0.14)

16 0.54 (0.1) 0.76 (0.11) 0.97 (0.06) 0.76 (0.11)
27 0.92 (0.11) 0.79 (0.12) 0.75 (0.1) 0.71 (0.11)
full 0.97 (0.09) 0.71 (0.13) 0.97 (0.11) 0.57 (0.1)

GRU 1 0.81 (0.11) 0.64 (0.11) 0.71 (0.11) 0.52 (0.11)
5 0.72 (0.09) 0.87 (0.12) 0.83 (0.12) 0.44 (0.06)

16 0.8 (0.1) 0.86 (0.11) 0.72 (0.1) 0.64 (0.12)
27 0.54 (0.1) 0.67 (0.11) 0.55 (0.1) 0.79 (0.11)
full 0.6 (0.1) 0.54 (0.12) 0.77 (0.14) 0.89 (0.11)

CNN 1 — — — —
5 — — — —

16 — — — —
27 — — — —
full 0.64 (0.09) — — —

Table 3: Mean episodic in-distribution rewards in Alien environment normalized by rewards ob-
tained by expert policy. Normalized rewards are given ±1 SE which is shown in parentheses.

33

Under review as a conference paper at ICLR 2024

Sparsity
Model Rank

0 0.2 0.5 0.8

CfC 1 0.81 (0.04) 0.52 (0.02) 0.62 (0.03) 0.77 (0.05)
5 1.1 (0.02) 0.78 (0.02) 0.67 (0.02) 0.51 (0.03)

16 0.8 (0.02) 1.05 (0.05) 0.3 (0.02) 0.55 (0.03)
27 0.48 (0.02) 0.64 (0.02) 0.66 (0.02) 0.73 (0.01)
full 0.44 (0.01) 0.41 (0.02) 0.6 (0.03) 0.6 (0.02)

LSTM 1 0.63 (0.03) 0.58 (0.05) 0.88 (0.05) 0.66 (0.06)
5 0.87 (0.06) 0.08 (0.0) 0.81 (0.06) 0.69 (0.05)

16 0.81 (0.06) 0.08 (0.0) 0.56 (0.03) 0.8 (0.04)
27 0.72 (0.06) 0.6 (0.05) 0.64 (0.05) 0.63 (0.05)
full 0.65 (0.06) 0.3 (0.01) 0.76 (0.06) 0.66 (0.04)

RNN 1 0.68 (0.03) 0.84 (0.05) 0.65 (0.03) 0.62 (0.03)
5 0.69 (0.06) 0.48 (0.04) 0.82 (0.05) 0.62 (0.04)

16 0.65 (0.03) 0.68 (0.05) 0.76 (0.05) 0.6 (0.04)
27 0.8 (0.04) 0.67 (0.05) 0.74 (0.06) 0.72 (0.05)
full 0.58 (0.04) 0.77 (0.04) 0.64 (0.05) 0.49 (0.02)

GRU 1 0.1 (0.0) 0.94 (0.05) 0.82 (0.03) 0.71 (0.04)
5 0.95 (0.05) 0.92 (0.08) 0.76 (0.05) 0.77 (0.05)

16 1.04 (0.03) 0.95 (0.05) 0.08 (0.0) 0.69 (0.03)
27 0.73 (0.04) 0.87 (0.05) 0.67 (0.05) 0.82 (0.07)
full 0.69 (0.05) 0.08 (0.0) 0.78 (0.03) 0.86 (0.05)

CNN 1 — — — —
5 — — — —

16 — — — —
27 — — — —
full 0.67 (0.04) — — —

Table 4: Mean episodic rewards under distribution shift in Alien environment normalized by per-
formance of the expert policy under distribution shift. Rewards are given ±1 SE which is shown in
parentheses.

34

Under review as a conference paper at ICLR 2024

Figure 29: Online and offline performance of recurrent networks under different ranks and sparsities
in the HalfCheetah environment. a) In-distribution rewards in the online, closed-loop setting nor-
malized by expert’s reward. b) Rewards averaged across 5 distribution shifts, normalized by rewards
obtained by the expert under distribution shift. c) Loss of model evaluated on a validation/test set.

35

Under review as a conference paper at ICLR 2024

Sparsity
Model Rank

0 0.2 0.5 0.8

CfC 1 0.945 (0.005) 0.929 (0.003) 0.924 (0.004) 0.92 (0.003)
5 0.941 (0.003) 0.926 (0.003) 0.91 (0.002) 0.936 (0.002)
16 0.932 (0.002) 0.941 (0.003) 0.919 (0.002) 0.963 (0.005)
27 0.937 (0.004) 0.874 (0.004) 0.914 (0.003) 0.883 (0.004)
full 0.934 (0.003) 0.816 (0.006) 0.877 (0.002) 0.847 (0.003)

LSTM 1 0.933 (0.003) 0.94 (0.003) 0.927 (0.003) 0.936 (0.003)
5 0.95 (0.003) 0.925 (0.004) 0.937 (0.002) 0.962 (0.003)
16 0.937 (0.003) 0.991 (0.003) 0.968 (0.005) 0.905 (0.003)
27 0.931 (0.003) 0.965 (0.004) 0.945 (0.003) 0.872 (0.003)
full 0.951 (0.003) 0.875 (0.003) 0.889 (0.008) 0.842 (0.009)

RNN 1 0.943 (0.004) 0.917 (0.007) 0.93 (0.005) 0.903 (0.003)
5 0.941 (0.003) 0.946 (0.003) 0.885 (0.003) 0.921 (0.003)
16 0.941 (0.002) 0.942 (0.003) 0.954 (0.003) 0.922 (0.004)
27 0.944 (0.003) 0.917 (0.003) 0.9 (0.029) 0.861 (0.006)
full 0.938 (0.003) 0.92 (0.002) 0.971 (0.003) 0.924 (0.021)

GRU 1 0.937 (0.002) 0.938 (0.004) 0.932 (0.003) 0.937 (0.002)
5 0.944 (0.002) 0.935 (0.003) 0.938 (0.003) 0.927 (0.003)
16 0.93 (0.003) 0.934 (0.003) 0.927 (0.003) 0.943 (0.003)
27 0.94 (0.002) 0.943 (0.003) 0.926 (0.011) 0.934 (0.001)
full 0.937 (0.004) 0.936 (0.003) 0.949 (0.003) 0.935 (0.002)

CNN 1 — — — —
5 — — — —
16 — — — —
27 — — — —
full 0.90 (0.003) — — —

Table 5: Mean episodic in-distribution rewards in HalfCheetah environment normalized by rewards
obtained by expert policy. Normalized rewards are given ±1 SE which is shown in parentheses.

36

Under review as a conference paper at ICLR 2024

Sparsity
Model Rank

0 0.2 0.5 0.8

CfC 1 0.842 (0.009) 0.919 (0.001) 0.903 (0.003) 0.852 (0.004)
5 0.915 (0.002) 0.869 (0.007) 0.848 (0.004) 0.82 (0.005)
16 0.86 (0.007) 0.838 (0.008) 0.871 (0.003) 0.908 (0.0)
27 0.822 (0.008) 0.858 (0.001) 0.813 (0.006) 0.898 (0.003)
full 0.9 (0.001) 0.891 (0.005) 0.812 (0.006) 0.795 (0.003)

LSTN 1 0.871 (0.001) 0.894 (0.0) 0.86 (0.003) 0.872 (0.004)
5 0.849 (0.006) 0.885 (0.001) 0.88 (0.0) 0.909 (0.003)
16 0.875 (0.002) 0.847 (0.008) 0.83 (0.006) 0.918 (0.001)
27 0.848 (0.006) 0.893 (0.002) 0.882 (0.0) 0.903 (0.003)
full 0.888 (0.001) 0.848 (0.004) 0.905 (0.001) 0.86 (0.003)

RNN 1 0.861 (0.003) 0.854 (0.002) 0.806 (0.009) 0.846 (0.003)
5 0.87 (0.003) 0.841 (0.006) 0.875 (0.001) 0.824 (0.008)
16 0.843 (0.006) 0.841 (0.007) 0.819 (0.009) 0.836 (0.005)
27 0.852 (0.004) 0.903 (0.004) 0.844 (0.006) 0.891 (0.0)
full 0.82 (0.009) 0.869 (0.002) 0.884 (0.0) 0.819 (0.009)

LSTM 1 0.866 (0.001) 0.843 (0.003) 0.85 (0.003) 0.872 (0.001)
5 0.872 (0.003) 0.849 (0.006) 0.882 (0.0) 0.849 (0.004)
16 0.878 (0.002) 0.858 (0.006) 0.887 (0.001) 0.888 (0.001)
27 0.846 (0.004) 0.831 (0.007) 0.859 (0.004) 0.862 (0.004)
full 0.891 (0.001) 0.864 (0.0) 0.872 (0.003) 0.877 (0.001)

CNN 1 — — — —
5 — — — —
16 — — — —
27 — — — —
full 0.836 (0.003) — — —

Table 6: Mean episodic rewards under distribution shift in HalfCheetah environment normalized by
performance of the expert policy under distribution shift. Rewards are given ±1 SE which is shown
in parentheses.

37

Under review as a conference paper at ICLR 2024

A.10 INITIALIZATION OF RECURRENT WEIGHTS

We leverage an initialization scheme consistent across each of the recurrent networks in order to
control for potential confounding effects that could arise due to differences present in the default
initializers for the recurrent weights. We will first discuss what the default initialization scheme
looks like for the recurrent networks we considered and then motivate our proposed method of
initialization.

Default initialization schemes. We define the default initialization schemes of recurrent weights in
RNNs, LSTMs and GRUs as those implemented by TensorFlow (Abadi et al., 2016) and the default
initialization of recurrent weights in a CfC as given by the open-source implementation presented in
Hasani et al. (2021). The default initializers for these models differ in a couple key areas. For one,
RNNs, LSTMs and GRUs are orthogonally initialized whereas CfCs are initialized from a Glorot
uniform distribution.

Figure 30: Spectral norm of random square matrices drawn from orthogonal and Glorot uniform
distributions for various sized matrices.

In Figure 30, we investigate the spectral norm of random matrices drawn from orthogonal and Glorot
uniform distributions. Due to the significant disparity between the spectral norms inherent to the
distributions, we opt to standardize the initialization scheme across all recurrent models by drawing
the weights from an orthogonal distribution. We motivate this further in the description of our
initializer.

Another concern is that RNNs, LSTMs and GRUs are distinct with respect to how they are orthogo-
nally initialized: in particular, consider [W0], [W0,W1,W2,W3], [W0,W1,W2] which represent
the concatenated recurrent weights in RNNs, LSTMs and GRUs respectively. Rather than initialize
each Wi to be orthogonal, TensorFlow draws the concatenated set of matrices from an orthogonal
distribution. The following result demonstrates why this is problematic in the context of our work.

Lemma 1. Consider matrices A ∈ Rn×p and B ∈ Rn×q . Let C = [AB] denote the concatenation
of the two matrices. Then, ||A|| ≤ ||C|| and ||B|| ≤ ||C|| where || · || denotes the spectral norm.

Proof. We will first consider the case of matrix A. By definition, ||A|| = supx̸=0
||Ax||
||x|| . If we

constrain x to be of unit norm, then ||A|| = supx̸=0 ||Ax||. Let z denote the unit norm vector
that maximizes ||Ax||. Then, we can construct another vector m = [z 0 0 · · · 0] which represents
the concatenation of z which contains p entries and a zero-vector which contains q entries. Note
that by construction m is also unit norm. It follows that ||Az|| ≤ ||Cm|| which means that the
maximum attainable value of ||Cx|| is greater than or equal to the maximum attainable value of
||Ax|| over all unit vectors x. Thus, ||A|| ≤ ||C||. An analogous argument can be made to show
that ||B|| ≤ ||C||.

By Lemma 1, it follows that the default initialization in LSTMs and GRUs produces submatrices Wi

with spectral norm less than the spectral norm of the default initialized recurrent weights in RNNs.
We will address this discrepancy in our proposed initialization scheme.

38

Under review as a conference paper at ICLR 2024

Orthogonal spectral-initialization scheme. Orthogonal spectral-initialization refers to the initial-
ization scheme we utilized for the models in all the results we presented. First and foremost, this
standardizes the distribution of the recurrent weights to be orthogonal. Note that we also formalize
an analogous initializer which we call Glorot uniform spectral-initialization which is detailed in the
next subsection.

In practice, we use the orthogonal distribution as it leans on the intuition of our connectivity prior
in which we show empirically that networks initialized at lower spectral norms tends to converge to
solutions with lower spectral norms as well. Because we care about the robustness of the network
as measured by spectral norm at convergence and found that orthogonal weights have lower spectral
norm than Glorot uniform ones (Figure 30), we opt to draw from the orthogonal distribution.

With respect to the concatenation issue discussed above, we address this by instead drawing each
recurrent weight matrix from an orthogonal distribution as opposed to drawing the full, concatenated
set of matrices from one. This ensures equivalent spectral norms across all recurrent weights and
models.

Finally, the spectral-initialization refers specifically to the rank-r SVD performed on the full-rank
weights Wrec to generate W1,W2 (Section 3.1) for training. We opted to perform a spectral de-
composition as opposed to drawing W1 and W2 from orthogonal distributions individually because
W1W2 is no longer orthogonally distributed. In addition, note that multiplying the two matrices
does not preserve the spectral norm of Wrec. In contrast, by the Eckhart-Young-Minsky theorem, a
rank-r SVD is the most efficient approximation of Wrec under the spectral norm.

Note that the drawback of this initialization scheme is that we are unable to prove all the results posed
in Theorem 1 due to the dependence between entries in an orthogonal matrix (appendix A.6.2). In
contrast, we are able to prove Theorem 1 in the case of uniformly distributed matrices, which we
motivate next.

Glorot uniform spectral-initialization scheme. The Glorot uniform spectral-initializer refers to
the same construction as the orthogonal spectral-initializer, except recurrent weights are drawn from
Glorot uniform distributions instead. Note that this distribution is valuable if one wants theoretical
guarantees for all the properties given in Theorem 1. However, this comes at the cost of empirically
less robust models as evidenced by the learned weights possessing higher spectral norm relative to
their orthogonally initialized counterparts (results not shown).

A.11 DETAILS OF EXPERIMENTAL SETUP

In this section, we extensively detail each of the experiments and analyses that were presented in the
main portion of the paper.

A.11.1 GENERATING EXPERT TRAJECTORIES

Arcade learning environments. Within the set of ALEs, we considered the Seaquest and Alien
environments. These environments in particular were chosen as we were able to train reinforcement
learning agents that achieved performance competitive to state-of-the-art using out-of-the-box mod-
els provided by RLlib (Liang et al., 2017). For the ALEs, we train an Ape-X DQN (Horgan et al.,
2018b) model using the Atari pre-processing framework detailed in Horgan et al. (2018b). We em-
ploy the default implementation of the Ape-X DQN model given by RLlib which is a tuned version
of the model presented in Horgan et al. (2018b). After the model is trained to perform sufficiently
well in the environment, we use it to generate expert trajectories. Specifically, we generate 100 roll-
outs of the trained model’s observations and actions taken in the environment which were later used
to fit the recurrent models we examine in an imitation learning framework.

MuJoCo. Within the set of MuJoCo environments, we considered the HalfCheetah environment.
Again, this environment was chosen based on its amenability to models provided by RLlib. For the
MuJoCo environment, we employ an implementation of proximal policy optimization (PPO) given
by RLlib (Schulman et al., 2017). We also leverage the default set of hyperparameters given by
RLlib to train the model. As we did with the ALEs, we generate 100 rollouts of the trained model’s
observations and actions taken in the environment which were later used to fit the recurrent models
using imitation learning.

39

Under review as a conference paper at ICLR 2024

A.11.2 IMITATION LEARNING FRAMEWORK

For each recurrent architecture, we construct a model to be fit offline on the generated expert tra-
jectories. We have layers in the network that act to preprocess the observations before entering the
recurrent portion of the network as well as output layers from the recurrent portion in accordance
to the action space specified by the environments. Since the observation and action spaces in ALEs
and MuJuCo environments are distinct, we construct different network architectures for each.

First, we consider the network architectures used for ALEs. In their raw form, observations are
given by a 210×160×3 dimensional image, but they are preprocessed using the Atari preprocessing
specified by Horgan et al. (2018b). This yields new observations of dimension 84 × 84 × 3 which
are used as inputs to the model.

layer type activation
Conv(64, k=5, s=2) relu
Conv(128, k=5, s=2) relu
Conv(128, k=5, s=2) relu

AveragePooling none
TimeDistributed none

recurrentNet none
FC(numActions) softmax

Table 7: ALE network architecture

In the table above, k denotes the kernel size and s denotes the stride of the convolution. recur-
rentNet refers to the recurrent network module that was varied and is discussed in further detail
below. numActions refers to the number of actions the agent can take in the environment. Since
the action space is a discrete categorical variable that can take on numActions different values, the
network is trained using categorical cross-entropy loss. We detail the model hyperparameters and
corresponding grid search in A.11.3.

Next, we will consider the network architecture employed for MuJoCo networks.

layer type activation
FC(256) relu
FC(256) relu

TimeDistributed none
recurrentNet none

FC(numActions) tanh

Table 8: MuJoCo network architecture

Since the action space for MuJuCo environments in continuous, the output is a continuous variable
that can take on numActions different values and the network is trained using MSE loss. Further-
more, since the action space is bounded within the interval [−1, 1], a tanh activation function is
applied to the output layer.

A.11.3 MODEL HYPERPARAMETERS

Below is a table with the model hyperparameters that were used in both the ALE networks and
MuJoCo networks. Parameters in square brackets represent a grid search over which the best per-
forming model was chosen. Note that only offline performance on the validation/test set was used to
determine the best performing model in the grid search. Parameters in curly braces are dimensions
across which the network was individually evaluated for comparison.

The architecture of the convolutional head in the ALE networks was used on the basis of work
presented in Lechner et al. (2022) which conducting extensive grid searching across convolutional
architectures over many ALEs. Analogously, the dense head used in the MuJoCo architecture was
drawn from Hasani et al. (2021).

40

Under review as a conference paper at ICLR 2024

hyperparameter value
optimizer Adam (β1 = 0.9, β2 = 0.999)

hidden size 64
learning rate [5 ∗ 10−5, 1 ∗ 10−4, 5 ∗ 10−4]

epochs 150
rank {1, 5, 16, 27, full}

sparsity {0, 0.2, 0.5, 0.8}

Table 9: Model hyperparameters

In all the environments, we considered models of rank 1, 5, 16, 27, full and sparsities of
0, 0.2, 0.5, 0.8. Note that the recurrent weights in the full rank networks are not rank decomposed,
as they are for the low-rank networks. These ranks and sparsities were chosen such that for each
rank we examined, we also looked at a sparsity level for which the number of recurrent parameters
in each parameterization is roughly equivalent. For example, since the networks we constructed had
a hidden dimension of size 64, a recurrent matrix with a sparsity level of 0.5 has the same number
of parameters as one with a rank of 16. We did not present results of networks with a very high
recurrent sparsity like 0.95 (which would roughly be the sparse analog to rank-1 networks) due to
optimization difficulties encountered, particularly in LSTMs and GRUs. In order to ensure that the
performance of a given network wasn’t due to a favorable random sparse mask, we trained each
model 3 times from different random seeds and averaged over the model performance.

Finally, we also employed an initialization scheme for the recurrent weights distinct from the default
initialization schemes given in open-source implementations. For details on this, refer to A.10.

A.11.4 EVALUATION METRICS

Trained models were evaluated offline on a validation/test set with respect to their cross-entropy loss
in the case of ALE networks and mean-squared error in the case of MuJoCo networks. However, in
practice, we care about how the agent performs when deployed in the environment closed-loop. The
online rewards were computed by performing 10 simulations of the agent in the environments and
averaging over the rewards from each episode. The in-distribution setting refers to the environments
in which the observations are not modified aside from preprocessing performed by RLlib.

In the distribution shift setting, for the ALE observations we perform 5 types of perturbations to the
agent’s observations: cutout, brighten, darken, noise, and blur. In cutout, we remove some pixels
from the center of the input image. In brighten, we shift all the pixel values by a constant amount
in the positive direction and do the same for darken but shift the pixels in the negative direction. To
noise the image, we draw random noise from a uniform distribution and add it to the input image.
For distribution shifts in the MuJoCo environments, we perform 3 types of perturbations: noise,
dropout and offset. To noise the observations, we draw random noise from a normal distribution
and add it to the observation vector. To blur the observations, we perform a Gaussian blurring on
the image. To perform dropout, we mask a subset of the dimensions in the observation vector. To
perform offset, we, with equal probability, shift the observation vector in the positive or negative
direction by an amount constant across all dimensions. For each of the inputs during closed-loop
navigation, we apply the distribution shift with probability p = 0.1.

To evaluate the models, both in-distribution and under distribution shift, we normalize the rewards
by the performance of the expert policy in order to convert the rewards into units that allow us to
benchmark the performance of the imitation learning agents while also making comparisons across
recurrent models and connectivities.

A.11.5 DETAILS ON NETWORK ANALYSES

In this section, we further elaborate on the chosen modes of analysis in the trained recurrent net-
works and in cases where the metric computation is potentially ambiguous we elaborate on the
methodology used to compute it. All the plots shown in the paper regarding these analyses were
performed on models trained in the Seaquest environment.

41

Under review as a conference paper at ICLR 2024

Spectral analyses. For recurrent networks that have more than one set of recurrent weights (CfCs,
LSTMs, GRUs), any of the spectral statistics that were computed (i.e. eigenspectrum, recurrent
weights singular value spectrum, input weights singular value spectrum, etc.) we compute and plot
a single statistic that represents the average over the statistics of each of the individual recurrent
weight matrices.

On a separate note, with respect to measuring the decay of the singular value spectrum, note that we
normalized the sorted set of singular values by the spectral norm. This was done in order to explain
away the magnitude of the transformation, since we separately motivate and analyze the spectral
norm. Doing so also ensures each of the decay curves start at 1 which enables comparison across
models, ranks and sparsities.

Recurrent gradient analysis. In Section 4.2, we briefly discussed the analysis performed to analyze
the evolution of the recurrent gradients across time. Here, we provide some additional details that
were not addressed in the main portion of the paper.

Firstly, we computed the norm of the gradients in log space due to the exponential decay associated
with the gradients over time (which happens in practice because gradient propagation is multiplica-
tive). Secondly, note that each of the recurrent gradients start evolving from 0. We enforced the
decay to start from 0 since we do not care about the starting value of the gradients at the end of time,
but rather how this gradient evolves in units relative to the start value across time (i.e. the rate of
decay matters, but not the value it started decaying at). So, we translated the curves to begin at 0,
irrespective of their starting value.

Effective dimensionality of trajectories. To understand the complexity of the dynamics across
recurrent models, connectivity ranks and connectivity sparsities, we collected the trajectories of
the model during the simulation of the agent in the online, closed-loop setting and fit a PCA on the
entire set of trajectories. We then computed the explained variance of the top 5 principal components
(PCs) as a proxy for the effective dimensionality of the trajectories. This is a canonical approach to
analyzing state-space trajectories in recurrent networks (Lechner et al., 2020).

However, we extended the canonical analysis beyond just the full state-space trajectories by decom-
posing the trajectories into recurrently-driven activity and input-driven activity. In particular, we
considered Wrech(t − 1) as the recurrent activity and Winpx(t) as the input activity. We analo-
gously aggregated these trajectories individually and computed the explained variance of the top 5
PCs. This gives us separate measurements for what the dimensionality of activity looks like in the
recurrent subspace versus the input subspace and allows us to explicitly disentangle these two axes.

For recurrent networks that have more than one set of recurrent (and input) weights (CfCs, LSTMs,
GRUs), we computed the explained variance of the top 5 PCs individually for each set of weights
and then averaged across them to produce a single number summary for the complexity of network
dynamics.

A.12 MODEL PARAMETER COUNTS

model parameter count
CfC 61632

LSTM 81726
RNN 20544
GRU 61632

Table 10: Parameter counts of the fully-connected, full-rank versions of each recurrent model. Input
size = 256, hidden state size = 64.

42

	Appendix
	Dimensionality analysis under distribution shift
	Time constant analysis
	Task dimension continued
	Deriving recurrent gradients
	RNN
	LSTM
	CfC

	Motivating spectral analyses of recurrent models
	Recurrent memory horizon
	Robustness under distribution shift

	Theoretical analysis of spectral radius and spectral norm at initialization
	Glorot uniform and sparse
	Orthogonal and sparse
	Orthogonal and low rank
	Glorot Uniform and Low rank

	singular value spectrum and eigenspectrum at initialization
	Orthogonal initialization
	Glorot uniform initialization

	Trained network dynamics results
	Full results
	Online and offline performance

	Initialization of recurrent weights
	Details of experimental setup
	Generating expert trajectories
	Imitation learning framework
	Model hyperparameters
	Evaluation metrics
	Details on network analyses

	Model parameter counts

