
Under review as a conference paper at ICLR 2024

STEERING NO-REGRET LEARNERS TO OPTIMAL EQUI-
LIBRIA

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of steering no-regret-learning agents to play desirable
equilibria via nonnegative payments. We first show that steering is impossible if
the total budget (across all iterations) is finite, both in normal- and extensive-form
games. However, we establish that vanishing average payments are compatible with
steering. In particular, when players’ full strategies are observed at each timestep,
we show that constant per-iteration payments permit steering. In the more challeng-
ing setting where only trajectories through the game tree are observable, we show
that steering is impossible with constant per-iteration payments in general extensive-
form games, but possible in normal-form games or if the maximum per-iteration
payment may grow with time. We supplement our theoretical positive results with
experiments highlighting the efficacy of steering in large games, and show how our
framework relates to optimal mechanism design and information design.

1 INTRODUCTION

Any student of game theory learns that games can have multiple equilibria of different quality—for
example, in terms of social welfare (Figure 1). How can a mediator—a benevolent third party—steer
players toward an optimal one? In this paper, we consider the problem of using a mediator who can dis-
pense nonnegative payments and offer advice to players so as to guide to a better collective outcome.

Importantly, our theory does not rest upon strong assumptions regarding agent obedience; instead,
we only assume that players have sublinear regret, a mild assumption on the rationality of the
players adopted in several prior studies (e.g., Nekipelov et al., 2015; Kolumbus & Nisan, 2022b; Ca-
mara et al., 2020). Variants of this problem have received tremendous interest in the literature
(e.g., Monderer & Tennenholtz, 2004; Anshelevich et al., 2008; Schulz & Moses, 2003; Agussurja
& Lau, 2009; Balcan, 2011; Balcan et al., 2013; 2014; Mguni et al., 2019; Li et al., 2020; Kempe
et al., 2020; Liu et al., 2022 and references therein), but prior work either operates in more restricted
classes of games or makes strong assumptions regarding player obedience. We study the steering
problem in its full generality for general (imperfect-information) extensive-form games under an
entire hierarchy of equilibrium concepts, and we establish a number of positive algorithmic results
and complementing information-theoretic impossibilities.

Summary of Our Results Our formulation enables the mediator to 1) reward players with non-
negative payments and 2) offer advice. Of course, with no constraints on the payments, the problem
becomes trivial: the mediator could enforce any arbitrary outcome by paying players to play that out-
come. On the other extreme, we show that if the total realized payments are constrained to be bounded,
the decentralized steering problem is information-theoretically impossible (Proposition 3.2). There-
fore, we compromise by allowing the total realized payments to be unbounded, but insist that the aver-
age payment per round is vanishing. Further, to justify 2) above, we show that without advice, steering
to mixed-Nash equilibria is impossible already in normal-form games (Appendix D), although advice
is not necessary for pure-Nash equilibria (Sections 4 and 5). Offering recommendations is in line
with much of prior work (Appendix A), and is especially natural for correlated equilibrium concepts.

The goal of the mediator is to reach an equilibrium, either explicitly provided or provided as a principal
utility function. We first assume that the mediator is provided an equilibrium. We distinguish between
realized payments and potential payments. Realized payments are the payments actually dispensed
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Figure 1: Left: An extensive-form version of a stag hunt. Chance plays uniformly at random at
the root note, and the dotted line connecting the two nodes of Player 2 indicates an infoset: Player
2 cannot distinguish the two nodes. Introducing vanishing realized payments alters the gradient
landscape, steering players to the optimal equilibrium (star) instead of the suboptimal one (opposite
corner). The capital letters show the players’ initial strategies. Lighter color indicates higher welfare
and the star shows the highest-welfare equilibrium. Further details are in Appendix C.

to the players. Potential payments are payments that players would have received, had they played
different strategies.

We first consider the full-feedback (Section 5) setting where players’ payments may depend on
players’ full strategies. We present steering algorithms that establish under different computational
assumptions the first main result.

Theorem (Informal; precise versions in Theorem 5.2). For both normal-form and extensive-form
games, the decentralized steering problem can be solved under full feedback.

Intuitively, the mediator sends payments in such a way as to 1) reward the player a small amount
for playing the equilibrium, and 2) compensate the player for deviations of other players. Next,
we consider the more challenging bandit setting, wherein only game trajectories are observed. In
extensive-form games, this condition significantly restricts the structure of the payment functions,
and in particular rules out the full-feedback algorithm above. We show that the decentralized steering
problem under bandit feedback is information-theoretically impossible in the general case with
bounded potential payments.

Theorem (Informal; precise version in Theorem 5.4). For extensive-form games, the decentralized
steering problem is impossible under bandit feedback with bounded potential payments.

To circumvent this lower bound, we next allow the potential payments to depend on the time horizon,
while still insisting that they vanish in the limit.

Theorem (Informal; precise version in Theorem 5.6). For extensive-form games, if the payments may
depend on the time horizon, the decentralized steering problem can be solved under bandit feedback.

The proof of this theorem is more involved than the previous two. In particular, one might hope
that the desired equilibrium can be made (strictly) dominant by adding appropriate payments as in
k-implementation (Monderer & Tennenholtz, 2004). In extensive-form games, this is not the case:
there are games where making the welfare-optimal equilibrium dominant would require payments in
equilibrium, thereby inevitably leading to non-vanishing realized payments. Nevertheless, we show
that steering is possible despite even without dominance. This leads to the intriguing behavior where
some players may actually move farther from obedience before they move closer (compare Figure 1).
As such, we significantly depart from the approach of Monderer & Tennenholtz (2004); we elaborate
on this comparison and further related work in Appendix A.

Both previous positive results require computing an equilibrium upfront, which is both computa-
tionally expensive and not adaptive to players’ actions. We next analyze an online setting, where
the mediator employs an online regret minimization algorithm to compute an optimal equilibrium
while guiding the players toward it. As expected, algorithms for the online steering problem attain
slightly worse rates compared to algorithms for the offline problem. The rates we obtain for the
various versions of the steering problem all decay polynomially with the number of rounds, and we
highlight the time dependence in Table 1. We complement our theoretical analysis by implementing
and testing our steering algorithms in several benchmark games in Section 7.
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Table 1: Summary of our positive algorithmic results. We hide game-dependent constants and
logarithmic factors, and assume that regret minimizers incur a (typical) average regret of T−1/2.

Steering to Fixed Equilibrium Online Steering

Normal Form or Full Feedback T−1/4 (Theorem 5.2) T−1/6 (Theorem 6.5)

Extensive Form and Bandit Feedback T−1/8 (Theorem 5.6) Open problem

2 PRELIMINARIES

In this section, we introduce some basic background on extensive-form games.

Definition 2.1. An extensive-form game Γ with n players has the following components:

1. a set of players, identified with the set of integers JnK := {1, . . . , n}. We will use −i, for i ∈ JnK,
to denote all players except i;

2. a directed tree H of histories or nodes, whose root is denoted ∅. The edges of H are labeled with
actions. The set of actions legal at h is denoted Ah. Leaf nodes of H are called terminal, and the
set of such leaves is denoted by Z;

3. a partition H \Z = HC ⊔H1 ⊔ · · · ⊔Hn, where Hi is the set of nodes at which i takes an action,
and C denotes the chance player;

4. for each player i ∈ JnK, a partition Ii of i’s decision nodes Hi into information sets. Every node
in a given information set I must have the same set of legal actions, denoted by AI ;

5. for each player i, a utility function ui : Z → [0, 1] which we assume to be bounded; and
6. for each chance node h ∈ HC, a fixed probability distribution c(· |h) over Ah.

At a node h ∈ H , the sequence σi(h) of an agent i is the set of all information sets encountered by
agent i, and the actions played at such information sets, along the ∅ → h path, excluding at h itself.
An agent has perfect recall if σi(h) = σi(h

′) for all h, h′ in the same infoset. Unless otherwise stated
(Section 6), we assume that all players have perfect recall. We will use Σi := {σi(z) : z ∈ Z} to
denote the set of all sequences of player i that correspond to terminal nodes.

A pure strategy of player i is a choice of one action in AI for each information set I ∈ Ii. The
sequence form of a pure strategy is the vector xi ∈ {0, 1}Σi given by xi[σ] = 1 if and only if
i plays every action on the path from the root to sequence σ ∈ Σi. We will use the shorthand
xi[z] = xi[σi(z)]. A mixed strategy is a distribution over pure strategies, and the sequence form of a
mixed strategy is the corresponding convex combination xi ∈ [0, 1]Σi . We will use Xi to denote the
polytope of sequence-form mixed strategies of player i.

A profile of mixed strategies x = (x1, . . . ,xn) ∈ X := X1 × · · · ×Xn, induces a distribution over
terminal nodes. We will use z ∼ x to denote sampling from such a distribution. The expected utility
of agent i under such a distribution is given by ui(x) := Ez∼x ui(z). Critically, the sequence form
has the property that each agent’s expected utility is a linear function of its own sequence-form mixed
strategy. For a profile x ∈ X and set N ⊆ JnK, we will use the notation x̂N ∈ RZ to denote the
vector x̂N [z] =

∏
j∈N xj [z], and we will write x̂ := x̂JnK. A Nash equilibrium is a strategy profile

x such that, for any i ∈ JnK and any x′
i ∈ Xi, ui(x) ≥ ui(x

′
i,x−i).

3 THE STEERING PROBLEM

In this section, we introduce what we call the steering problem. Informally, the steering problem asks
whether a mediator can always steer players to any given equilibrium of an extensive-form game.

Definition 3.1 (Steering Problem for Pure-Strategy Nash Equilibrium). Let Γ be an extensive-form
game with payoffs bounded in [0, 1]. Let d be an arbitrary pure-strategy Nash equilibrium of Γ. The
mediator knows the game Γ, as well as a function R(T ) = o(T ), which may be game-dependent,
that bounds the regret of all players. At each round t ∈ JT K, the mediator picks payment functions
for each player, p(t)i : X1 × · · · ×Xn → [0, P ], where p(t)i is linear in xi and continuous in x−i, and
P defines the largest allowable per-iteration payment. Then, players pick strategies x(t)

i ∈ Xi. Each
player i then gets utility v

(t)
i (xi) := ui(xi,x

(t)
−i) + p

(t)
i (xi,x

(t)
−i). The mediator has two desiderata.
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(S1) (Payments) The time-averaged realized payments to the players, defined as
maxi∈JnK

1
T

∑T
t=1 p

(t)
i (x(t)), converges to 0 as T → ∞.

(S2) (Equilibrium) Players’ actions are indistinguishable from the Nash equilibrium d. That is,
the directness gap, defined as 1

T

∑T
t=1 Ez∼x(t)(1− d̂[z]), converges to 0 as T → ∞.

The assumption imposed on the payment functions in Definition 3.1 ensures the existence of Nash
equilibria in the payment-augmented game (e.g., Glicksberg, 1952). Throughout this paper, we will
refer to players as direct if they are playing actions prescribed by the target equilibrium strategy d.
Critically, (S2) does not require that the strategies themselves converge to the direct strategies, i.e.,
x
(t)
i → di, in iterates or in averages. They may differ on nodes off the equilibrium path. Instead,

the requirement defined by (S2) is equivalent to the reach probability of every node not reached in
the equilibrium d converging to 0, so that, on path, the players play the equilibrium. Similarly, (S1)
refers to the realized payments p(t)i (x(t)), not the maximum offered payment maxx∈X p

(t)
i (x).

For now, we will assume that a pure Nash equilibrium has been computed, and therefore our only
task is to steer the agents toward it. In Section 6 we show how our steering algorithms can be directly
applied to other equilibrium concepts such as mixed or correlated equilibria, and communication
equilibria, and to the case where the equilibrium has not been precomputed.

The mediator does not know anything about how the players pick their strategies, except that they
will have regret bounded by a function that vanishes in the limit and is known to the mediator.
This condition is a commonly adopted behavioral assumption (Nekipelov et al., 2015; Kolumbus
& Nisan, 2022b; Camara et al., 2020). The regret of Player i ∈ JnK in this context is defined as

RegTXi
:=

1

P + 1

[
max
x∗

i ∈Xi

T∑
t=1

v
(t)
i (x∗

i )−
T∑

t=1

v
(t)
i (x

(t)
i )

]
.

That is, regret takes into account the payment functions offered to that player.1 The assumption of
bounded regret is realistic even in extensive-form games, as various regret minimizing algorithms
exist. Two notable examples are the counterfactual regret minimization (CFR) framework (Zinkevich
et al., 2007), which yields full-feedback regret minimizers, and IXOMD (Kozuno et al., 2021), which
yields bandit-feedback regret minimizers.

How large payments are needed to achieve (S1) and (S2)? If the mediator could provide totally
unconstrained payments, it could enforce any arbitrary outcome. On the other hand if the total
payments are restricted to be bounded, the steering problem is information-theoretically impossible:

Proposition 3.2. There exists a game and some function R(T ) = O(
√
T ) such that, for all B ≥ 0,

the steering problem is impossible if we add the constraint
∑∞

t=1

∑n
i=1 p

(t)
i (x(t)) ≤ B.

(Proofs are in Appendix E unless otherwise stated.) Hence, a weaker requirement on the size of the
payments is needed. Between these extremes, one may allow the total payment to be unbounded, but
insist that the average payment per round must vanish in the limit.

4 STEERING IN NORMAL-FORM GAMES

We start with the example of normal-form games. A normal-form game, in our language, is simply
an extensive-form game in which every player has one information set, and the set of histories
correspond precisely to the set of pure profiles, i.e., for every pure profile x, we have x̂[z] = 1 for
exactly one terminal node z. This setting is, much more simple than the general extensive-form
setting which we will consider in the next section. In normal-form games, the strategy sets Xi are
simplices, Xi = ∆(Ai), where Ai is the action set of player i at its only decision point. In this
setting, we are able to turn to a special case of a result of Monderer & Tennenholtz (2004):
Theorem 4.1 (Costless implementation of pure Nash equilibria, special case of k-implementation,
Monderer & Tennenholtz, 2004). Let d be a pure Nash equilibrium in a normal-form game. Then
there exist functions p∗i : X1×· · ·×Xn → [0, 1], with p∗i (d) = 0, such that in the game with utilities
vi := ui + p∗i , the profile d is weakly dominant: vi(di,x−i) ≥ vi(xi,x−i) for every profile x.

1The division by 1/(P + 1) is for normalization, since v
(t)
i s has range [0, P + 1].
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Indeed, it is easy to check that the payment function

p∗i (x) := (d⊤
i xi)

(
1−

∏
j ̸=i

d⊤
j xj

)
,

which on pure profiles x returns 1 if and only if xi = di and xj ̸= dj for some j ̸= i, satisfies these
properties. Such a payment function is almost enough for steering: the only problem is that d is only
weakly dominant, so no-regret players may play other strategies than d. This is easily fixed by adding
a small reward α ≪ 1 for playing di. That is, we set

pi(x) := αd⊤
i xi + p∗i (x) = (d⊤

i xi)
(
α+ 1−

∏
j ̸=i

d⊤
j xj

)
. (1)

On a high level, the structure of the payment function guarantees that the average strategy of any
no-regret learner i ∈ JnK should be approaching the direct strategy di by making di the strictly
dominant strategy of player i. At the same time, it is possible to ensure that the average payment
will also be vanishing by appropriately selecting parameter α. With appropriate choice of α, this is
enough to solve the steering problem for normal-form games:
Theorem 4.2 (Normal-form steering). Let pi(x) be defined as in (1), set α =

√
ε, where ε :=

4nR(T )/T , and let T be large enough that α ≤ 1. Then players will be steered toward equilibrium,
with both payments and directness gap bounded by 2

√
ε.

5 STEERING IN EXTENSIVE-FORM GAMES

The extensive-form setting is significantly more involved than the normal-form setting, and it will
be the focus for the remainder of our paper, for two reasons. First, in extensive form, the strategy
spaces of the players are no longer simplices. Therefore, if we wanted to write a payment function
pi with the property that pi(x) = α1{x = d}+ 1{xi = di;∃j xj ̸= dj} for pure x (which is what
was needed by Theorem 4.2), such a function would not be linear (or even convex) in player i’s
strategy xi ∈ Xi (which is a sequence-form strategy, not a distribution over pure strategies). As such,
even the meaning of extensive-form regret minimization becomes suspect in this setting. Second, in
extensive form, a desirable property would be that the mediator give payments conditioned only on
what actually happens in gameplay, not on the players’ full strategies—in particular, if a particular
information set is not reached during play, the mediator should not know what action the player would
have selected at that information set. We will call this the bandit setting, and distinguish it from the
full-feedback setting, where the mediator observes the players’ full strategies.2 This distinction is
meaningless in the normal-form setting: since terminal nodes in normal form correspond to (pure)
profiles, observing gameplay is equivalent to observing strategies. (We will discuss this point in more
detail when we introduce the bandit setting in Section 5.2.)

We now present two different algorithms for the steering problem, one in the full-feedback setting,
and one in the bandit setting.

5.1 STEERING WITH FULL FEEDBACK

In this section, we introduce a steering algorithm for extensive-form games under full feedback.
Algorithm 5.1 (FULLFEEDBACKSTEER). At every round, set the payment function pi(xi,x−i) as

αd⊤
i xi︸ ︷︷ ︸

directness bonus

+ [ui(xi,d−i)− ui(xi,x−i)]︸ ︷︷ ︸
sandboxing payments

− min
x′

i∈Xi

[ui(x
′
i,d−i)− ui(x

′
i,x−i)],︸ ︷︷ ︸

payment to ensure nonnegativity

(2)

where α ≤ 1/|Z| is a hyperparameter that we will select appropriately.

By construction, pi satisfies the conditions of the steering problem (Definition 3.1): it is linear in
xi, continuous in x−i, nonnegative, and bounded by an absolute constant (namely, 3). The payment
function defined above has three terms:

2To be clear, the settings are differentiated by what the mediator observes, not what the players observe. That
is, it is valid to consider the full-feedback steering setting with players running bandit regret minimizers, or the
bandit steering setting with players running full-feedback regret minimizing algorithms.
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1. The first term is a reward for directness: a player gets a reward proportional to α if it plays di.
2. The second term compensates the player for the indirectness of other players. That is, the second

term ensures that players’ rewards are as if the other players had acted directly.
3. The final term simply ensures that the overall expression is nonnegative.

We claim that this protocol solves the basic version of the steering problem. Formally:
Theorem 5.2. Set α =

√
ε, where ε := 4nR(T )/T , and let T be large enough that α ≤ 1/|Z|. Then,

FULLFEEDBACKSTEER results in average realized payments and directness gap at most 3|Z|√ε.

5.2 STEERING IN THE BANDIT SETTING

In FULLFEEDBACKSTEER, payments depend on full strategies x, not the realized game trajectories.
In particular, the mediator in Theorem 5.2 observes what the players would have played even at
infosets that other players avoid. To allow for an algorithm that works without knowledge of full
strategies, p(t)i must be structured so that it could be induced by a payment function that only gives
payments for terminal nodes reached during play. To this end, we now formalize bandit steering.
Definition 5.3 (Bandit steering problem). Let Γ be an extensive-form game in which rewards are
bounded in [0, 1] for all players. Let d be an arbitrary pure-strategy Nash equilibrium of Γ. The
mediator knows Γ and a regret bound R(T ) = o(T ). At each t ∈ JT K, the mediator selects a payment
function q

(t)
i : Z → [0, P ]. The players select strategies x(t)

i . A terminal node z(t) ∼ x(t) is sampled,
and all agents observe the terminal node that was reached, z(t). The players get payments q(t)i (z(t)),
so that their expected payment is p(t)i (x) := Ez∼x q

(t)
i (z). The desiderata are as in Definition 3.1.

The bandit steering problem is more difficult than the non-bandit steering problem in two ways. First,
as discussed above, the mediator does not observe the strategies x, only a terminal node z(t) ∼ x.
Second, the form of the payment function q

(t)
i : Z → [0, P ] is restricted: this is already sufficient

to rule out FULLFEEDBACKSTEER. Indeed, pi as defined in (2) cannot be written in the form
Ez∼x qi(z): pi(xi,x−i) is nonlinear in x−i due to the nonnegativity-ensuring payments, whereas
every function of the form Ez∼x qi(z) will be linear in each player’s strategy.

We remark that, despite the above algorithm containing a sampling step, the payment function is
defined deterministically: the payment is defined as the expected value p

(t)
i (x) := Ez∼x q

(t)
i (z).

Thus, the theorem statements in this section will also be deterministic.

In the normal-form setting, the payments pi defined by (1) already satisfy the condi-
tion of bandit steering. In particular, let z be the terminal node we have pi(x) =
Ez∼x [α1{z = z∗}+ 1{xi = di;∃j xj ̸= dj}]. Therefore, in the normal-form setting, Theorem 4.2
applies to both full-feedback steering and bandit steering, and we have no need to distinguish between
the two. However, in extensive form, as discussed above, the two settings are quite different.

5.2.1 LOWER BOUND ON REQUIRED PAYMENTS

Unlike in the full-feedback or normal-form settings, in the bandit setting, steering is impossible in the
general case in the sense that per-iteration payments bounded by any constant do not suffice.
Theorem 5.4. For every P > 0, there exists an extensive-form game Γ with O(P ) players, O(P 2)

nodes, and rewards bounded in [0, 1] such that, with payments q(t)i : Z → [0, P ], it is impossible to
steer players to the welfare-maximizing Nash equilibrium, even when R(T ) = 0.

For intuition, consider the extensive-form game in Figure 2, which can be seen as a three-player
version of Stag Hunt. Players who play Hare (H) get a value of 1/2 (up to constants); in addition, if
all three players play Stag (S), they all get expected value 1. The welfare-maximizing equilibrium is
“everyone plays Stag”, but “everyone plays Hare” is also an equilibrium. In addition, if all players are
playing Hare, the only way for the mediator to convince a player to play Stag without accidentally
also paying players in the Stag equilibrium is to pay players at one of the three boxed nodes. But
those three nodes are only reached with probability 1/n as often as the three nodes on the left, so the
mediator would have to give a bonus of more than n/2. The full proof essentially works by deriving
an algorithm that the players could use to exploit this dilemma to achieve either large payments or
bad convergence rate, generalizing the example to n > 3, and taking n = Θ(P ).
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Figure 2: The counterexample for Theorem 5.4, for n = 3. Chance always plays uniformly at
random. Infosets are linked by dotted lines (all nodes belonging to the same player are in the same
infoset).

5.2.2 BANDIT STEERING WITH LARGE OFF-PATH PAYMENTS

To circumvent the lower bound in Theorem 5.4, in this subsection, we allow the payment bound
P ≥ 1 to depend on both the time limit T and the game. Consider the following algorithm.
Algorithm 5.5 (BANDITSTEER). Let α, P be hyperparameters. Then, for all rounds t = 1, . . . , T ,
sample z ∼ x(t) and pay players as follows. If all players have been direct (i.e., if d̂[z] = 1), pay all
players α. If at least one player has not been direct, pay P to all players who have been direct. That
is, set q(t)i (z(t)) = αd̂[z] + Pdi[z](1− d̂[z]).

Theorem 5.6. Set the hyperparameters α = 4|Z|1/2ε1/4 and P = 2|Z|1/2ε−1/4, where ε :=
R(T )/T , and let T be large enough that α ≤ 1. Then, running BANDITSTEER for T rounds results
in average realized payments bounded by 8|Z|1/2ε1/4, and directness gap by 2ε1/2.

The proof of this result is more involved than those for previous results. One may hope that—as
in FULLFEEDBACKSTEER—the desired equilibrium can be made dominant by adding payments.
But this is impossible: in the smaller “stag hunt” game in Figure 1, for Player 2, Stag cannot be a
weakly-dominant strategy unless a payment is given at the boxed node, which would be problematic
because such payments would also appear in equilibrium, in violation of (S1). In fact, a sort of
“chicken-and-egg” problem arises: (S2) requires that all players converge to equilibrium. But for this
to happen, other players’ strategies must first converge to equilibrium so that i’s incentives are as they
would be in equilibrium. The main challenge in the proof of Theorem 5.6 is therefore to carefully set
the hyperparameters to achieve convergence despite these apparent problems.

6 OTHER EQUILIBRIUM NOTIONS AND ONLINE STEERING

So far, Theorems 5.2 and 5.6 refer only to pure-strategy Nash equilibria of a game. We now show
how to apply these algorithms to other equilibrium notions such as mixed-strategy or correlated
equilibrium. The key insight is that many types of equilibrium can be viewed as pure-strategy
equilibria in an augmented game. For example, an extensive-form correlated equilibrium of a game
Γ can be viewed as a pure-strategy equilibrium of an augmented game Γ′ in which the mediator
samples actions (“recommendations”) and the acting player observes those recommendations. Then,
in Γ′, the goal is to guide players toward the pure strategy profile of following recommendations.

We now formalize these ideas. For this section, let Γ refer to a mediator-augmented game (Zhang &
Sandholm, 2022), which has n+ 1 players i ∈ JnK ∪ {0}, where player 0 is the mediator. We will
assume the revelation principle, which allows us to fix a target pure strategy profile d that we want to
make the equilibrium profile for the non-mediator players. We will write Γµ to refer to the n-player
game in which the mediator is fixed to playing the strategy µ.

7
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Definition 6.1. An equilibrium in the mediator-augmented game Γ is a strategy µ ∈ X0 for the
mediator such that d is a Nash equilibrium of Γµ. An equilibrium µ is optimal if, among all equilibria,
it maximizes the mediator’s objective u0(µ,d).

By varying the construction of the augmented game Γ, the family of solution concepts for extensive-
form games captured by this framework includes, but is not limited to, normal-form coarse corre-
lated equilibrium (Aumann, 1974; Moulin & Vial, 1978); extensive-form correlated equilibrium
(EFCE)3 (von Stengel & Forges, 2008); communication equilibrium (Forges, 1986); mechanism
design; and information design/Bayesian persuasion (Kamenica & Gentzkow, 2011).

Unlike the offline setting (where the target equilibrium is given to us), in the online setting we
can choose the target equilibrium. In particular, we would like to steer players toward an optimal
equilibrium µ, without knowing that equilibrium beforehand. To that end, we add a new criterion:

(S3) (Optimality) The mediator’s reward should converge to the reward of the optimal equilibrium.
That is, the optimality gap u∗

0 − 1
T

∑T
t=1 u0(µ

(t),x(t)), where u∗
0 is the mediator utility in

an optimal equilibrium, converges to 0 as T → ∞.

In Appendix D, we discuss why it is in some sense necessary to allow the mediator to give recom-
mendations, not just payments, if the target equilibrium is not pure.

Since equilibria in mediator-augmented games are just strategies µ under which d is a Nash equi-
librium, we may use the following algorithm to steer players toward an optimal equilibrium of Γ:

Algorithm 6.2 (COMPUTETHENSTEER). Compute an optimal equilibrium µ. With µ held fixed,
run any steering algorithm in Γµ.

As observed earlier, the main weakness of COMPUTETHENSTEER is that it must compute an
equilibrium offline. To sidestep this, in this section we will introduce algorithms that compute the
equilibrium in an online manner, while steering players toward it. Our algorithms will make use of a
Lagrangian dual formulation analyzed by Zhang et al. (2023).
Proposition 6.3 (Zhang et al. (2023)). There exists a (game-dependent) constant λ∗ ≥ 0 such that,
for every λ ≥ λ∗, the solutions µ to

max
µ∈X0

min
x∈X

u0(µ,d)− λ

n∑
i=1

[ui(µ,xi,d−i)− ui(µ,di,d−i)], (3)

are exactly the optimal equilibria of the mediator-augmented game.
Algorithm 6.4 (ONLINESTEER). The mediator runs a regret minimization algorithm R0 over its
own strategy space X0, which we assume has regret at most R0(T ) after T rounds. On each round,
the mediator does the following:

• Get a strategy µ(t) from R0. Play µ(t), and set p(t)i as defined in (2) in Γµ(t)

.

• Pass utility µ 7→ 1
λu0(µ,d) −

∑n
i=1

[
ui(µ,x

(t)
i ,d−i)− ui(µ,di,d−i)

]
to R0, where

λ ≥ 1 is a hyperparameter.

Theorem 6.5. Set the hyperparameters α = ε2/3|Z|−1/3 and λ = |Z|2/3ε−1/3, where ε :=
(R0(T )+4nR(T ))/T is the average regret bound summed across players, and let T be large enough
that α ≤ 1/|Z|. Then running ONLINESTEER results in average realized payments, directness gap,
and optimality gap all bounded by 7λ∗|Z|4/3ε1/3.

The argument now works with the zero-sum formulation (3), and leverages the fact that the agents’
average strategies are approaching the set of Nash equilibria since they have vanishing regrets. Thus,
each player’s average strategy should be approaching the direct strategy, which in turn implies that
the average utility of the mediator is converging to the optimal value, analogously to Theorem 5.2.

ONLINESTEER has a further guarantee that FULLFEEDBACKSTEER does not, owing to the fact that
it learns an equilibrium online: it works even when the players’ sets of deviations, Xi, is not known
upfront. In particular, the following generalization of Theorem 6.5 follows from an identical proof.

3This requires the mediator to have imperfect recall.

8



Under review as a conference paper at ICLR 2024

0 20 40

Iteration

0.0

2.5

5.0

7.5

10.0

12.5

So
ci

al
w

el
fa

re

Sheriff (EFCE, Pmult = 1)

0

10

20

30

40

50

R
ea

liz
ed

pa
ym

en
t

1

0 5 10 15

Iteration

4.5

5.0

5.5

6.0

So
ci

al
w

el
fa

re

Ridesharing (EFCE, Pmult = 1)

0.0

0.5

1.0

1.5

2.0

R
ea

liz
ed

pa
ym

en
t

1

0 20 40 60

Iteration

−0.75

−0.70

−0.65

−0.60

−0.55

So
ci

al
w

el
fa

re

Battleship (EFCE, Pmult = 1)

0.0

0.5

1.0

1.5

2.0

R
ea

liz
ed

pa
ym

en
t

1Figure 3: Sample experimental results. The blue line in each figure is the social welfare (left y-axis)
of the players with steering enabled. The green dashed line is the social welfare without steering.
The yellow line gives the payment (right y-axis) paid to each player. The flat black line denotes the
welfare of the optimal equilibrium. The panels show the game, the equilibrium concept (in this figure,
always EFCE). In all cases, the first ten iterations are a “burn-in” period during which no payments
are issued; steering only begins after that.

Corollary 6.6. Suppose that each player i, unbeknownst to the mediator, is choosing from a subset
Yi ⊆ Xi of strategies that includes the direct strategy di. Then, running Theorem 6.5 with the same
hyperparameters yields the same convergence guarantees, except that the mediator’s utility converges
to its optimal utility against the true deviators, that is, a solution to (3) with each Xi replaced by Yi.

At this point, it is very reasonable to ask whether it is possible to perform online steering with bandit
feedback. In normal-form games, as with offline setting, there is minimal difference between the
bandit and the full-feedback setting. This intuition carries over to the bandit setting: ONLINESTEER
can be adapted into an online bandit steering algorithm for normal-form games, with essentially the
same convergence guarantee. We defer the formal statement of the algorithm and proof to Appendix F.

The algorithm, however, fails to extend to the extensive-form online bandit setting, for the same
reasons that the offline full-feedback algorithm fails to extend to the online setting.

7 EXPERIMENTAL RESULTS

We ran experiments with our BANDITSTEER algorithm (Algorithm 5.5) on various notions of
equilibrium in extensive-form games, using the COMPUTETHENSTEER framework suggested by
Algorithm 6.2. Since the hyperparameter settings suggested by Algorithm 5.5 are very extreme, in
practice we fix a constant P and set α dynamically based on the currently-observed gap to directness.
We used CFR+ (Tammelin, 2014) as the regret minimizer for each player, and precomputed a welfare-
optimal equilibrium with the LP algorithm of Zhang & Sandholm (2022). In most instances tested, a
small constant P (say, P ≤ 8) is enough to steer CFR+ regret minimizers to the exact equilibrium
in a finite number of iterations. Two plots exhibiting this behavior are shown in Figure 3. More
experiments, as well as descriptions of the game instances tested, can be found in Appendix G.

8 CONCLUSIONS AND FUTURE RESEARCH

We established that it is possible to steer no-regret learners to optimal equilibria using vanishing
rewards, even under bandit feedback. There are many interesting avenues for future research.
First, is there a natural bandit online algorithm that combines the desirable properties of both
ONLINESTEER and BANDITSTEER? Also, it is important to understand the best rates attainable
for the different settings of the steering problem. Furthermore, is there a steering algorithm for which
the mediator needs to know even less information about the game upfront? For example, could a
mediator without knowledge of the players’ utilities still steer toward optimal equilibria? Finally,
our main behavioral assumption throughout this paper is that players incur vanishing average regret.
Yet, stronger guarantees are possible when specific no-regret learning dynamics are in place; e.g.,
see (Vlatakis-Gkaragkounis et al., 2020; Giannou et al., 2021a;b) for recent characterizations in the
presence of strict equilibria. Concretely, it would be interesting to understand the class of learning
dynamics under which the steering problem can be solved with a finite cumulative budget.
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A RELATED WORK

Our setting and algorithms are closely related to the problem of k-implementation (Monderer &
Tennenholtz, 2004) in normal-form games (see also (Deng et al., 2016) for pertinent complexity
considerations). In k-implementation, the goal is to make a certain strategy profile a (weakly)
dominant strategy for all players using nonnegative payments. Monderer & Tennenholtz (2004)
observe that only Nash equilibria can be implemented using zero realized payments. Our
FULLFEEDBACKSTEER algorithm operates in a similar setting: by precomputing an equilibrium
and giving payments in such a way that players are sandboxed, each player’s dominant strategy is
to be direct, so the players converge. Indeed, for normal-form games, the fact that all pure Nash
equilibria are (in the language of k-implementation) 0-implementable implies that steering is possible
for normal-form games, in both the full-feedback and online settings. Our FULLFEEDBACKSTEER
and BANDITSTEER algorithms could then be interpreted as saying that arbitrary Nash equilibria of
extensive-form games can be implemented in unique normal-form coarse correlated equilibria (and
therefore the unique convergence point of no-regret learning dynamics). However, our results differ
from k-implementation in a few crucial ways: (1) Our rationality assumption differs: Our algorithms
seek to steer no-regret learners, instead of players that play weakly-dominant strategies. Indeed,
in the bandit setting, we argued earlier that, in extensive form, it is sometimes impossible to make the
desirable equilibrium weakly dominant, and this leads to a more intricate proof for Theorem 5.6. (2)
We consider a wider class of games: Our algorithms work in arbitrary extensive-form settings, not
just normal form. As we discussed above, this causes unique problems in the bandit setting. Even in
the full-information setting, working in extensive form means that we need to be careful in designing
the payment scheme so that the maximum possible payment P is constant. For instance, Theorem 5.4
shows that no absolute constant payment can suffice. (3) We restrict the information available to
the mediator: Algorithm ONLINESTEER learns the equilibrium while steering agents toward it.

Moreover, ample of prior research has endeavored to steer strategic agents toward “good” equilib-
ria (Mguni et al., 2019; Li et al., 2020; Kempe et al., 2020; Liu et al., 2022). Indeed, the presence of
a centralized party that can help “nudge” behavior to a better state has served as a central motivation
for the literature on the price of stability (Anshelevich et al., 2008; Schulz & Moses, 2003; Agussurja
& Lau, 2009; Panageas & Piliouras, 2016), thereby allowing to circumvent impossibility results in
terms of the worst Nash equilibria (Koutsoupias & Papadimitriou, 1999; Roughgarden, 2005). For
example, as articulated by Balcan et al. (2009): “In cases where there are both high and low cost
Nash equilibria, a central authority could hope to “move” behavior from a high-cost equilibrium to a
low-cost one by running a public service advertising campaign promoting the better behavior.” Never-
theless, Balcan et al. (2009) also stress that it is unrealistic to assume that all agents blindly follow the
prescribed protocol, unless it is within their interest to do so; this is indeed a key motivation for our
considerations. Balcan (2011); Balcan et al. (2013; 2014) also endeavor to lead learning dynamics to
a desired state for certain classes of games, although there are key differences between those papers
and our setting. In particular, focusing on the work of Balcan et al. (2014) for concreteness, our paper
shows that steering is possible under the mild assumption that players have vanishing average regret,
while Balcan et al. (2014) impose much stronger behavioral assumptions; namely, in the first phase
of their protocol players who receive advise are assumed to obey, even though it may not be in their
own interest, while the rest of the players are following best response dynamics. Further, while in
the protocol of Balcan et al. (2014) advise is provided to a subset of the players, they only guarantee
convergence to an approximately optimal state; by contrast, our focus here is on steering to optimal
equilibria.

On a related direction, Kleinberg et al. (2011) identify a class of games where specific learning
dynamics lead to much better social welfare compared to the Nash equilibrium. More broadly,
Roughgarden’s smoothness framework (Roughgarden, 2015) gives bounds on the (time-average)
social welfare guarantees under no-regret learners, but imposes somewhat restrictive assumptions on
the underlying class of games.

Our problem of steering no-regret learners to desirable outcomes is also somewhat connected to
the problem of strategizing against no-regret learners, studied from different perspectives in several
prior papers (Deng et al., 2019; Kolumbus & Nisan, 2022a; Freeman et al., 2020; Roughgarden &
Schrijvers, 2017; D’Andrea, 2023; Cho & Libgober, 2021; Mansour et al., 2022; Brown et al., 2023; Li
et al., 2023; Cai et al., 2023). We elaborate now on the connection in particular with the results of
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Deng et al. (2019). The setting of that paper is quite different from the one that we study, in several
important ways.

• Their setting is a normal-form setting with one leader and one follower, in which a critical
assumption is that the follower has no weakly dominated pure strategies. We make none
of these assumptions: our setting is an extensive form setting with multiple followers in
general, and we make no assumptions about domination. These changes make the problem
significantly harder: in fact, in their setting, payments are not even required to guide the
learner to the "equilibrium" (best response); it suffices for the leader to be clever about
picking its mixed strategy. In our setting, however, payments are most certainly required for
steering, even in the one-player case.

• Our mediator is more restricted in terms of what it can do to affect actual gameplay: our
mediator can only talk to and pay the players; it cannot directly affect the outcome of
the game in the way that a Stackelberg leader can, since the players are free to ignore or
disobey the mediator’s actions. If the mediator wants something to happen, it must actually
incentivize the players to do it.

Moreover, introducing nonnegative payments to incentivize specific outcomes bears resemblance to
the setting of contract design (Duetting et al., 2022; Dütting et al., 2021b;a), and has been recently
employed in federated learning as well to encourage participation (Hu et al., 2023). Finally, our study
relates to the literature of mechanism design that adopts vanishing regret as a behavioral assumption
(Camara et al., 2020; Braverman et al., 2018).

B ADAPTING THE FRAMEWORK OF ZHANG AND SANDHOLM [2022]

In this section, we give some more detail on the framework of Zhang & Sandholm (2022) and how
we adapt it in our paper.

Zhang & Sandholm (2022) base their framework on the notion of communication equilibrium
(Forges, 1986; Myerson, 1986). In particular, they start with a base game, which we will call Γ0,
that has no mediator. The base game, together with a choice of notion of equilibrium, defines a
mediator-augmented game, which is what we call Γ.

In this setup, if we wish our algorithms to run efficiently in the size of the base game, care must be
taken in constructing the game Γ from Γ0. In particular, if we try to build Γ by naively allowing the
mediator to have one round of communication with the acting player at every information set before
they act, the size of Γ blows up exponentially. To circumvent this, Zhang & Sandholm (2022) make
several simplifications, all of which they show to be without loss of generality due to the revelation
principle:

(M1) Players are not allowed to send messages that prove that they themselves have deviated from
the direct strategy—for example, messages that are not information reports, or messages
that are inconsistent with the past communication transcript between that player and the
mediator. Players are instead allowed to send no message.

(M2) If a player sends no message, the mediator sends no action recommendation.

(M3) After one player deviates, all other players are assumed to play honestly.

With these simplifications, Γ has O(|H||Σ|) nodes, where H and Σ are the sets of nodes and
sequences in Γ0, respectively. As such, solving the induced linear program takes time polynomial in
|H| and the description of the mediator’s strategy space Ξ.

We now turn to our paper. When our goal is merely to compute a good equilibrium, it suffices
to use this game Γ. However, when the goal is to steer players toward equilibria, as Section 3,
Assumption (M3) becomes problematic: since we cannot control the players, we cannot assume they
will play directly in the face of other deviations.

To repair this problem, we split the analysis into two different cases.
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When the mediator has perfect recall, we use different assumption:

(M3’) After the mediator proves that at least two players have deviated, the mediator announces
this to all players and then ceases all communication with all players.

This creates a new mediator-augmented game Γ′. This game clearly has all the nodes of Γ and more,
and no node in Γ′ but not in Γ is ever touched by any strategy profile in which only a single player
is not direct. Therefore, the change from (M3) to (M3’) is equilibrium-preserving. Further, each
history in Γ′ can be identified by a tuple (h1, h2, σ1, σ2), where h1 is a history in Γ0, and (h2, σ1, σ2)
describes the mediator’s transcripts with the players: the mediator sees the transcript that would be
created if the true history were h2 and at most two players σ1, σ2 have deviated. As such, Γ′ has at
most O(|H|2|Σ|2) nodes, which is still polynomial in the size of the original game.

When the mediator does not have perfect recall—which is the case for the notions of correlated
equilibria—the condition (M3’) no longer makes sense, because an imperfect-recall agent can, by
definition, forget things. As such, in these cases, we simply drop (M3) completely. In this case,
a history in Γ′ is identified by a tuple (h, σ) where h ∈ H , σ ∈×i

Σi. So, Γ′ in this case has
size O(|H|∏i |Σi|) ≤ O(|H||Σ|n). While this is exponential in the original game’s size, we stress
that some exponential blow-up is to some extent unavoidable already in the imperfect-recall setting:
computing optimal NFCCEs, EFCCEs, and EFCEs are, after all, NP-hard.

In Section 6, we always implicitly operate on the game Γ′ instead of Γ. This allows us to avoid issues
of exponential blowup in the game size when it is avoidable.

C DETAILS ON FIGURE 1

In this section, we elaborate on Figure 1, and we provide some further pertinent illustrations. As
shown in Theorem 5.4, this is a challenging instance for steering no-regret learners in the bandit
setting. The results illustrated in Figure 1 correspond to each player employing multiplicative weights
update (MWU) under full feedback with learning rate η := 0.1.

Furthermore, we also experiment with each player using a variant of EXP3 (Auer et al., 2002) with
exploration parameter ϵ := 5%. We employ our steering algortihm in the bandit setting with different
potential payments P and parameter α = 0, leading to the results illustrated in Figure 4.
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Figure 4: The trajectories of bandit algorithms under different random initializations and vanishing
payments. Trajectories with the same color correspond to the same initialization but under different
realizations of the players’ sampled actions.
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D NECESSITY OF RECOMMENDATIONS FOR MIXED EQUILIBRIA

In this section, we discuss why recommendations are in some sense necessary for steering to
equilibrium concepts other than pure Nash.4

For simplicity of exposition in the body and cleanliness of the proofs, our desiderata for steering are
defined with pure equilibria in mind. In particular, Item (S2) states that, for all terminal nodes z for
which d̂[z] ̸= 1 (i.e., for which at least one player i does not deterministically play to z), z will not
be played by the players in the long run. Clearly, this definition does not make sense when the direct
strategy is not pure. So, we must first define what it means to steer to a mixed equilibrium at all. We
define:

(S2’) Players’ actions are indistinguishable from the Nash equilibrium d, in the sense that
x̂(t)[z] → d̂[z] for all terminal nodes z.

We make the following formal claim.

Theorem D.1. There exists a normal-form game, and objective function u0 of the mediator, such that
the unique optimal equilibrium is mixed, and it is impossible to steer players toward that equilibrium
using only sublinear payments.

Proof. Consider the following two-player game. Each player has two actions, A and B. Players 1 and
2 play a coordination game: they score 1 point for playing the same action, and −1 otherwise. The
mediator’s goal is to minimize the welfare of the players.5

The welfare-minimizing equilibrium in this game is the fully-mixed one. So, we claim that, using
sublinear payments alone, it is impossible to steer players to the mixed equilibrium. Consider the
following algorithm for the players: Let Γ(t) be the game at time t induced by the mediator’s payoff
function p(t). Play an arbitrary Nash equilibrium of Γ(t), pure if possible. The total regret of the
players after T rounds is at most 0 since the players always play a Nash equilibrium. There are three
cases:

1. The players play (A, A) or (B, B). In this case, the players get social welfare 2.

2. The players play (A, B) or (B, A). In this case, the players get social welfare −2 in the game
itself, but in order for either of these to be a Nash equilibrium, there must be a payment of at
least 2 to each player.

3. The players play a mixed strategy. This means that Γ(t) had no pure strategy Nash equilib-
rium. Since (A, A) is not an equilibrium, suppose WLOG that v(t)1 (B,A) > v

(t)
1 (A,A). Then

p
(t)
i (B,A) > 1. Since (B, A) is also not a Nash equilibrium, we have v(t)2 (B,B) > v

(t)
2 (B,A).

Since (B, B) is also not a Nash equilibrium, we have v
(t)
1 (A,B) > v

(t)
1 (B,B), so

p
(t)
1 (A,B) > 1. Thus, all four strategy profiles have either high welfare for the players, or

nontrivial payments.

In all three cases, as a result, we must have
∑

i ui(x
(t)) + 3p

(t)
i (x(t)) > 1 for all timesteps t.

Therefore, summing over t = 1, . . . , T , it is impossible for both quantities to grow sublinearly in T ,
which is what would be required for successful steering.

4In the normal-form setting, Monderer & Tennenholtz (2004) also used action recommendations to handle
the case of mixed equilibria, but did not discuss the necessity of doing so.

5One could construct an example in which the mediator’s goal is to maximize the players’ utility, by simply
adding a third player, with one action, whose utility is −10 if P1 and P2 play the same action.
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E OMITTED PROOFS

In this section, we provide the proofs omitted from the main body. Note that no effort was made
throughout this paper to optimize the game-dependent or constant factors, so long as they remained
polynomial in |Z|—they can very likely be improved.

E.1 PROOF OF PROPOSITION 3.2

We first show Proposition 3.2, the statement of which is recalled below. We highlight that in our
following construction we use that players have knowledge of each game.

Proposition 3.2. There exists a game and some function R(T ) = O(
√
T ) such that, for all B ≥ 0,

the steering problem is impossible if we add the constraint
∑∞

t=1

∑n
i=1 p

(t)
i (x(t)) ≤ B.

Proof. Suppose that the mediator’s goal is for the players to coordinate on the equilibrium (B, B) in
the coordination 2-player game with the following payoff matrix.

A B
A 0.5, 0.5 0,0

B 0,0 1,1

Set R(T ) = 2
√
T . We will show that, regardless of the mediator’s strategy, it is possible for the

players to play (A, A) for all but finitely many rounds.

Suppose the players play as follows. Let Γ(t) be the game at time t induced by the mediator’s
payoff function p(t). For the first B2 rounds, play an arbitrary Nash equilibrium of Γ(t). After that,
if (A, A) is a Nash equilibrium of Γ(t), play it. Otherwise, play a strategy profile x(t) for which∑n

i=1 p
(t)
i (x(t)) > 1

2 (Such a strategy profile must exist, for otherwise (A, A) would be a Nash
equilibrium).

The total regret of the players after T rounds is (at most) 0 for T ≤ B2, since we have assumed that
they are playing a Nash equilibrium of Γ(t), and at most (P +1)k for T > B2, where k is the number
of times that the final case triggers, since the reward range of Γ(t) is at most [0, P + 1]. But the final
case can only trigger at most 2B times, since the mediator only has a total budget of B. Therefore,
the regret is bounded by 2(P + 1)

√
T/(P + 1) = 2

√
T for any T , and for all but 2B +B2 rounds,

the players are playing a suboptimal equilibrium. So, desideratum (S2) in Definition 3.1 cannot be
satisfied.

E.2 PROOF OF THEOREM 4.2

Theorem 4.2 (Normal-form steering). Let pi(x) be defined as in (1), set α =
√
ε, where ε :=

4nR(T )/T , and let T be large enough that α ≤ 1. Then players will be steered toward equilibrium,
with both payments and directness gap bounded by 2

√
ε.

Proof. By construction of the payments, the utility for player i is at least α higher for playing di

than for any other action, regardless of the actions of the other players. Let ε := nR(T )/T and
δ
(t)
i := 1 − d⊤

i x
(t)
i . Then the above property ensured by the payments implies that R(T )/T =

ε/n ≥ αEt∈JT K δ
(t)
i Let z∗ be the terminal node induced by profile d. Then the directness gap is

E
t

[
1− x̂(t)[z∗]

]
= 1− E

t

∏
i

(1− δ
(t)
i ) ≤ E

t

∑
i

δ
(t)
i ≤ ε/α

and the payments are bounded by

E
t
pi(x) ≤ α+ E

t
(1−

∏
j ̸=i

(1− δ
(t)
i )) ≤ α+ ε/α

so taking α =
√
ε completes the proof.
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E.3 PROOF OF THEOREM 5.2

Before proving Theorem 5.2, we start by showing a useful lemma.

Lemma E.1. Let x̄i := Et∈JT K x
(t)
i for any player i ∈ JnK and δ :=

∑n
i=1 d

⊤
i (di − x̄i). Then,

Et∈JT K

∥∥∥x̂(t)
N − d̂N

∥∥∥
1
≤ |Z|δ for every N ⊆ JnK. Moreover, if the payments are defined according

to (2), the average payment to every player can be bounded by Et∈JT K pi(x
(t)) ≤ |Z|(2δ + α).

Proof of Lemma E.1. Let δi := d⊤
i (di − x̄i) for any player i ∈ JnK. Then, we have that

minz:di[z]=1 x̄i[z] ≥ 1− δi, which in turn implies that maxz:di[z]=0 x̄i[z] ≤ δi. Now let N ⊆ JnK.
If z ∈ Z is such that dN [z] = 1,

x̄N [z] = E
t∈JT K

x
(t)
N [z] = E

t∈JT K

∏
j∈N

x
(t)
j [z] ≥ E

t∈JT K

∏
j∈N

(1− δj) ≥ 1−
∑
j∈N

δj = 1− δ.

Further, if dj [z] = 0 for some j ∈ N ,

x̄N [z] ≤ x̄j [z] ≤ δj ≤ δ.

Thus,

E
t∈JT K

∥∥∥x̂(t)
N − d̂N

∥∥∥
1
= E

t∈JT K

 ∑
z:d̂N [z]=0

(x̂
(t)
N [z]− d̂N [z]) +

∑
z:d̂N [z]=1

(d̂N [z]− x̂
(t)
N [z])


=

∥∥∥∥ E
t∈JT K

x̂
(t)
N − d̂N

∥∥∥∥
1

=
∥∥∥x̄N − d̂N

∥∥∥
1
≤ |Z|δ, (4)

since we have shown that |x̄N [z]− d̂N [z]| ≤ δ for any z ∈ Z. This establishes the first part of the
claim. Next, the average payments (2) can by bounded for any player i ∈ JnK as

E
t∈JT K

[[
ui(x

(t)
i ,d−i)− ui(x

(t)
i ,x

(t)
−i)
]

− min
x′

i∈Xi

[
ui(x

′
i,d−i)− ui(x

′
i,x

(t)
−i)
]
+ αd⊤

i x
(t)
i

]
≤ 2 E

t∈JT K

∥∥∥x̂(t)
−i − d̂−i

∥∥∥
1
+ α|Z| ≤ |Z|(2δ + α),

where we used the normalization assumption |ui(·)| ≤ 1, and the fact that d⊤
i x

(t)
i ≤ |Z|. This

concludes the proof.

We are now ready to prove Theorem 5.2, the formal version of which is recalled below.
Theorem 5.2. Set α =

√
ε, where ε := 4nR(T )/T , and let T be large enough that α ≤ 1/|Z|. Then,

FULLFEEDBACKSTEER results in average realized payments and directness gap at most 3|Z|√ε.

Proof. The utility of each player i ∈ JnK reads

vi(xi,x−i) := αd⊤
i xi + ui(xi,d−i)− min

x′
i∈Xi

[ui(x
′
i,d−i)− ui(x

′
i,x−i)].

Given that d is an equilibrium, it follows that di is a strict best response for any player i ∈ JnK. That
is, the regret of each player i ∈ JnK after T iterations can be lower bounded as

T∑
t=1

(
αd⊤

i (di − x
(t)
i ) + ui(d)− ui(x

(t)
i ,d−i)

)
≥ αTd⊤

i (di − x̄i),

where we used that ui(d)− ui(x
(t)
i ,d−i) ≥ 0 since d is an equilibrium. Thus,
n∑

i=1

d⊤
i (di − x̄i) ≤

nR(T )

αT
=

ε

α
.
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We can now apply Lemma E.1 to obtain that Et∈JT K

∥∥∥x̂(t) − d̂
∥∥∥
1
≤ |Z|δ, where δ := ε/α. Thus, the

directness gap is bounded by∣∣∣∣ E
t∈JT K

E
z∼x(t)

(1− d̂[z])

∣∣∣∣ ≤ ∥∥∥Et x̂(t) − d̂
∥∥∥
1
= E

t

∥∥∥x̂(t) − d̂
∥∥∥
1
≤ n|Z|R(T )

αT
,

where the first inequality uses that |u0(·)| ≤ 1, and the equality follows because d̂ is an extreme point
of X (as in (4)). Furthermore, by Lemma E.1, the payment to each player i ∈ JnK can be bounded by

2|Z|(2δ + α) = 2|Z| ε
α
+ |Z|α.

As a result, setting α =
√
ε for T sufficiently large so that α ≤ 1/|Z|, we guarantee that the payment

to each player is bounded by 3n|Z|√ε and the directness gap is bounded by |Z|√ε, as desired.

E.4 PROOF OF THEOREM 6.5

We next provide the proof of Theorem 6.5.

Theorem 6.5. Set the hyperparameters α = ε2/3|Z|−1/3 and λ = |Z|2/3ε−1/3, where ε :=
(R0(T )+4nR(T ))/T is the average regret bound summed across players, and let T be large enough
that α ≤ 1/|Z|. Then running ONLINESTEER results in average realized payments, directness gap,
and optimality gap all bounded by 7λ∗|Z|4/3ε1/3.

Proof. To simplify the notation, we assume without loss of generality that u∗
0 = 0. We will also

use the change of variables y := x− d ∈ Y := X − d. With the payments and utility functions as
specified, the losses given to the players and the mediator are, up to additive constants, exactly the
losses that they would see if they were playing the zero-sum game

max
µ∈Ξ

min
y∈Y

1

λ
c⊤µ− µ⊤Ay − αd⊤y, (5)

where A = [A1 · · · An], d =
[
d⊤
1 · · · d⊤

n

]⊤
, and λ ≥ 1. Now let (λ∗,y∗) be an optimal

dual solution in (3). If we select λ ≥ λ∗ and y′ := (λ∗/λ)y∗, then (λ,y′) is also an optimal dual
solution in (3). Therefore,

max
µ∈Ξ

min
y∈Y

1

λ
c⊤µ− µ⊤Ay − αd⊤y ≤ −αd⊤y′,

since it is assumed that u∗
0 = 0. Further, we know that (µ̄, ȳ) is an ε-Nash equilibrium of the above

zero-sum game since (R0(T ) + 4nR(T ))/T = ε; in particular, we have that6

−αd⊤ȳ ≤ max
µ∈Ξ

1

λ
c⊤µ− µ⊤Aȳ − αd⊤ȳ ≤ −αd⊤y′ + ε,

or, rearranging,

−d⊤ȳ ≤ −λ∗

λ
d⊤y∗ +

ε

α
≤ λ∗

λ
|Z|+ ε

α
:= δ.

Thus, by Lemma E.1, the average payment is bounded by |Z|(2δ+α). We now turn to the mediator’s
average utility. The equilibrium value of (5) is at least −α|Z| (achieved by the optimal equilibrium),
in turn implying that the current value in the game under (µ̄, ȳ) is at least −α|Z| − ε. So,

E
t∈JT K

u0(µ
(t),d) = c⊤µ̄ ≥ min

y∈Y
c⊤µ̄− λ

[
µ̄⊤Ay − αd⊤y

]
≥ −λ(α|Z|+ 2ε).

By Lemma E.1 again,∣∣∣∣ E
t∈JT K

u0(µ
(t),x(t))− u0(µ

(t),d)

∣∣∣∣ ≤ ∥∥∥∥ E
t∈JT K

x̂(t) − d̂

∥∥∥∥
1

≤ E
t∈JT K

∥∥∥x̂(t) − d̂
∥∥∥
1
≤ |Z|δ,

6A technical comment here: −d⊤y is nonnegative, and takes its minimum value at y = 0.
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so the optimality gap is bounded by 2ελ+ |Z|αλ+ |Z|δ, and the directness gap is bounded by |Z|δ.
It thus suffices to select hyperparameters α and λ so as to minimize the following expression, which
is an upper bound on all three gaps:

2ελ+ |Z|αλ+ 2|Z|δ = 2ελ+ |Z|αλ+ 2|Z|2λ
∗

λ
+ 2|Z| ε

α
.

In particular, setting the hyperparameters as in the theorem statement and plugging them into the
expression above, we arrive at the bound

2ε2/3|Z|2/3 + |Z|4/3ε1/3 + 2λ∗|Z|4/3ε1/3 + 2|Z|4/3ε1/3 ≤ 7λ∗|Z|4/3ε1/3,
as claimed.

It is worth noting that, despite the fact that it would speed up the convergence, we cannot set λ and α
dependent on λ∗, because we do not know λ∗ a priori.

E.5 PROOF OF THEOREM 5.4

We continue with the proof of Theorem 5.4.

Theorem 5.4. For every P > 0, there exists an extensive-form game Γ with O(P ) players, O(P 2)

nodes, and rewards bounded in [0, 1] such that, with payments q(t)i : Z → [0, P ], it is impossible to
steer players to the welfare-maximizing Nash equilibrium, even when R(T ) = 0.

Proof. For any n > 0, consider the following n-player extensive-form game Γ, which has O(n2)
nodes. Every player has only a single information set with two actions, and we will (for good reason,
as we will see later) refer to the actions as Stag and Hare. Chance first picks some j ∈ JnK ∪ {⊥}
uniformly at random.

If j ̸= ⊥, then player j plays an action (which is either Stag or Hare). If i plays Hare, it gets utility
1/2; otherwise, it gets utility 0. All other players get utility 0.

If k = ⊥, chance samples another player k uniformly at random from JnK. Then, in the order
k, k + 1, . . . , n, 1, 2, . . . , k − 1, the players play their actions. If any player at any point plays Hare,
then the game ends and all players get 0. If all players play Stag, then all players get 1.

The normal form of this game is an n-player generalization of the Stag Hunt game: if all players
play Stag then all players have (expected) payoff 1/(n + 1); if any player plays Hare then every
player has expected payoff (1/2)/(n + 1) for playing Hare and 0 for playing Stag. In particular,
the welfare-optimal profile, “everyone plays Stag”, is a Nash equilibrium, and hence is also the
welfare-optimal EFCE, with social welfare n/(n+1). “Everyone plays Hare” is also an equilibrium,
with social welfare (1/2)n/(n+ 1). The game tree when n = 3 is depicted in Figure 2.

Intuitively, the rest of the proof works as follows. Suppose that all players are currently playing Hare.
The mediator needs to incentivize players to play Stag, but it has a dilemma. It cannot give a large
payment to i for playing Stag when j = i—then the average payment for each player would diverge
if the players were to move to the Stag equilibrium. The only other location that the mediator could
possibly give a payment to i is when j = ⊥, k = i, player i plays Stag, and the next player plays
Hare. But this node is only reached with probability O(1/n2)—therefore, to outweigh i’s current
incentive of Θ(1/n) of playing Hare, the payment at this node would have to be Θ(n), at which
point taking n = Θ(P ) would complete the proof.

We now formalize this intuition. Take n = ⌈4P ⌉. Consider players who play as follows. At
each timestep t, the players consider the extensive-form game Γ(t) induced by adding the payment
functions q(t)i that the mediator would play, and ignoring mediator recommendations. That is, Γ(t) is
identical to Γ except that q(t)i has been added to player i’s utility function. If “everyone plays Hare”
is a Nash equilibrium of Γ(t), all players play Hare. Otherwise, the players play according to an
arbitrary Nash equilibrium of Γ(t).

Since the players are playing according to a Nash equilibrium at every step, they all have regret at
most 0. Now consider two cases.
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1. There is a player i such that plays Stag with probability less than 1/2. Then the social
welfare is at most (3/4)n/(n + 1), which is lower than the optimal social welfare by
(1/4)n/(n+ 1).

2. All players play Stag with probability at least 1/2. Then, in particular, “everyone plays
Hare” is not a Nash equilibrium in Γ(t). So, if everyone were to play Hare, there is some
player i who would rather deviate and play Stag. Thus, the mediator must be giving an
expected payment to i of at least (1/2)/(n + 1). As discussed above, there are only two
nodes z for which the setting of q(t)i (z) increases i’s utility for playing Stag relative to its
utility for playing Hare. The first is when j = ⊥, k = i, i plays Stag, and the next player
plays Hare. Since P ≤ n/4 and this node occurs with probability 1/(n(n+ 1)), even the
maximum payment at this node contributes at most (1/4)/(n+ 1) to the expected payment.
Therefore, the remainder of the payment, (1/2)/(n + 1), must be given when j = i and
then i plays Stag. But Player i plays Stag with probability at least 1/2, so i’s observed
expected payment is at least (1/4)/(n+ 1).

Therefore, we have (
u∗
0 − Eu0(z

(t))
)
+ E

∑
i∈JnK

q
(t)
i (z(t)) ≥ 1

4(n+ 1)

where u0 is the social welfare function, so it is impossible for both quantities to tend to 0 as
T → ∞.

E.6 PROOF OF THEOREM 5.6

Finally, we conclude with the proof of Theorem 5.6.

Theorem 5.6. Set the hyperparameters α = 4|Z|1/2ε1/4 and P = 2|Z|1/2ε−1/4, where ε :=
R(T )/T , and let T be large enough that α ≤ 1. Then, running BANDITSTEER for T rounds results
in average realized payments bounded by 8|Z|1/2ε1/4, and directness gap by 2ε1/2.

We use the following notation.

• The set DS is the set of nodes at which all players in set S have played directly: DS = {z ∈
Z : di[z] = 1∀i ∈ S}. The set D′

S = Z \DS is its complement.

• x is a random variable for the correlated strategy profile played by all players through the T
timesteps. That is, x is a uniform sample from {x(1), . . . ,x(T )}.

• π(S|x) is the probability that a terminal node from set S is reached, given that the mediator
plays µ and the players play the (possibly correlated) strategy profile x. That is, π(S|x) =
Prz∼(µ,x)[z ∈ S].

• ũi(x) = ui(x) + Ez∼(µ,x) qi(z) is the expected utility for player i, including payment,
under profile (µ,x).

• ui(yi−xi,x−i) := ui(yi,x−i)−ui(xi,x−i) is player i’s advantage for playing yi instead
of x. ũi(yi − xi,x−i) and π(z|yi − xi,x−i) are defined similarly.

Let ε = R(T )/T . Then after T timesteps, since the players are no-regret learners, their average joint
strategy profile will be an Pε-NFCCE of the extensive-form game with the payments added.

Intuitively, the proof will go as follows. We will show that, for P sufficiently large, each player’s
incentive to be direct will be at least as great as it would have been if everyone else were also direct,
plus α. Then it will follow from the fact that µ is an equilibrium, and picking α ≫ Pε, that all
players must therefore be direct. We first prove a lemma. Informally, the lemma states that, when any
player i deviates, all other players must be direct.
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Lemma E.2. Let z be any node with di[z] = 0, that is, any node at which player i has deviated.
Then |π(z|xi,d−i − x−i)| ≤ γ := nε +

∑
j δj/P , where δj := uj(xj − dj ,x−j) is player j’s

current deviation benefit.

Proof. Assume without loss of generality that i = 1, and consider two cases.

1. dj [z] = 0 for some j ̸= i—that is, some other player has also deviated. Then
π(z|xi,d−i) = 0. Assume for contradiction that π(z|x) > γ. Let hi, hj ≺ z be the
two deviation points—that is, di[hi] = 1 but di[hiai] = 0 where hiai ⪯ z, and similar for
hj . Suppose without loss that hi ≺ hj . Now consider player j’s incentive. If player j were
to switch to playing dj , its expected payment increases by at least γP , and its expected
utility (sans payment) decreases by δj , by definition. When γ ≥ ε+ δj/P , this produces a
contradiction.

2. dj [z] = 1 for all j ̸= i. Then π(z|xi,d−i) ≥ π(z|x), so we need to show that
π(z|xi,d−i) − π(z|x(t)) ≤ γ. That is, other players will almost always play to catch
player i deviating, whenever possible. Suppose not. Let h ≺ z be the point where player
i deviated (that is, di[h] = 1 but di[ha1] = 0 where ha1 ⪯ z). Let a0 be the direct
action at h. Notice that, for any player j ̸= i, if j shifts to playing the direct strategy, the
probability of leaving the path to ha before reaching ha itself cannot increase by more than
ε + δi/P : otherwise, player j’s expected utility would be increasing by more than δi, a
contradiction. If all n− 1 players allocate their deviations in this manner, and even if the
remaining (n − 1)δi/P probability of leaving path ha is then all allocated to node z, the
reach probability of z could not have increased by more than

∑
j(ε+ δj/P ). Thus, when γ

is larger than this value, we have a contradiction.

The rest of the proof is structured as follows. We will first show, roughly speaking, that player i’s
deviation benefit—that is, its advantage for playing x

(t)
i at each timestep t instead of playing di—is

smaller against the opponent strategies x(t)
−i than it would be against d(t)

−i, modulo a small additive
error. Then, the proof will follow from the fact that d is an equilibrium against µ, so therefore all
players should play according to d.

ũi(x)− ũi(xi,d−i)

=
∑

z∈Di∩D−i

ũi(z)[π(z|x)− π(z|xi,d−i)] +
∑

z∈Di∩D′
−i

ũi(z)π(z|x)

+
∑
z∈D′

i

ui(z)[π(z|x)− π(z|xi,d−i)]︸ ︷︷ ︸
≤γ|Z|

≤
∑

z∈Di∩D−i

ũi(z)[π(z|x)− π(z|xi,d−i)] +
∑

z∈Di∩D′
−i

ũi(z)π(z|x) + γ|Z|

where we use, in order, the definition of expected utility, the fact that ui(z) = ũi(z) when di[z] = 0
and π(z|x) = 0 whenever xi[z] = 0 for any i, and finally Lemma E.2. Similarly,

ũi(di,x−i)− ũi(d)

=
∑

z∈Di∩D−i

ũi(z)[π(z|di,x−i)− π(z|d)] +
∑

z∈Di∩D′
−i

ũi(z)π(z|di,x−i).

Thus,

Pε− [ũi(d)− ũi(xi,d−i)]

≥ [ũi(di,x−i)− ũi(x)]− [ũi(d)− ũi(xi,d−i)]

≥
∑

z∈Di∩D−i

ũi(z) [π(z|di − xi,x−i)− π(z|di − xi,d−i)]︸ ︷︷ ︸
≤0
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+ 2
∑

z∈Di∩D′
−i

π(z|di − xi,x−i)− γ|Z|

≥ 2
∑

z∈Di∩D−i

[π(z|di − xi,x−i)− π(z|di − xi,d−i)]

+ 2
∑

z∈Di∩D′
−i

π(z|di − xi,x−i)− γ|Z|

= 2[π(D′
i|xi,d−i)− π(D′

i|x)]− γ|Z| ≥ −3γ|Z|.
The first inequality uses the fact π(z|di,x−i) − π(z|x) ≥ 0 when di[z] = 1 and ũi(z) ≥ P ≥ 2
when di[z] = 1 and d−i[z] = 0. The quantity in braces is nonpositive because for any profile x,
setting x−i = d only increases the probability that player i is the one to deviate from the path
to z. The second inequality uses the nonpositivity of the quantity in the braces, and the fact that
ũi(z) = ui(z) + α ≤ 2.

Now we look at the remaining quantity, ũi(d)− ũi(xi,d−i), which is simply the negative deviation
of benefit of Player i’s strategy xi if all other players were direct. Indeed, since we know that µ is an
equilibrium, we have

ũi(d)− ũi(xi,d−i)

= [ũi(d)− ui(d)]︸ ︷︷ ︸
=α

− [ũi(xi,d−i)− ui(xi,d−i)]︸ ︷︷ ︸
=α(1−∆i(xi,d−i))

+ [ui(d)− ui(xi,d−i)]︸ ︷︷ ︸
≥0

≥ α∆i(xi,d−i) ≥ α∆i(x)− γ|Z|,
where the final inequality again uses Lemma E.2 and ∆i(x) :=

∑
z:di[z]=0 π(z|x)

Now, notice that δi ≤ ∆i(x), by definition. Substituting into the previous inequality and Lemma E.2,
we have

α∆i(x)− 4

(
nε+

∑
j ∆j(x)

P

)
|Z| ≤ Pε,

or, rearranged,

α∆i(x)− 4|Z|
∑

j ∆j(x)

P
≤ (P + 4n)ε ≤ 2Pε

when P ≥ 4n. Summing over all players i yields

α∆− 4|Z|∆
P

≤ (P + 4n)ε ≤ 2Pε

where ∆ =
∑

i ∆i(x), or, rearranging,

∆ ≤ 2Pε

α− 4|Z|/P .

Both the payments from the mediator and the gap to optimal value are thus bounded by

α+ P∆ ≤ α+
2P 2ε

α− 4|Z|/P .

Now taking α = 4|Z|1/2ε1/4 and P = 2|Z|1/2/ε1/4 gives the desired bounds.

F BANDIT ONLINE STEERING IN NORMAL-FORM GAMES

Essentially, the algorithm replicates the ONLINESTEER algorithm (Algorithm 6.4) by randomly
sampling. In the normal-form setting, a mediator pure strategy is a profile of actions, d(t) ∈
A1 × · · · ×An, where Ai is the action set of player i. Each player i observes the recommendation
d
(t)
i , and chooses an action a

(t)
i .

23



Under review as a conference paper at ICLR 2024

Definition F.1 (NORMALFORMSTEER). The mediator runs a bandit regret minimization algorithm
R0, such as Exp3 (Auer et al., 2002), over its own strategy space X0, which we assume has regret at
most R0(T ) after T rounds. On each round, the mediator does the following.

1. Get a strategy d(t) = (d
(t)
1 , . . . , d

(t)
n ) from R0.

2. With probability α, ignore d(t) and recommend actions (d̃(t)1 , . . . , d̃
(t)
n ) uniformly at random.

Let a(t) = (a
(t)
1 , . . . , a

(t)
n ) be the tuple of actions played by the players. Pay each player

q
(t)
i (a(t)) := 1− ui(a

(t)) + 1

{
a
(t)
i = d̃

(t)
i

}
.

Pass reward 0 to the mediator.

3. Otherwise, give recommendation r
(t)
i to each player i. Pay each player

q
(t)
i (a(t)) := ui(a

(t)
i , d

(t)
−i)− ui(a

(t))− min
a′
i∈Ai

[
ui(a

′
i, d

(t)
−i)− ui(a

′
i, a

(t)
−i)
]
.

Pass reward 1
λu0(d)−

∑n
i=1

[
ui(a

(t)
i , d−i)− ui(d)

]
to the mediator.

Theorem F.2. Set the hyperparameters α = |Z|1/3n−2/3b1/3ε2/3 and λ = |Z|1/3n1/3b1/3ε−1/3

where ε := (R0(T ) + 4nR(T ))/T is the average regret bound summed across players and b =
maxi |Ai|. Let T be large enough that α ≤ 1/(2n). Then running NORMALFORMSTEER results in
average realized payments, directness gap, and optimality gap all bounded by 10λ∗|Z|4/3ε1/3.

Proof. Reverting to the extensive-form notation, the expected utility of the mediator on iteration t is

(1− α)

(
1

λ
u0(µ

(t),d)−
n∑

i=1

[
ui(µ

(t),x
(t)
i ,d−i)− ui(µ

(t),d)
])

The expected utility of player i is, up to an additive term that cannot be affected by player i,

α
1

|Ai|
d⊤
i xi + (1− α)

(
ui(µ

(t),x(t),d−i)− ui(µ
(t),d(t),d−i)

)
Therefore, the players and mediator experience the same utilities that they would in the zero-sum
game

max
µ∈Ξ

min
y∈Y

(1− α)

(
1

λ
c⊤µ− µ⊤Ay

)
− α

∑
i

1

|Ai|
d⊤
i yi, (6)

where, as in the proof of Theorem 6.5, y := x−d. Following the proof of Theorem 6.5, we conclude
that (µ̄, ȳ) must be an ε-Nash equilibrium of the above zero-sum game. Let λ∗, λ,y∗,y′ be as in
that proof. For simplicity of notation, let D be the vector satisfying D⊤y =

∑
i

1
|Ai|d

⊤
i yi, Then

−αD⊤ȳ ≤ max
µ∈Ξ

min
y∈Y

(1− α)

(
1

λ
c⊤µ− µ⊤Ay

)
− αD⊤y ≤ −αD⊤y′ + ε

or, rearranging,7

−1

b
d⊤ȳ ≤ −D⊤ȳ ≤ −λ∗

λ
D⊤y∗ +

ε

α
≤ λ∗

λ
n+

ε

α
:=

δ

b
.

where b = maxi |Ai| is the maximum branching factor. Thus, by Lemma E.1, the average payment
is bounded by |Z|(2δ + α). We now turn to the mediator’s average utility. The equilibrium value of
(6) is at least −αn (achieved by the optimal equilibrium), in turn implying that the current value in
the game under (µ̄, ȳ) is at least −αn− ε. So,

E
t∈JT K

u0(µ
(t),d) = c⊤µ̄ ≥ min

y∈Y
c⊤µ̄− λ

[
µ̄⊤Ay − α

1− α
d⊤y

]
≥ −2λ(αn+ 2ε).

7We note once again that −d⊤ȳ and −D⊤ȳ are, despite the negative sign, a nonnegative quantities since
y = x− d.
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since α ≤ 1/2. By Lemma E.1 again,∣∣∣∣ E
t∈JT K

u0(µ
(t),x(t))− u0(µ

(t),d)

∣∣∣∣ ≤ ∥∥∥∥ E
t∈JT K

x̂(t) − d̂

∥∥∥∥
1

≤ E
t∈JT K

∥∥∥x̂(t) − d̂
∥∥∥
1
≤ |Z|δ,

so the optimality gap is bounded by 4ελ+ 2nαλ+ |Z|δ, and the directness gap is bounded by |Z|δ.
It thus suffices to select hyperparameters α and λ so as to minimize the following expression, which
is an upper bound on all three gaps:

4ελ+ 2nαλ+ 2|Z|δ ≤ 4ελ+ 2nαλ+ 2|Z|nbλ
∗

λ
+ 2|Z|b ε

α
.

In particular, setting the hyperparameters

α = |Z|1/3n−2/3b1/3ε2/3 and λ = |Z|1/3n1/3b1/3ε−1/3

we arrive at the bound
4ε2/3(|Z|nb)1/3 + 2(|Z|nb)2/3ε−1/3 + 2λ∗(|Z|nb)2/3ε−1/3 + 2(|Z|nb)2/3ε−1/3 ≤ 10λ∗|Z|4/3ε1/3
as claimed.

G FURTHER EXPERIMENTAL RESULTS

Here, we provide plots akin to those in Figure 3 for other games and solution concepts. For a
description of the solution concepts used in these plots, see Zhang & Sandholm (2022). We experiment
on four standard benchmark games, which are the same ones used in by Zhang et al. (2023).

• Kuhn poker. We use the three-player version of this standard benchmark introduced by
Kuhn (1950).

• Sheriff. This game, introduced as a benchmark for correlation in extensive-form games
by Farina et al. (2019), is a simplified version of the Sheriff of Nottingham board game.
A Smuggler—who is trying to smuggle illegal items in their cargo—and the Sheriff —
whose goal is stopping the Smuggler. Further details on the game can be found in Farina
et al. (2019).

The Smuggler first chooses a number n ∈ {0, 1} of illegal items to load on the cargo. Then,
the Sheriff decides whether to inspect the cargo. If they choose to inspect, and find illegal
goods, the Smuggler has to pay n to the Sheriff. Otherwise, the Sheriff compensates the
Smuggler with a reward of 1. If the Sheriff decides not to inspect the cargo, the Sheriff’s
utility is 0, and the Smuggler’s utility is 5n. After the Smuggler has loaded the cargo, and
before the Sheriff decides whether to inspect, the Smuggler can attempt to bribe the Sheriff.
To do so, they engage in 2 rounds of bargaining and, for each round i, the Smuggler proposes
a bribe bi ∈ {0, 1, 2}, and the Sheriff accepts or declines it. Only the proposal and response
from the final round are executed. If the Sheriff accepts a bribe b2 then they get b2, while
the Smuggler’s utility is 5n− b2.

• Battleship. This game, introduced as a benchmark for correlation in extensive-form games
by Farina et al. (2019), is a general-sum version of the classic game Battleship, where two
players take turns placing ships of varying sizes and values on two separate grids of size
2× 2, and then take turns firing at their opponent. Ships which have been hit at all their tiles
are considered destroyed. The game ends when one player loses all their ships, or after each
player has fired 2 shots. Each player’s payoff is determined by the sum of the value of the
opponent’s destroyed ships minus two times the number of their own lost ships.

• Ridesharing. A benchmark introduced in Zhang et al. (2022). Two drivers compete to
serve requests on a road network, an undirected graph GU = (V U, EU) depicted in Figure 5
with unit edge cost. Each vertex v ∈ V U corresponds to a ride request to be served. Each
request has a reward in R≥0, which is shown in set notation at vertices in the graph. The
first driver arriving at node v ∈ V U serves the ride and receives the associated reward. The
game terminates when all nodes have been cleared, or after T = 2. If the two drivers arrive
simultaneously on the same vertex they both get reward 0. Final driver utility is computed
as the sum of the rewards obtained from the beginning until the end of the game.
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Figure 5: Map used in the ridesharing game. Rewards are in curly braces.

For the following results, we use a burn-in of 10 iterates (that is, no payments are issued in the first
10 iterations; steering only begins after that).

For each game, we consider the problem of steering the learners towards an optimal instance of each
of the solution concepts. The objective function used to define optimality is set to be social welfare
for general-sum games, and the utility of Player 1 for the three-player zero-sum game (Kuhn poker).
For each combination of game and equilibrium concept, we show four plots. Each corresponding to a
different value of the payment multiplyer Pmult ∈ {1, 2, 4, 8}. The payment multiplier controls the
value of P , which is set to P := Pmult× the reward range of the game.

We observe that in all games and equilibrium concepts, our algorithm is able to steer the learners
towards the optimal social objective, as predicted by our theory. As Pmult grows, we observe that the
convergence speed increases, at the cost of a higher payment magnitude.

G.1 GAME: KUHN POKER

Solution concept: EFCE
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Solution concept: EFCCE
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Solution concept: NFCCE
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Solution concept: NFCCERT
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Solution concept: CCERT
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Solution concept: CERT
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Solution concept: COMM
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G.2 GAME: SHERIFF

Solution concept: EFCE

0 20 40

Iteration

0.0

2.5

5.0

7.5

10.0

12.5

So
ci

al
w

el
fa

re

Sheriff (EFCE, Pmult = 1)

0

10

20

30

40

50

R
ea

liz
ed

pa
ym

en
t

1

0 20 40

Iteration

0.0

2.5

5.0

7.5

10.0

12.5

So
ci

al
w

el
fa

re

Sheriff (EFCE, Pmult = 2)

0

20

40

60

80

100

R
ea

liz
ed

pa
ym

en
t

1

0 20 40

Iteration

0.0

2.5

5.0

7.5

10.0

12.5

So
ci

al
w

el
fa

re

Sheriff (EFCE, Pmult = 4)

0

50

100

150

200

R
ea

liz
ed

pa
ym

en
t

1

0 20 40

Iteration

0.0

2.5

5.0

7.5

10.0

12.5

So
ci

al
w

el
fa

re

Sheriff (EFCE, Pmult = 8)

0

100

200

300

R
ea

liz
ed

pa
ym

en
t

1
Solution concept: EFCCE
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Solution concept: NFCCE
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Solution concept: NFCCERT
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Solution concept: CCERT
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Solution concept: CERT
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Solution concept: COMM
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G.3 GAME: RIDESHARING

Solution concept: EFCE
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Solution concept: EFCCE
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Solution concept: NFCCE
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Solution concept: NFCCERT
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Solution concept: CCERT
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Solution concept: CERT
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Solution concept: COMM
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G.4 GAME: BATTLESHIP

Solution concept: EFCE
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Solution concept: EFCCE
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Solution concept: NFCCE
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Solution concept: NFCCERT
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Solution concept: CCERT
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Solution concept: CERT
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Solution concept: COMM
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