
Published as a conference paper at ICLR 2024

INTERPRETING ROBUSTNESS PROOFS OF DEEP NEU-
RAL NETWORKS

Debangshu Banerjee1, Avaljot Singh1, Gagandeep Singh1,2

1University of Illinois Urbana-Champaign, 2VMware Research
{db21, avaljot2, ggnds}@illinois.edu

ABSTRACT

In recent years numerous methods have been developed to formally verify the
robustness of deep neural networks (DNNs). Though the proposed techniques are
effective in providing mathematical guarantees about the DNNs’ behavior, it is not
clear whether the proofs generated by these methods are human-understandable.
In this paper, we bridge this gap by developing new concepts, algorithms, and
representations to generate human understandable insights into the internal work-
ings of DNN robustness proofs. Leveraging the proposed method, we show that
the robustness proofs of standard DNNs rely more on spurious input features as
compared to the proofs of DNNs trained to be robust. Robustness proofs of the
provably robust DNNs filter out a larger number of spurious input features as
compared to adversarially trained DNNs, sometimes even leading to the pruning
of semantically meaningful input features. The proofs for the DNNs combining
adversarial and provably robust training tend to achieve the middle ground.

1 INTRODUCTION
The black box construction and lack of robustness of deep neural networks (DNNs) are major obstacles
to their real-world deployment in safety-critical applications like autonomous driving (Bojarski et al.,
2016) or medical diagnosis (Amato et al., 2013). To mitigate the lack of trust caused by black-box
behaviors, there has been a large amount of work on interpreting individual DNN predictions to gain
insights into their internal workings. Orthogonally, the field of DNN verification has emerged to
formally prove or disprove the robustness of DNNs in a particular input region capturing an infinite
set of inputs. Verification can be leveraged to train more robust models (Balunovic & Vechev, 2020).

We argue that while DNN verification does improve reliability to a certain degree, it does not give
any semantically meaningful insights into the working of the generated proof. This is in contrast
to standard program verification tasks where proofs capture the semantics of the program and the
verified property, like deducing the inductive invariants while proving the termination of a program
(Alias et al., 2010). Such deductions can be helpful in order to improve the trust of the system and
enhance interpretability. Existing techniques (Bau et al., 2017; Nguyen et al., 2016; Mordvintsev
et al., 2015) can extract neuron-level details to generate a better understanding of the DNN only on
individual inputs. DNN verification techniques lift the reasoning on individual inputs to an infinite
set of inputs, usually represented in terms of constraints. So, instead of generating a single output,
these methods generate elaborate complex proofs that certify the DNN’s correctness. The primary
objective of this work is to dissect and interpret the proof generated by a DNN verifier.

Key Challenges. The proofs generated by state-of-the-art DNN verifiers (DeepZ (Singh et al.,
2018a), CROWN (Zhang et al., 2018) etc.) encode high-dimensional complex convex shapes defined
over thousands of neurons in the DNN, thereby making it difficult to interpret them. Therefore, it
is imperative to dissect the proof into smaller pieces called proof features that can be interpreted
independently and look only at a subset of more important proof features. This subset should be less
intricate than the original proof while still effectively approximating it. The key challenge here is
to identify different features of the proof, concretize the importance of each of these features, and
measure how well a set of proof features can approximate the original proof. As we describe in
Section 4, this leads to an intricate tradeoff - size vs. effective approximation vs. the importance of a
proof feature set.

Our Contributions. We make the following contributions to overcome these challenges:

1

Published as a conference paper at ICLR 2024

• We introduce a novel concept of proof features by dissecting a complex high-dimensional proof
into smaller parts that can be interpreted independently. We propose a priority function over the
proof features that signify the importance of each proof feature w.r.t complete proof.

• For proof interpretation, first we design a general algorithm - ProFIt (ProoF Interpretation
Technique) for extracting a set of proof features that is (a) small (easy to interpret), (b) retains only
the more important parts of the proof, and (c) preserves the property (Section 4). Finally, we adapt
the existing visualization techniques (Sundararajan et al., 2017) to map extracted proof features to
human-understandable visualizations (Section 4.4).

• Using the proposed framework, we observe an interesting discrepancy in the semantic meanings
captured by the proofs for DNNs trained using different techniques. We compare visualizations of
the extracted proof features for standard DNNs and state-of-the-art robustly trained DNNs for the
MNIST and CIFAR10 datasets. We observe that the proof features for the standard DNNs rely on
spurious regions of the input images while the proof features of adversarially trained DNNs (Madry
et al., 2018) filter out some of the spurious parts of the input. Further, the proofs for networks
trained with certifiable training (Zhang et al., 2020) do not rely on any spurious parts of the input
but they also miss out on some meaningful parts. Proofs for training methods that combine both
empirical and certified robustness (Balunovic & Vechev, 2020) provide a common ground. They
not only preserve meaningful input parts but also selectively filter out spurious ones. We empirically
show that these observations are not contingent on any specific DNN verifier.

We believe that trustworthy DNNs should not only be robust, but their robustness proofs
should capture human-aligned internal representations. The feedback from ProFIt can be
leveraged as a criterion to differentiate among DNNs achieving similar levels of robustness.
ProFIt code is available at https://github.com/uiuc-focal-lab/Profit.

2 RELATED WORK

DNN interpretability and debugging. There has been an extensive effort to develop interpretability
tools for investigating and debugging the internal workings of DNNs. These include feature attribution
techniques like saliency maps (Sundararajan et al., 2017; Smilkov et al., 2017), using surrogate
models to interpret local decision boundaries (Ribeiro et al., 2016), finding influential (Koh & Liang,
2017), prototypical (Kim et al., 2016), or counterfactual inputs (Goyal et al., 2019), training sparse
decision layers (Wong et al., 2021), utilizing robustness analysis (Hsieh et al., 2021). Most of these
interpretability tools focus on generating local explanations that investigate how DNNs work on
individual inputs. Another line of work, instead of explaining individual inputs, identifies specific
concepts associated with a particular neuron (Simonyan et al., 2014; Bau et al., 2020). However, to
the best of our knowledge, there is no existing work for interpreting DNN robustness proofs.
DNN verification. Unlike DNN interpretability methods, prior works in DNN verification focus on
formally proving whether a DNN satisfies desirable properties like robustness (Singh et al., 2019c;
Wang et al., 2021b), fairness (Mazzucato & Urban, 2021), etc. The DNN verifiers are broadly
categorized into three main categories - (i) sound but incomplete verifiers which may not always
prove property even if it holds (Gehr et al., 2018; Singh et al., 2018a; 2019b;a; Zhang et al., 2018; Xu
et al., 2020; Salman et al., 2019), (ii) complete verifiers that can always prove the property if it holds
(Wang et al., 2018; Gehr et al., 2018; Bunel et al., 2020a;b; Bak et al., 2020; Ehlers, 2017; Ferrari
et al., 2022a; Fromherz et al., 2021; Wang et al., 2021a; Palma et al., 2021; Anderson et al., 2020;
Zhang et al., 2022) and (iii) verifiers with probabilistic guarantees (Cohen et al., 2019).
Robustness training. Existing works (Madry et al., 2018; Balunovic & Vechev, 2020; Zhang et al.,
2020) in developing robust training methods for neural networks provide a framework to produce
networks that are inherently immune to adversarial perturbations in input.

3 PRELIMINARIES
In this section, we provide the necessary background on DNN verification and existing works on
debugging DNNs with sparse decision layers. While our method is applicable to general architectures,
for simplicity, we focus on a l-layer feedforward DNN N : Rd0 → Rdl for the rest of this paper.
Each layer i except the final one applies the transformation Xi = σi(Wi · Xi−1 + Bi) where
Wi ∈ Rdi×di−1 and Bi ∈ Rdi are respectively the weights and biases of the affine transformation
and σi is a non-linear activation like ReLU, Sigmoid, etc. corresponding to layer i. The final layer
only applies the affine transformation and the network output is a vector Y =Wl ·Xl−1 +Bl.
DNN verification. At a high level, DNN verification involves proving that the network outputs
Y = N(X) corresponding to all inputs X from an input region specified by ϕ, satisfy a logical

2

https://github.com/uiuc-focal-lab/Profit

Published as a conference paper at ICLR 2024

specification ψ. For DNN robustness, the output specification is written as ψ(Y) = (CTY ≥ 0)
where C ∈ Rdl defines the linear inequality for encoding the robustness property. For the rest of
the paper, we refer to the input region ϕ and output specification ψ together as property (ϕ, ψ).
Next, we briefly discuss how DNN verifiers work. A DNN verifier V computes a possibly over-
approximated output region A ⊆ Rdl containing all possible outputs of N corresponding to ϕ. Let,
Λ(A) = minY ∈A C

TY denote the minimum value of CTY where Y ∈ A. ThenN satisfies property
(ϕ, ψ) if Λ(A) ≥ 0. Most existing DNN verifiers (Zhang et al., 2018), for non-linear activation
functions, compute convex regions that over approximate the output of the activation function. Note
that, due to the over-approximations, DNN verifiers are sound but not complete - the verifier may not
always prove property even if it holds. For piecewise linear activation functions like ReLU, complete
verifiers exist handling the activation exactly. Nevertheless, complete verification in the worst case
takes exponential time. In the rest of the paper, we primarily focus on deterministic, sound, and
incomplete verifiers which are more scalable than complete verifiers.
Analyzing DNN inferences with sparse decision layer. For analyzing individual DNN inferences,
only looking at the output of the DNN hides key details about how the final output was computed by
combining the output of each individual neuron (Nguyen et al., 2016; Wong et al., 2021). Conversely,
DNNs considered in this paper, have complex multi-layer structures, making them harder to analyze
while retaining per neuron-level information. Instead of analyzing neurons from each layer of the
DNN, recent works (Wong et al., 2021; Liao & Cheung, 2022) treat DNNs as the composition of a
deep feature extractor and an affine decision layer. The output of each neuron of the penultimate
layer represents a single deep feature and the final affine layer linearly combines these deep features
to compute the network output. This perspective enables us to identify the set of deep features used by
the network to compute its output and to investigate their semantic meaning using the existing feature
visualization techniques (Ribeiro et al., 2016). However, visualizing each deep feature is practically
infeasible for large DNNs where the penultimate layer can contain thousands of neurons. To address
this, the work of (Wong et al., 2021) tries to identify a smaller set of features that are sufficient to
maintain the performance of the network. This smaller but sufficient feature set retains only the most
important features corresponding to a given input. (Wong et al., 2021) empirically shows that a small
subset of deep features (≤ 10) is sufficient to maintain the accuracy of state-of-the-art models.

4 INTERPRETING DNN ROBUSTNESS PROOFS

Next, we describe our approach for interpreting DNN robustness proofs.

Proof features. Similar to traditional methods used for interpreting DNN inferences described above
(Wong et al., 2021), for interpreting proofs, we propose to segregate the final affine layer from the
network and look at the neuron-level features extracted at the penultimate layer. However, proofs
generated by DNN verifiers are over an input region (ϕ) consisting of infinitely many inputs instead
of a single input as handled by existing works. In this case, for a given input region ϕ, we look at the
symbolic shape (for example - zonotopes, polytopes, etc.) computed by the verifier at the penultimate
layer and then compute its projection on each dimension of the penultimate layer. These projections
yield an interval [ln, un] containing all possible output values of the corresponding neuron n w.r.t ϕ.

Definition 1 (Proof Features). Given a network N , input region ϕ and neural network verifier V , for
each neuron ni at the penultimate layer of N , the proof feature Fni

extracted at that neuron ni is an
interval [lni

, uni
] such that ∀X ∈ ϕ, the output at ni always lies in the range [lni

, uni
].

Note that, the computation of the proof features is verifier dependent, i.e., for the same network and
input region, different verifiers may compute different values ln and un for a particular neuron n.
Similarly, even two output-equivalent networks that produce the same output on all possible inputs
but have different architectures can have different proofs and subsequently different proof features.
For any input region ϕ, the first (l − 1) layers of N along with the verifier V act as the proof feature
extractor. For the rest of this paper, we use F to denote the set of all proof features at the penultimate
layer and FI to denote the proof features corresponding to I ⊆ [dl−1] i.e. FI = {Fni

| i ∈ I}.
Suppose N is formally verified by the verifier V to satisfy the property (ϕ, ψ). Then in order to gain
insights about the proof generated by V , we can directly investigate (described in section 4.4) all the
extracted proof features F . However, the number of proof features for contemporary networks can be
very large (in thousands). Many of these proof features may not be important for the proof. Similar
to how DNNs are interpreted w.r.t individual inferences, we want to identify a smaller set of proof
features that are more important for the proof of the property (ϕ, ψ).

3

Published as a conference paper at ICLR 2024

4.1 PROBLEM FORMULATION FOR PROOF INTERPRETATION

Before delving into the details, first, we lay out our expectations for the proof feature set that will be
used for interpreting the proof and explain why these expectations are relevant. In section 5.2, we
empirically validate that the proof feature set extracted by ProFIt fulfills these expectations.
A. Small size. The size of the proof feature set FS should be minimized so that investigating the
constituent proof features becomes easier. Otherwise, investigating the entire set F is always a valid
but expensive option considering the size of F is large (in thousands) for contemporary DNNs.
B. Sufficiency. Beyond the small size, we argue that any candidate proof feature set FS ⊆ F must at
least prove the property (ϕ, ψ) with verifier V . Otherwise, it does not make sense to interpret a proof
feature set that itself does not satisfy the property. Next, we introduce the novel concepts of proof
feature pruning to formally define sufficient proof feature set below:
Definition 2 (Proof feature Pruning). Pruning any proof feature Fni

∈ F corresponding to neuron
ni in the penultimate layer involves setting weights of all its outgoing connections to 0 so that given
any input X ∈ ϕ the final output of N no longer depends on the output of ni.
Once, a proof feature Fni

is pruned the verifier V no longer uses Fni
to prove the property (ϕ, ψ).

Definition 3 (Sufficient proof feature set). For the proof of property (ϕ, ψ) on DNN N with verifier
V , a nonempty set FS ⊆ F of proof features is sufficient if the property still holds with verifier V
even all the proof features not in FS are pruned.
Before detailing other properties we expect the proof feature set used for interpreting the proof to
satisfy, we explain how we can algorithmically check whether any proof feature set FS is sufficient or
not. Let, Wl[:, i] ∈ Rdl denote the i-th column of the weight matrix Wl of the final layer Nl. Pruning
any proof feature Fni

results in setting all weights in Wl[:, i] to 0. For any proof feature set FS ⊆ F ,
let Wl(S) ∈ Rdl×dl−1 be the weight matrix of the pruned final layer that only retains proof features
corresponding to FS . Then columns of Wl(S) are defined below where 0 is a constant all-zero vector

Wl(S)[:, i] =

{
Wl[:, i] i ∈ S

0 otherwise
(1)

The proof feature set FS is sufficient iff the property (ϕ, ψ) can be verified by V onN with the pruned
weight matrix Wl(S). Let, the verifier V compute an over-approximated output region A of N over
the input region ϕ. Given that we never change the input region ϕ and the proof feature extractor
composed of the first l − 1 layers of N and the verifier V , the output region A of the pruned network
only depends on the pruning done at the final layer. Now let A(Wl, S) denote the over-approximated
output region corresponding to Wl(S). The neural network N can be verified by V on the property
(ϕ, ψ) with Wl(S) iff the lower bound Λ(A(Wl, S)) ≥ 0.

C. Importance. The notion of sufficiency and minimality of FS alone does not enforce that FS

always includes proof features that are "important" for the proof. To resolve this issue, we define
priority P (Fni) for every proof feature Fni that captures its importance w.r.t the proof. Given a
sufficient proof features set FS , for a proof feature Fni ∈ FS , we compute its priority by estimating
the absolute change ∆(Fni ,FS) that occurs to Λ(A(Wl, S)) if Fni is pruned from FS . At a high
level, for each proof feature Fni contained in a sufficient feature set, the priority of Fni tries to
estimate whether pruning Fni

violates the property (ϕ, ψ) or not. Pruning a proof feature Fni
with a

small ∆(Fni
,FS) only results in a small absolute change in the verifier output and the remaining

proof features FS \ {Fni
} will likely satisfy the property. Moreover, in this case, the set FS \ {Fni

}
precisely approximate (the absolute change is small) the verifier output Λ(A(Wl, S)) computed with
the entire set FS . Let, the over-approximated output region computed by verifier V corresponding to
FS \ {Fni

} be A(Wl, S \ {i}) then ∆(Fni
,FS) is defined as follows

∆(Fni ,FS) = |Λ(A(Wl, S))− Λ(A(Wl, S \ {i}))|
However, ∆(Fni

,FS) depends on the particular sufficient proof set FS and does not estimate the
global importance of Fni

independent of the choice of FS . Hence to define the priority P (Fni
) of a

proof feature Fni
we take the maximum of ∆(Fni

,FS) over all sufficient feature sets FS containing
Fni

. Let, S(Fni
) denote set of all sufficient FS containing Fni

. Then, P (Fni
) is as follows

P (Fni) = max
FS ∈ S(Fni

)
∆(Fni ,FS) (2)

Overall, for proof interpretation, we want to extract a proof feature set FS0
that is as small as possible,

sufficient, and retains important proof features. However, there is a tradeoff between the three criteria.

4

Published as a conference paper at ICLR 2024

For example, the entire proof feature set F is always sufficient but it is not small. Similarly, if
CTBl ≥ 0 (Bl is the bias of the final layer) the minimum sized sufficient proof feature set will always
be empty. In this case, although the empty set is the smallest and sufficient it does not retain any
important proof features. This tradeoff between size, sufficiency, and importance makes it hard to find
a FS0

. Moreover, the search space for FS0
is prohibitively large containing 2dl−1 possible candidates,

and computing FS0
with an exhaustive search is infeasible. Even just computing the priority P (Fni

)
for a proof feature Fni can be expensive considering the set S(Fni) can be exponentially large. So,
we first design an approximation of P (Fni) that is easy to compute.

4.2 APPROXIMATE PRIORITY OF PROOF FEATURES

As described above, finding the maximum value of ∆(Fni
,FS) over S(Fni

) is practically infeasible.
So we compute an upper bound Pub(Fni

) of P (Fni
) by estimating a global non-trivial upper bound

of ∆(Fni
,FS), that holds ∀FS ∈ S(Fni

). The proposed global upper bound is independent of the
choice of FS ∈ S(Fni

) and therefore removes the need to iterate over S(Fni
) enabling efficient

computation. For the network, N and input region ϕ, let Al−1 denote the over-approximate symbolic
region computed by V at the penultimate layer. Then ∀FS ∈ S(Fni) the global uppper bound of
∆(Fni ,FS) can be computed as follows where for any X ∈ Rdl−1 , xi denotes its i-th coordinate:

∆(Fni
,FS) ≤ max

X∈Al−1

|(CTWl(S)X − CTWl(S \ {i})X)| = max
X∈Al−1

|(CTWl[:, i]) · xi)|

P (Fni
) = max

FS∈S(Fni
)
∆(Fni

,FS) ≤ max
X∈Al−1

|(CTWl[:, i]) · xi)|

Now, any proof feature Fni = [lni , uni] computed by V contains all possible values of xi where
X ∈ Al−1. Leveraging this observation, we can further simplify the upper bound Pub(Fni) of
P (Fni

) as shown below.

P (Fni
) ≤ max

xi∈[lni
,uni

]
|(CTWl[:, i])| · |xi| = |(CTWl[:, i])| ·max(|lni

|, |uni
|) = Pub(Fni

) (3)

This simplification ensures that Pub(Fni) for all Fni can be computed with O(dl−1) elementary
vector operations and a single verifier call that computes the intervals [lni , uni].

4.3 PROFIT ALGORITHM

Next, we describe how we approximately compute FS0
that is sufficient, small in size, and retains

proof features Fni
with higher priorities Pub(Fni

). To reduce the size of the proof feature set, a trivial
step is to just prune all the proof features from F whose Pub is 0. These features do not have any
contribution to the proof of the property (ϕ, ψ) by the verifier V . This step forms a trivial algorithm.
However, this is not enough. We can further prune more proof features leading to a yet smaller
set. For this, we propose an iterative algorithm ProFIt shown in Algorithm 1 which maintains two
set namely, FS0 and FS . FS0 contains the features guaranteed to be included in the final answer
computed by ProFIt and FS contains the candidate features yet to be pruned by the algorithm. At
every step, the algorithm ensures that the set FS ∪ FS0

is sufficient and iteratively reduces its size by
pruning proof features from FS . The algorithm iteratively prunes the feature Fni

with the lowest
value of Pub(Fni

) from FS while retaining features with higher priorities in FS ∪ FS0
. At Line 8 in

the algorithm, FS0
and FS are initialized as empty set ({}) and F respectively. We note that checking

the sufficiency of any arbitrary proof feature set FS (Definition 3) is not trivial and requires expensive
verifier invocations. Since we are modifying only the final layer, we use incremental verification
(Ugare et al., 2022; 2023; 2024) that can efficiently verify the property without starting from scratch.
Still removing a single feature in each iteration and checking the sufficiency of the remaining features
in the worst case leads to O(dl−1) incremental verification calls which are expensive. Instead, at each
step, from FS our algorithm greedily picks top-|S|/2 features (line 10) FS1 based on their priority
and invokes the verifier V to check the sufficiency of FS0 ∪FS1 (line 12). If the feature set FS0 ∪FS1

is sufficient (line 13), ProFIt removes all features in FS \ FS1
from FS and therefore FS is updated

as FS1
in this step (line 14). Otherwise, if FS0

∪ FS1
does not preserve the property (ϕ,ψ) (line

15), ProFIt adds all feature in FS1
to FS0

(line 16) and replaces FS with FS \ FS1
(line 17). The

algorithm terminates after all features in FS are exhausted. Since at every step, the algorithm reduces
size of FS by half, it always terminates within O(log(dl−1)) incremental verifier calls. As mentioned
before, the empty proof feature set is sufficient iff CTBl ≥ 0, in this case, ProFIt extracts smallest
non-empty sufficient proof feature set which like all other cases includes proof features with the
higher priority. In Appendix A, we derive mathematical guarantees about the correctness and efficacy

5

Published as a conference paper at ICLR 2024

Algorithm 1 Approximate minimum proof feature extraction

1: Input: DNN N , property (ϕ, ψ), verifier V .
2: Output: approx. minimum proof features

FS0
,

3: if V can not verify N on (ϕ, ψ) then
4: return
5: end if
6: Calculate all proof features for input region ϕ.
7: Calculate priority Pub(Fni) all proof features.
8: Initialization: FS0 = {}, FS = F
9: while FS is not empty do

10: FS1
= top-|S|/2 features based on Pub(Fni

)

11: FS2
= FS \ FS1

12: Check sufficiency of FS0
∪ FS1

with V
13: if FS0

∪ FS1
is sufficient then

14: FS = FS1

15: else
16: FS0

= FS0
∪ FS1

17: FS = FS2

18: end if
19: end while
20: return proof features FS0 .

of Algorithm 1. For correctness, we prove that the feature set FS0 is always sufficient (Definition 3).
For efficacy, we theoretically find a non-trivial upper bound on the size of FS0 .

4.4 VISUALIZATION OF EXTRACTED PROOF FEATURES

Once the proof features are extracted, we want to map them to a human-interpretable format. There
exists a plethora of works (Sundararajan et al., 2017; Smilkov et al., 2017) that generate human-
interpretable visualizations of the output of individual neurons w.r.t single inputs. However, these
techniques are insufficient to generate explanations w.r.t an input region. To resolve this, we adapt the
existing local gradient-based visualization techniques (Sundararajan et al., 2017) for visualizing the
extracted proof features. As shown in existing works (Mirman et al., 2018), common incomplete DNN
verifiers (Xu et al., 2021; Singh et al., 2019b) can be represented as differentiable programs. This
enables us to use the gradients on the differentiable programs for visualization. For any proof feature
Fn = [ln, un] both ln, un can be expressed as differentiable functions ln = Ln(x

1
l , x

1
u, . . . , x

d0

l , x
d0
u)

and un = Un(x
1
l , x

1
u, . . . , x

d0

l , x
d0
u) where ∀i ∈ d0 x

i
l = xi − ϵi and xiu = xi + ϵi are the lower and

upper bound of the i-th input cooridinate, xi is the unperturbed value, ϵi is the amount of perturbation.
To measure the sensitivity of proof feature Fn w.r.t change in i-th input coordinate, we take the
gradient 1

2 × (∂Ln

∂ϵi
+ ∂Un

∂ϵi
) of the mean (also the midpoint) (ln+un)

2 of Fn w.r.t ϵi. This gradient
captures the change in the mean value of the proof feature w.r.t the change in i-th input coordinate.
However, complete DNN verifiers such as SMT-based (Katz et al., 2017) or LP/MILP-based verifiers
(Singh et al., 2018b) cannot be represented as differentiable programs. For a non-differentiable
DNN verifier, we propose an alternative visualization technique in Appendix B based on statistical
estimation of the mean gradient over inputs satisfying ϕ.

4.5 LIMITATIONS

The scalability of our method is ultimately limited by the scalability of the existing DNN verifiers.
Therefore, ProFIt currently cannot handle large DNNs (e.g. vision transformers (Dosovitskiy et al.,
2021), ImageNet classifiers, etc.). Nonetheless, ProFIt is general and compatible with any verification
algorithm. Therefore, ProFIt will benefit from any future advances to enable the DNN verifiers to
scale to larger DNNs and datasets. We focus on the proof features extracted at the penultimate layer
but not at other hidden layers. ProFIt can only handle deterministic verifiers and does not currently
work with probabilistic verifiers like - randomized smoothing (Cohen et al., 2019). These extensions
will require defining priority for proof features and devising algorithms to extract them.

5 EXPERIMENTAL EVALUATION

5.1 EXPERIMENTAL SETUP

For evaluation we use convolutional networks trained on two popular datasets - MNIST (LeCun
et al., 1989) CIFAR-10 (Krizhevsky, 2009) shown in Table 1. The networks are trained with standard
training and three state-of-the-art robust training methodologies - adversarial training (PGD training)
(Madry et al., 2018), certified robust training (CROWN-IBP) (Zhang et al., 2020) and a combination
of both adversarial and certified training (COLT) (Balunovic & Vechev, 2020). For experiments,
we use pre-trained publically available networks - the standard and PGD networks are from the

6

Published as a conference paper at ICLR 2024

Dataset Training Input No. of Original Mean Proof No. of proofs No. of proofs
Method Region (ϕ) proved Feature Feature Count with ≤ 5 with ≤ 10

eps (ϵ) properties Count proof features proof features
Random Gradient ProFIt (ProFIt) (ProFIt)

MNIST Standard 0.02 459 100 20.31 5.25 1.96 449 457
PGD Trained 0.02 415 1000 93.29 13.73 6.02 315 364
COLT 0.02 480 100 14.45 5.43 3.46 401 461
CROWN-IBP 0.02 482 100 9.51 6.73 6.16 240 401

MNIST PGD Trained 0.1 191 1000 162.39 35.79 3.29 131 149
COLT 0.1 281 100 29.57 12.22 3.16 240 271
CROWN-IBP 0.1 473 100 10.09 7.36 6.23 232 384

CIFAR-10 Standard 0.2/255 277 100 30.36 18.28 11.12 127 173
PGD Trained 0.2/255 298 100 31.22 16.58 9.74 173 210
COLT 0.2/255 267 250 30.10 18.13 9.03 170 204
CROWN-IBP 0.2/255 265 256 7.96 7.49 5.30 172 221

CIFAR-10 PGD Trained 2/255 173 100 39.57 24.46 6.19 122 144
COLT 2/255 229 250 34.64 23.25 7.76 146 181
CROWN-IBP 2/255 206 256 9.41 9.21 5.10 140 176

Table 1: ProFIt Efficacy Analysis

ERAN project (Singh et al., 2019c), COLT, and CROWN-IBP networks taken from their official
repositories (Balunovic & Vechev, 2020; Zhang et al., 2020). Similar to the existing works on DNN
verification (Zhang et al., 2018), we use L∞-based local robustness properties (Carlini & Wagner,
2017). Here, the input region ϕ contains all images obtained by perturbing the intensity of each pixel
in the input image independently within a bound ϵ. ψ specifies a region where the network’s output
for the correct class is higher than all other classes. ϵtrain = 0.1 and ϵtrain = 8/255 are used while
training all robustly trained MNIST and CIFAR-10 networks respectively. Unless specified otherwise,
the proofs are generated by running the state-of-the-art incomplete verifier α-Crown (Xu et al., 2021).
We run all experiments on a 16-core 12th-gen i7 machine with 16 GB of RAM.

5.2 EFFICACY OF PROFIT ALGORITHM

In this section, we experimentally evaluate the efficacy of ProFIt in terms of the size of the extracted
sufficient proof feature sets and also assess the usefulness of the proposed priority ordering (Eq. 3) in
extracting important proof features. The size of the extracted sufficient proof feature set captures the
ease of interpreting the extracted feature set that preserves the proof. Considering there is no existing
work for property-preserving pruning of proof features, we run ProFIt with two natural heuristics that
define the priority of the proof features and use them as baselines. These are (i) random ordering
of the proof features and (ii) computing the gradient of the verifier output w.r.t each proof feature
and sorting the proof features in the decreasing order of the corresponding gradient magnitude. The
gradient magnitude-based priority order has already been successfully applied (Lis et al., 2019) to
traditional DNN pruning used for reducing the size of the networks. We note that incomplete verifiers
like α-Crown are differentiable. Moreover, pruning proof features with gradient-based priority
heuristics can be viewed as applying existing feature extraction techniques assuming the underlying
verifier is differentiable. For each network, we use the first 500 images from their corresponding test
sets for defining input specification ϕ. We conduct experiments with two different ϵ values to define
L∞ input region. The ϵ values used for MNIST networks are 0.02 and 0.1 and that for CIFAR-10
networks are 0.2/255 and 2/255. For experiments with high ϵ values (0.1 for MNIST and 2/255 for
CIFAR-10), we omit standard networks as they do not satisfy local robustness properties defined with
high ϵ values. In comparing proof feature sizes, we exclude "zero" features where both lower and
upper bounds (l and u) are zero, as they can be removed without affecting the verifier’s output.

Mean extracted proof feature set size comparison: In Table 1, we summarize the results of the
experiments for different networks and different ϵ values. We show that the mean size of the proof
feature set computed using ProFIt (column 8) is significantly smaller than that of both the baselines
(columns 6 and 7 respectively). This shows proof feature sets computed using ProFIt are easy to
interpret. The distributions of extracted proof feature sets size for all DNNs are in Appendix C.1.

Evaluation of proof feature priority: Next, we evaluate the efficacy of the priority ordering of proof
features (defined in Eq. 3) in identifying important proof features and compare against the random
and gradient-based priority ordering defined above. For these experiments, we fix the proof feature
set size and compare the extracted proof feature sets with the fixed size based on two metrics - (i)
% cases the extracted proof feature set preserves the property (ϕ, ψ) that was satisfied initially and

7

Published as a conference paper at ICLR 2024

(a) PGD Network (b) Colt Network (c) Crown-IBP Network
Figure 1: Percentages of proofs preserved by different priority heuristics on robust MNIST networks.

(a) PGD Network (b) Colt Network (c) Crown-IBP Network
Figure 2: Relative change in verifier output with different heuristics on robust MNIST networks.

(ii) mean relative change in verifier output after every proof feature, not part of the extracted set is
removed. Since we fixed the extracted proof feature set size, the feature set is no longer guaranteed
to be sufficient. For proof feature set size varying from 2 to 20, compared to both the baselines, we
show that the priority ordering used by ProFIt preserves a higher % of proofs (Fig. 1) while more
precisely approximating the original verifier output (the relative change from original verifier output
is smaller) (Fig. 2). These plots are generated on robust MNIST networks for ϵ = 0.1. Plots for
standard MNIST network and CIFAR-10 networks are shown in Appendix C.2. Additionally, in
Appendix C.3 we provide a qualitative evaluation of the priority ordering of proof features where we
show that visualizations of proof features with higher priority capture meaningful input features while
visualizations of proof features with lower priority are less informative. This shows the proposed
priority of the proof features (Eq. 3) is indeed effective in identifying their importance w.r.t the proof.
5.3 QUALITITIVE COMPARISON OF ROBUSTNESS PROOFS

(Tsipras et al., 2019) observed that the standardly trained networks rely on some spurious input
features to gain a higher accuracy and as a result, are not very robust against adversarial attacks. In
contrast, the PGD trained networks rely more on human-understandable features and are, therefore,
more robust against attacks. This empirical robustness comes at cost of reduced accuracy. So, there
is an inherent dissimilarity between the types of input features that the standard and adversarially
trained networks rely on while classifying a single input. Also, certified robust trained networks are
even more robust than the empirically trained ones, however, they report even less accuracy (Müller
et al., 2021). In this section, we interpret proof features extracted with ProFIt and use the obtained
visualizations to qualitatively check for the existence of such dissimilarities among different proofs
of the same robustness property on standard and robustly trained networks. We also study the effect
of certified robust training methods like CROWN-IBP, empirically robust training methods like PGD,
and training methods that combine both adversarial and certified training like COLT on the proof
features. For a local input region ϕ, we say that a robustness proof is semantically meaningful if it
focuses on the input features relevant to the output class for images in ϕ and not on the spurious
features. In the case of MNIST or CIFAR-10 images, spurious input features are the pixels coming
from the image background, whereas important input features are the pixels that are a part of the
actual object being identified by the network. The gradient map of the extracted proof features w.r.t.
the change in input pixels (see Section 4.4) identifies the input pixels that the proof focuses on.
In Fig. 3, we compare the gradient maps corresponding to the top proof feature (the one having the
highest priority Pub(Fni

)) on networks from Table 1 on representative images of different output
classes in the MNIST and CIFAR10 test sets. These experiments lead us to interesting observations -
even if some property is verified for both the standard network and the robustly trained network, there

8

Published as a conference paper at ICLR 2024

(a) Gradient maps generated on MNIST DNNs. (b) Gradient maps generated on CIFAR-10 DNNs.
Figure 3: Gradient map corresponding to the top proof feature corresponding to DNNs trained using
different methods rely on different input features.

is a difference in the human interpretability of the types of input features that the proofs rely on. The
standard networks and the provably robust trained networks like CROWN-IBP are the two extremes of
the spectrum. For the standard networks, we observe that although the top-proof feature does depend
on some of the semantically meaningful regions of the input image, the gradient at several spurious
input features is also non-zero. In contrast, the top proof feature corresponding to state-of-the-art
provably robust training method CROWN-IBP filters out most of the spurious features, but it also
misses out on some meaningful features. The proofs of PGD-trained networks filter out the spurious
features and are, therefore, more semantically aligned than the standard networks. The proofs of the
training methods that combine both empirical robustness and provable robustness like COLT in a
way provide the best of both worlds by not only selectively filtering out the spurious features but also
highlighting the more human interpretable features. So, as the training methods tend to regularize
more for robustness, their proofs become more selective in the type of input features that they rely
on. To substantiate our observation, we show additional visualizations of the top proof features in
Appendix C.4 and visualizations for the entire proof feature set in Appendix C.5. The extracted proof
features set and their gradient maps computed w.r.t high ϵ values (ϵ = 0.1 for MNIST and ϵ = 2/255
for CIFAR-10) are similar to those generated with smaller ϵ as shown in Appendix C.6.

5.4 ABLATION STUDIES

Different verifiers: The proof features extracted by ProFIt are specific to the proof generated by
the verifier. To show the qualitative analysis presented in section 5.3 is not contingent on α-Crown
we run ProFIt with different verifiers including DeepZ (Singh et al., 2018a), Crown (Zhang et al.,
2018) and state-of-the-art complete verifier α, β-Crown (Wang et al., 2021b) and compare the top
proof feature. We use networks shown in Table 1 and the same properties as before. We observe
that in more than 95% of cases, the top proof feature extracted with different verifiers remains the
same. Further, the visualizations of the top proof feature w.r.t different differentiable verifiers also
align with the observation in section 5.3. In this case, for different verifiers though the proof features
Fni = [lni , uni] change, their relative priority ordering computed by Eq. 3 remains the same. Note,
while comparing proof features from two different verifiers we only consider those properties that can
be proved by both the verifiers. The results are in Appendix C.7 and visualizations in Appendix C.8.
Training parameters: In Appendix C.9, we compare proofs generated on networks with the same
architecture trained with different training methods to validate that the underlying network architecture
does not affect in the conclusions presented in Section 5.3. We also analyze the sensitivity of the
extracted proof features to the training parameter ϵtrain that is used to define the L∞ region during
training (Appendix C.10). We observe that networks trained with higher ϵtrain are more robust and
the top-proof feature filters out more input features that align with the observations in Section 5.3.

6 CONCLUSION

We developed a novel method called ProFIt to interpret DNN robustness proofs. We empirically
establish that even if a property holds for a DNN, the proof for the property may rely on spurious or
semantically meaningful internal representations depending on the training method. We believe that
ProFIt can be applied for diagnosing the trustworthiness of DNNs inside their development pipeline.

9

Published as a conference paper at ICLR 2024

7 ACKNOWLEDGEMENT

We thank the anonymous reviewers for their insightful comments. This work was supported in part by
NSF Grants No. CCF-2238079, CCF-2316233, CNS-2148583, and Google Research Scholar award.

REFERENCES

Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-dimensional rankings,
program termination, and complexity bounds of flowchart programs. In Radhia Cousot and
Matthieu Martel (eds.), Static Analysis, pp. 117–133, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg. ISBN 978-3-642-15769-1.

Filippo Amato, Alberto López, Eladia María Peña-Méndez, Petr Vaňhara, Aleš Hampl, and Josef
Havel. Artificial neural networks in medical diagnosis. Journal of Applied Biomedicine, 11(2),
2013.

Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong
mixed-integer programming formulations for trained neural networks. Mathematical Programming,
2020.

Stanley Bak, Hoang-Dung Tran, Kerianne Hobbs, and Taylor T. Johnson. Improved geometric path
enumeration for verifying relu neural networks. In Shuvendu K. Lahiri and Chao Wang (eds.),
Computer Aided Verification - 32nd International Conference, CAV 2020, Los Angeles, CA, USA,
July 21-24, 2020, Proceedings, Part I, volume 12224 of Lecture Notes in Computer Science, pp.
66–96. Springer, 2020. doi: 10.1007/978-3-030-53288-8_4. URL https://doi.org/10.
1007/978-3-030-53288-8_4.

Mislav Balunovic and Martin T. Vechev. Adversarial training and provable defenses: Bridging the
gap. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 6541–6549, 2017.

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and Antonio Torralba.
Understanding the role of individual units in a deep neural network. Proceedings of the National
Academy of Sciences, 117(48):30071–30078, 2020.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning
for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

Christopher Brix, Mark Niklas Müller, Stanley Bak, Taylor T. Johnson, and Changliu Liu. First three
years of the international verification of neural networks competition (vnn-comp), 2023.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Pushmeet Kohli, P Torr, and P Mudigonda. Branch and
bound for piecewise linear neural network verification. Journal of Machine Learning Research, 21
(2020), 2020a.

Rudy R Bunel, Oliver Hinder, Srinadh Bhojanapalli, and Krishnamurthy Dvijotham. An efficient non-
convex reformulation of stagewise convex optimization problems. Advances in Neural Information
Processing Systems, 33, 2020b.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 1310–1320. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.
press/v97/cohen19c.html.

10

https://doi.org/10.1007/978-3-030-53288-8_4
https://doi.org/10.1007/978-3-030-53288-8_4
https://proceedings.mlr.press/v97/cohen19c.html
https://proceedings.mlr.press/v97/cohen19c.html

Published as a conference paper at ICLR 2024

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In Interna-
tional Symposium on Automated Technology for Verification and Analysis, 2017.

Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. Complete verification
via multi-neuron relaxation guided branch-and-bound. In International Conference on Learning
Representations, 2022a. URL https://openreview.net/forum?id=l_amHf1oaK.

Claudio Ferrari, Mark Niklas Mueller, Nikola Jovanović, and Martin Vechev. Complete verification
via multi-neuron relaxation guided branch-and-bound. In International Conference on Learning
Representations, 2022b. URL https://openreview.net/forum?id=l_amHf1oaK.

Aymeric Fromherz, Klas Leino, Matt Fredrikson, Bryan Parno, and Corina Pasareanu. Fast geo-
metric projections for local robustness certification. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=zWy1uxjDdZJ.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Martin
Vechev. Ai2: Safety and robustness certification of neural networks with abstract interpretation. In
2018 IEEE Symposium on Security and Privacy (SP), 2018.

Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. Counterfactual visual
explanations. In International Conference on Machine Learning, pp. 2376–2384. PMLR, 2019.

Cheng-Yu Hsieh, Chih-Kuan Yeh, Xuanqing Liu, Pradeep Kumar Ravikumar, Seungyeon Kim, Sanjiv
Kumar, and Cho-Jui Hsieh. Evaluations and methods for explanation through robustness analysis.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=4dXmpCDGNp7.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Computer Aided Verification: 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I
30, pp. 97–117. Springer, 2017.

Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are not enough, learn to criticize!
criticism for interpretability. Advances in neural information processing systems, 29, 2016.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885–1894. PMLR, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard, Wayne E.
Hubbard, and Lawrence D. Jackel. Handwritten digit recognition with a back-propagation network.
In NIPS, pp. 396–404, 1989.

Zukang Liao and Michael Cheung. Automated invariance testing for machine learning models using
sparse linear layers. In ICML 2022: Workshop on Spurious Correlations, Invariance and Stability,
2022. URL https://openreview.net/forum?id=VP8ATzLGyQx.

Mieszko Lis, Maximilian Golub, and Guy Lemieux. Full deep neural network
training on a pruned weight budget. In A. Talwalkar, V. Smith, and M. Za-
haria (eds.), Proceedings of Machine Learning and Systems, volume 1, pp. 252–263,
2019. URL https://proceedings.mlsys.org/paper_files/paper/2019/
file/7f1de29e6da19d22b51c68001e7e0e54-Paper.pdf.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In Proc. International Conference
on Learning Representations (ICLR), 2018.

11

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=l_amHf1oaK
https://openreview.net/forum?id=l_amHf1oaK
https://openreview.net/forum?id=zWy1uxjDdZJ
https://openreview.net/forum?id=4dXmpCDGNp7
https://openreview.net/forum?id=4dXmpCDGNp7
https://openreview.net/forum?id=VP8ATzLGyQx
https://proceedings.mlsys.org/paper_files/paper/2019/file/7f1de29e6da19d22b51c68001e7e0e54-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/7f1de29e6da19d22b51c68001e7e0e54-Paper.pdf

Published as a conference paper at ICLR 2024

Denis Mazzucato and Caterina Urban. Reduced products of abstract domains for fairness cer-
tification of neural networks. In Cezara Dragoi, Suvam Mukherjee, and Kedar S. Namjoshi
(eds.), Static Analysis - 28th International Symposium, SAS 2021, Chicago, IL, USA, October
17-19, 2021, Proceedings, volume 12913 of Lecture Notes in Computer Science, pp. 308–322.
Springer, 2021. doi: 10.1007/978-3-030-88806-0_15. URL https://doi.org/10.1007/
978-3-030-88806-0_15.

Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for provably
robust neural networks. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 3578–3586. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.
press/v80/mirman18b.html.

A. Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper into neural networks.
2015. URL https://api.semanticscholar.org/CorpusID:69951972.

Mark Niklas Mueller, Franziska Eckert, Marc Fischer, and Martin Vechev. Certified training: Small
boxes are all you need. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=7oFuxtJtUMH.

Christoph Müller, François Serre, Gagandeep Singh, Markus Püschel, and Martin Vechev.
Scaling polyhedral neural network verification on gpus. In A. Smola, A. Dimakis,
and I. Stoica (eds.), Proceedings of Machine Learning and Systems, volume 3, pp.
733–746, 2021. URL https://proceedings.mlsys.org/paper/2021/file/
ca46c1b9512a7a8315fa3c5a946e8265-Paper.pdf.

Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vechev. Prima:
General and precise neural network certification via scalable convex hull approximations. Proc.
ACM Program. Lang., 6(POPL), jan 2022. doi: 10.1145/3498704. URL https://doi.org/
10.1145/3498704.

Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune. Synthesizing the
preferred inputs for neurons in neural networks via deep generator networks. Advances in neural
information processing systems, 29, 2016.

Alessandro De Palma, Harkirat S. Behl, Rudy R. Bunel, Philip H. S. Torr, and M. Pawan Ku-
mar. Scaling the convex barrier with active sets. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021, 2021.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex relaxation
barrier to tight robustness verification of neural networks. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, 2019.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In Yoshua Bengio and Yann LeCun
(eds.), 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Workshop Track Proceedings, 2014. URL http://arxiv.org/abs/
1312.6034.

Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin Vechev. Fast and
effective robustness certification. Advances in Neural Information Processing Systems, 31, 2018a.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. Boosting robustness certification
of neural networks. In International conference on learning representations, 2018b.

Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin Vechev. Beyond the single neuron
convex barrier for neural network certification. In Advances in Neural Information Processing
Systems, 2019a.

12

https://doi.org/10.1007/978-3-030-88806-0_15
https://doi.org/10.1007/978-3-030-88806-0_15
https://proceedings.mlr.press/v80/mirman18b.html
https://proceedings.mlr.press/v80/mirman18b.html
https://api.semanticscholar.org/CorpusID:69951972
https://openreview.net/forum?id=7oFuxtJtUMH
https://proceedings.mlsys.org/paper/2021/file/ca46c1b9512a7a8315fa3c5a946e8265-Paper.pdf
https://proceedings.mlsys.org/paper/2021/file/ca46c1b9512a7a8315fa3c5a946e8265-Paper.pdf
https://doi.org/10.1145/3498704
https://doi.org/10.1145/3498704
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034

Published as a conference paper at ICLR 2024

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for
certifying neural networks. Proceedings of the ACM on Programming Languages, 3(POPL),
2019b.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. Robustness certification with
refinement. In International Conference on Learning Representations, 2019c. URL https:
//openreview.net/forum?id=HJgeEh09KQ.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and Martin Wattenberg. Smoothgrad:
removing noise by adding noise. CoRR, abs/1706.03825, 2017. URL http://arxiv.org/
abs/1706.03825.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Ro-
bustness may be at odds with accuracy. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=SyxAb30cY7.

Shubham Ugare, Gagandeep Singh, and Sasa Misailovic. Proof transfer for fast certification of
multiple approximate neural networks. Proc. ACM Program. Lang., 6(OOPSLA1), apr 2022. doi:
10.1145/3527319. URL https://doi.org/10.1145/3527319.

Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep Singh. Incremental verifica-
tion of neural networks. Proc. ACM Program. Lang., 7(PLDI), jun 2023. doi: 10.1145/3591299.
URL https://doi.org/10.1145/3591299.

Shubham Ugare, Tarun Suresh, Debangshu Banerjee, Gagandeep Singh, and Sasa Misailovic. Incre-
mental randomized smoothing certification. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=SdeAPV1irk.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety
analysis of neural networks. In Advances in Neural Information Processing Systems, 2018.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. Beta-
crown: Efficient bound propagation with per-neuron split constraints for complete and incomplete
neural network verification. arXiv preprint arXiv:2103.06624, 2021a.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
Beta-CROWN: Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021b. URL https://openreview.
net/forum?id=ahYIlRBeCFw.

Eric Wong, Shibani Santurkar, and Aleksander Madry. Leveraging sparse linear layers for debuggable
deep networks. In International Conference on Machine Learning, pp. 11205–11216. PMLR,
2021.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified
robustness and beyond. 2020.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=nVZtXBI6LNn.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network
robustness certification with general activation functions. In Advances in neural information
processing systems, 2018.

Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane S. Boning,
and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust neural networks. In
Proc. International Conference on Learning Representations, ICLR, 2020.

13

https://openreview.net/forum?id=HJgeEh09KQ
https://openreview.net/forum?id=HJgeEh09KQ
http://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1706.03825
https://openreview.net/forum?id=SyxAb30cY7
https://doi.org/10.1145/3527319
https://doi.org/10.1145/3591299
https://openreview.net/forum?id=SdeAPV1irk
https://openreview.net/forum?id=ahYIlRBeCFw
https://openreview.net/forum?id=ahYIlRBeCFw
https://openreview.net/forum?id=nVZtXBI6LNn

Published as a conference paper at ICLR 2024

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
General cutting planes for bound-propagation-based neural network verification. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=5haAJAcofjc.

14

https://openreview.net/forum?id=5haAJAcofjc

Published as a conference paper at ICLR 2024

A THEORETICAL GUARANTEES OF PROFIT

A.1 PROOF OF SUFFICIENCY OF THE EXTRACTED PROOF FEATURE SET

Theorem 1. If the verifier V can prove the property (ϕ, ψ) on the network N , then FS0
computed by

Algorithm 1 is sufficient (Definition 3).

Proof. Proof of theorem 1 by induction on the number of steps of the while loop.
Induction Hypothesis: At each step of the loop, FS0 ∪ FS is sufficient.
Base Case: At step 0, i.e., at initialization, FS0 = {} and FS = F . So, FS0 ∪ FS = F . Given that
V proves the property (ϕ, ψ) on N , from Definition 3, F is sufficient.
Induction Case: Let FS0

∪ FS be sufficient for n-th step of the loop. Consider the following cases
for (n+ 1)-th step of the loop.

1. Let FS0
∪ FS1

be sufficient at line 12. In this case, FS is updated by FS1
(line 14). So,

FS0
∪ FS is sufficient.

2. Let FS0
∪ FS1

be not sufficient at line 12. In this case, FS0
and FS are updated as in lines

16 and 17. Let the new FS0
and FS be F ′

S0
and F ′

S . So, F ′
S0

= FS0
∪ FS1

and F ′
S = FS2

.
So, F ′

S0
∪ F ′

S = FS0
∪ FS1

∪ FS2
. Also, FS1

∪ FS2
= FS . So, F ′

S0
∪ F ′

S = FS0
∪ FS .

So, from induction hypothesis, F ′
S0

∪ F ′
S is sufficient.

A.2 UPPER BOUND ON THE SIZE OF THE EXTRACTED PROOF FEATURE SET

Lemma 1. ∀S ⊆ [dl−1] if i ∈ S then |Λ(A(Wl, S)) − Λ(A(Wl, S \ {i}))| ≤ max
X∈Al−1

|(CTWl[:

, i]) · xi|. For any vector X ∈ Rdl−1 , xi ∈ R denotes its i-th coordinate.

Proof. Without loss of generality let assume, Λ(A(Wl, S)) ≤ Λ(A(Wl, S \ {i})). Suppose,
Λ(A(Wl, S) = CTWl(S)Xmin where Xmin ∈ Al−1.

Λ(A(Wl, S)) ≤ Λ(A(Wl, S \ {i}))
CTWl(S)Xmin ≤ Λ(A(Wl, S \ {i})) ≤ CTWl(S \ {i})Xmin

|Λ(A(Wl, S))− Λ(A(Wl, S \ {i}))| = |CTWl(S)Xmin − Λ(A(Wl, S \ {i}))|
≤ |CTWl(S)Xmin − CTWl(S \ {i})Xmin|
≤ max

X∈Al−1

|(CTWl[:, i]) · xi|

Lemma 2. ∀FS ⊆ F , ∆(FS) ≤
∑

Fni
∈F\FS

Pub(Fni
) where Pub(Fni

) is defined in equation 3 and

∆(FS) = |Λ(A)− Λ(A(Wl, S))|. For any vector X ∈ Rdl−1 , xi ∈ R denotes its i-th coordinate.

15

Published as a conference paper at ICLR 2024

Proof.

∆(FS) = |Λ(A)− Λ(A(Wl, S))|

≤ max
X∈Al−1

|
∑

Fni
∈F\FS

(CTW [: i]) · xi|

≤ max
X∈Al−1

∑
Fni

∈F\FS

|(CTW [: i]) · xi|

≤
∑

Fni
∈F\FS

max
X∈Al−1

|(CTW [: i]) · xi|

=
∑

Fni
∈F\FS

Pub(Fni
) [From equation 3]

Lemma 3. A feature set FS ⊆ F with ∆(FS) ≤ Λ(A) is sufficient provided Λ(A) ≥ 0 where
∆(FS) = |Λ(A)− Λ(A(Wl, S))|.

Proof. ∆(FS) = |Λ(A)− Λ(A(Wl, S))|. So, there can be two cases:

1. Λ(A(Wl, S)) = Λ(A) + ∆(FS). Since, Λ(A) ≥ 0 and ∆(FS) ≥ 0, Λ(A(Wl, S)) ≥ 0.
So, FS is sufficient.

2. Λ(A(Wl, S)) = Λ(A)−∆(FS)
∆(FS) ≤ Λ(A).
So, Λ(A(Wl, S)) ≥ 0. So, FS is sufficient.

Lemma 4. Let, Pmax denote the maximum of all priorities Pub(Fni
) over F . If FS ⊆ F and

|FS | ≤ ⌊ Λ(A)
Pmax

⌋, then proof feature set Fc
S = F \ FS is sufficient provided Λ(A) ≥ 0.

Proof.

∀Fni
∈ F , Pub(Fni

) ≤ Pmax

From Lemma 2, ∆(Fc
S) ≤ |FS | × Pmax

Also, |FS | ≤ ⌊Λ(A)

Pmax
⌋

So, ∆(Fc
S) ≤ Λ(A)

From Lemma 3, Fc
S is sufficient.

Definition 4. Zero proof features set Z(F) denotes the proof features Fni ∈ F with Pub(Fni) = 0.

Theorem 2. Let, Pmax denote the maximum of all priorities Pub(Fni) over F . Given any network
N is verified on (ϕ, ψ) with verifier V then |FS0

| ≤ dl−1 − |Z(F)| − ⌊ Λ(A)
Pmax

⌋

Proof of theorem 2. The algorithm 1 arranges the elements of the proof feature set F in decreasing
order according to the priority defined by Pub.
Let F ′ be the ordered set corresponding to F . So, F ′ = Fn1

:: · · · :: Fnm
, where :: is the list

concatenation.
The elements of Z(F) will be at the end of this ordering. So, F ′ can be written as F ′′ :: Z(F) where
Z(F) = Fnk+1

:: · · · :: Fnm and F ′′ = Fn1 :: · · · :: Fnk
and p be some of the last elements of F ′′

16

Published as a conference paper at ICLR 2024

s.t. the sum of their priorities just less than ⌊ Λ(A)
Pmax

⌋, i.e.,

p = Fnj :: · · · :: Fnk
such that

k∑
i=j

Pub(Fni
) ≤ Λ(A)

k∑
i=j−1

Pub(Fni
) > Λ(A)

Further, let p′ = p :: Z(F), i.e., p′ = Fnj :: · · · :: Fnm .

Since Pub is 0 for all elements of Z(F),
m∑
i=j

Pub(Fni
) ≤ ⌊Λ(A)

Pmax
⌋ (1)

Also, in this case, |p| ≥ ⌊ Λ(A)
Pmax

⌋ and |p′| = |p|+ |Z(F)|
We show that |FS0

| ≤ dl−1 − |p′| which implies |FS0
| ≤ dl−1 − ⌊ Λ(A)

Pmax
⌋ − |Z(F)|.

Now, we prove by induction on the number of steps of the while loop in the algorithm 1 that the set
FS0

never contains any elements from p′ which implies |FS0
| ≤ dl−1 − |p′|.

Induction Hypothesis: FS0
∩ p′ = {}

Base Case: At initialization, FS0
= {}. So, the induction hypothesis holds trivially.

Induction Step: Let the induction hypothesis be true for the n-th step of the algorithm 1. For the
(n + 1)-th step, let the new FS0

and FS be F ′
S0

and F ′
S respectively. Consider the following two

cases:

1. Let FS0
∪FS1

be sufficient at line 12. In this case, F ′
S0

= FS0
. So, the induction hypothesis

holds.

2. Let FS0
∪ FS1

be not sufficient at line 12.
Claim: FS0 ∩ p′ = {}
Let the above claim be false.
=⇒ FS0 ∩ p′ ̸= {}
=⇒ F \ (FS0 ∪ FS1) ⊂ p′

=⇒
∑

Fni∈F\(FS0
∪FS1

)

Pub < ⌊ Λ(A)
Pmax

⌋ [From (1)]

=⇒ (FS0
∪ FS1

) is sufficient. (From Lemma 4)
=⇒ Contradiction.
So, FS1 ∩ p′ = {}. In this step, F ′

S0
= FS0 ∪ FS1 . Also, from induction hypothesis,

FS0
∩ p′ = {}. Therefore, the induction hypothesis holds, i.e., F ′

S0
∩ p′ = {}.

17

Published as a conference paper at ICLR 2024

B VISUALIZATION FOR NON-DIFFERENTIABLE VERIFIER

For non-differentiable verifiers (Katz et al., 2017), we adapt the existing local visualization techniques
(Sundararajan et al., 2017; Smilkov et al., 2017) for visualizing the extracted proof features with
a sampling-based statistical estimation method. Given a proof feature Fni

, we intend to compute
G(Fni

, ϕ) = EX∼ϕ G(ni, X) which is the mean gradient of the output of ni w.r.t the inputs from
ϕ. For each input dimension (pixel in case of images) j ∈ [d0] the j-th component of G(Fni

, ϕ)
estimates its relevance w.r.t proof feature Fni

- with higher gradient values representing higher
relevance. Given that the input region ϕ contains infinitely many inputs, instead of exactly computing
G(Fni

, ϕ) we statistically estimate it by a reasonably large sample drawn uniformly from ϕ.

C ADDITIONAL EXPERIMENTS

C.1 DISTRIBUTION PLOTS OF THE SIZE OF THE EXTRACTED SUFFICIENT PROOF FEATURE SET

In this section, we show plots for the distribution of the sufficient proof feature set size extracted
by ProFIt and two baseline methods based on random and gradient-based priority heuristics. In
the following histograms, the x-axis represents the size of the extracted proof feature set and the
y-axis represents the number of local robustness properties. The results show that ProFIt consistently
outperforms both the baselines and extracts sufficient proof feature sets that are smaller in size. All
the plots in this section are generated on 500 local robustness properties with α-Crown verifier.

(a) Random (b) Gradient (c) ProFIt
Figure 4: Distribution of the extracted proof feature set size - Standard MNIST network & ϵ = 0.02.

(a) Random (b) Gradient (c) ProFIt
Figure 5: Distribution of the extracted proof feature set size - PGD MNIST network & ϵ = 0.02.

18

Published as a conference paper at ICLR 2024

(a) Random (b) Gradient (c) ProFIt
Figure 6: Distribution of the extracted proof feature set size - Colt MNIST network & ϵ = 0.02.

(a) Random (b) Gradient (c) ProFIt
Figure 7: Distribution of the extracted proof feature set size - Crown-IBP MNIST network & ϵ = 0.02.

(a) Random (b) Gradient (c) ProFIt
Figure 8: Distribution of the extracted proof feature set size - PGD MNIST network & ϵ = 0.1.

19

Published as a conference paper at ICLR 2024

(a) Random (b) Gradient (c) ProFIt
Figure 9: Distribution of the extracted proof feature set size - Colt MNIST network & ϵ = 0.1.

(a) Random (b) Gradient (c) ProFIt
Figure 10: Distribution of the extracted proof feature set size - Crown-IBP MNIST network &
ϵ = 0.1.

(a) Random (b) Gradient (c) ProFIt
Figure 11: Distribution of the extracted proof feature set size - Standard Cifar-10 network & ϵ =
0.2/255.

20

Published as a conference paper at ICLR 2024

(a) Random (b) Gradient (c) ProFIt
Figure 12: Distribution of the extracted proof feature set size - PGD Cifar-10 network & ϵ = 0.2/255.

(a) Random (b) Gradient (c) ProFIt
Figure 13: Distribution of the extracted proof feature set size - Colt Cifar-10 network & ϵ = 0.2/255.

(a) Random (b) Gradient (c) ProFIt
Figure 14: Distribution of the extracted proof feature set size - Crown-IBP Cifar-10 network &
ϵ = 0.2/255.

21

Published as a conference paper at ICLR 2024

(a) Random (b) Gradient (c) ProFIt
Figure 15: Distribution of the extracted proof feature set size - PGD Cifar-10 network & ϵ = 2/255.

(a) Random (b) Gradient (c) ProFIt
Figure 16: Distribution of the extracted proof feature set size - Colt Cifar-10 network & ϵ = 2/255.

(a) Random (b) Gradient (c) ProFIt
Figure 17: Distribution of the extracted proof feature set size - Crown-IBP Cifar-10 network &
ϵ = 2/255.

22

Published as a conference paper at ICLR 2024

C.2 ADDITIONAL PLOTS FOR PRIORITY ORDER EVALUATION

In this section, we evaluate the efficacy of the priority ordering of proof features defined in Eq. 3
against the random and gradient-based priority ordering on Cifar-10 networks and the standard
MNIST network. We use ϵ = 0.2/255 for all Cifar-10 networks and ϵ = 0.02 for the standard
MNIST network. We show that the priority ordering used by ProFIt preserves a higher % of proofs
while better approximating the original verifier output i.e. achieving a lower relative change compared
to both the baselines. All the plots in this section generated on 500 local properties with α-Crown
verifier.

(a) PGD Network (b) Colt Network (c) Crown-IBP Network
Figure 18: Percentages of proofs preserved by different heuristics on robust CIFAR-10 networks.

(a) PGD Network (b) Colt Network (c) Crown-IBP Network
Figure 19: Relative change in verifier output with different heuristics on robust CIFAR-10 networks.

23

Published as a conference paper at ICLR 2024

(a) Standard MNIST Network (b) Standard CIFAR-10 Network
Figure 20: Percentages of proofs preserved by different heuristics on standard networks.

(a) Standard MNIST Network (b) Standard CIFAR-10 Network
Figure 21: Relative change in verifier output with different heuristics on standard networks.

24

Published as a conference paper at ICLR 2024

C.3 QUALITATIVE EVALUATION OF THE PRIORITY ORDERING OF THE PROOF FEATURES

Figure 22: Comparing gradients of the top proof features retained by the ProFIt algorithm to pruned
proof features with a low priority. The columns are sorted in decreasing order of priority with the
right-most proof feature having the lowest priority. As expected, proof features with low priority are
noisier (as in column 4). The proof features which are further down in the priority order do not give
any relevant information about the input (column 5 - completely white). This shows that the proposed
algorithm extracts proof features that are important to the proof while removing insignificant and
uninformative proof features. The shown gradients are computed on COLT-trained MNIST network.

25

Published as a conference paper at ICLR 2024

C.4 ADDITIONAL PLOTS FOR THE TOP PROOF FEATURE VISUALIZATION

(a) Gradient maps generated on MNIST networks (b) Gradient maps generated on CIFAR-10 networks

Figure 23: Additional plots for the top proof feature visualization (in addition to Fig. 3) - Visualization
of gradient map of top proof feature (having highest priority) generated for networks trained with
different training methods. It is evident that the top proof feature corresponding to the standard
network highlights both relevant and spurious input features. In contrast, the top proof feature of
the provably robust network does filter out the spurious input features, but it comes at the expanse
of some important input features. The top proof features of the networks trained with PGD filter
out more spurious features as compared to standard networks. Finally, the top proof features of the
networks trained with COLT filter out the spurious input features and also correctly highlight the
relevant input features.

26

Published as a conference paper at ICLR 2024

C.5 VISUALIZATION OF THE ENTIRE EXTRACTED PROOF FEATURE SET

(a) Gradient maps generated on MNIST networks (b) Gradient maps generated on CIFAR-10 networks

Figure 24: Visualization of gradient maps of entire proof features set consisting of 4 proof features
extracted for networks trained with different robust training methods. The gradient maps of the proof
features are presented in decreasing order of priority with the top row showing the gradient map
corresponding to the top proof feature of each network.

(a) Gradient maps generated on MNIST networks (b) Gradient maps generated on CIFAR-10 networks

Figure 25: Visualization of gradient maps of entire proof features set consisting of 5 proof features
extracted for networks trained with different robust training methods. The gradient maps of the proof
features are presented in decreasing order of priority with the top row showing the gradient map
corresponding to the top proof feature of each network.

27

Published as a conference paper at ICLR 2024

C.6 VISUALIZATION OF THE TOP PROOF FEATURE FOR HIGHER ϵϵϵ VALUES

(a) Gradient maps generated on MNIST networks (b) Gradient maps generated on CIFAR-10 networks

Figure 26: Visualization of gradient map of top proof feature (having highest priority) generated
for networks trained with different robust training methods. For these networks, we define local
properties with higher ϵ values. For MNIST networks and CIFAR-10 networks, we take ϵ = 0.1 and
ϵ = 2/255 respectively.

28

Published as a conference paper at ICLR 2024

C.7 COMPARING THE PROOF FEATURES EXTRACTED BY DIFFERENT VERIFIERS

As described earlier, the extracted proof features are specific to the proof generated by a particular
verifier. In this section, we examine whether the proof features corresponding to different proofs
generated by different verifiers are the same. In Table 2, we compare the top proof features (ordered
by the priority order described in Eq. 3) of the proofs generated by the DeepZ Singh et al. (2018a)
verifier and α-Crown verifier. We observed that more than 97% of the cases the top feature remains
the same. In this case, for different verifiers though the proof features Fni

= [lni
, uni

] change, their
relative priority ordering computed by Eq. 3 remains the same. For this experiment, we use 500 local
robustness properties for each network and each ϵ value. Note, while comparing proof features from
two different verifiers we only consider those properties that can be proved by both the verifiers.

Dataset Training Input % properties % properties % proofs with the % proofs with the % proofs with the
Method Region (ϕ) proved by DeepZ proved by α-Crown same top feature same top-5 feature same top-10 feature

eps (ϵ)

MNIST Standard 0.02 90.0 % 91.8 % 99.8 % 98.4 % 98.3 %
PGD Trained 0.02 82.0 % 83.0 % 99.75 % 99.0 % 98.0 %
COLT 0.02 95.4 % 96 % 99.50 % 98.95 % 96.25 %
CROWN-IBP 0.02 96.4 % 96.4 % 99.8 % 99.0 % 95.9 %

MNIST PGD Trained 0.1 32.6 % 38.2 % 99.38 % 95.7 % 91.41 %
COLT 0.1 43.0 % 56.2 % 98.6 % 93.95 % 87.90 %
CROWN-IBP 0.1 89.4 % 94.6 % 97.0 % 88.3 % 80.26 %

CIFAR-10 Standard 0.2/255 51.0 % 58.0 % 99.5 % 98.3 % 98.0 %
PGD Trained 0.2/255 47.0 % 62.5 % 99.7 % 98.5 % 97.8 %
COLT 0.2/255 53.0 % 53.0 % 100.0 % 99.5 % 98.2 %
CROWN-IBP 0.2/255 54.5 % 54.5 % 100.0 % 98.90 % 97.8 %

CIFAR-10 PGD Trained 2/255 26.5 % 32.5 % 99.7 % 95.45 % 92.45 %
COLT 2/255 45.5 % 46.0 % 99.8 % 95.9 % 97.3 %
CROWN-IBP 2/255 37.5 % 38.0 % 99.6 % 97.92 % 95.89 %

Table 2: Comparing extracted proof features of DeepZ & α-Crown

Next, in Table 3 we compare the top proof feature (having the highest priority) corresponding to
the proofs generated by DeepZ, Crown (Zhang et al., 2018), α-Crown and state-of-the-art complete
verifier α, β-Crown (Wang et al., 2021b) on the property. We use PGD and Colt MNIST network for
this experiment. We evaluate 200 local robustness properties defined with ϵ = 0.02. We observed
that for these two networks, more than 99% of the cases the top feature remains the same.

Verifier DeepZ Crown α-Crown α, β-Crown

DeepZ 100.0 % 99.55 % 99.75 % 99.50 %
Crown 99.55 % 100.0 % 99.80 % 99.60 %
α-Crown 99.75 % 99.80 % 100.0 % 99.80 %
α, β-Crown 99.50 % 99.60 % 99.80 % 100.0 %

(a) PGD MNIST Network

Verifier DeepZ Crown α-Crown α, β-Crown

DeepZ 100.0 % 99.50 % 99.50 % 99.40 %
Crown 99.50 % 100.0 % 100.0 % 99.70 %
α-Crown 99.50 % 100.0 % 100.0 % 99.70 %
α, β-Crown 99.40 % 99.70 % 99.70 % 100.0 %

(b) Colt MNIST Network
Table 3: % cases different verifiers have the same top proof feature

29

Published as a conference paper at ICLR 2024

C.8 COMPARING VISUALIZATION OF THE PROOF FEATURES EXTRACTED BY DIFFERENT
DIFFERENTIABLE VERIFIERS

(a) Gradient maps generated with CROWN (b) Gradient maps generated with α-CROWN

Figure 27: Visualization of gradient map of top proof feature extracted by two different differentiable
verifiers - CROWN and α-CROWN. In both cases, the visualizations align with the observations in
section 5.3.

30

Published as a conference paper at ICLR 2024

C.9 COMPARING PROOFS ON NETWORKS WITH SAME ARCHITECTURE

Figure 28: Gradient maps generated on MNIST networks trained with different training methods
(Standard, COLT, CROWN-IBP) with the same architecture. The gradient maps show that obser-
vations in Section 5.3 and in Figure 3 of the paper also hold on different networks with the same
architecture.

31

Published as a conference paper at ICLR 2024

C.10 PLOTS FOR SENSITIVITY ANALYSIS W.R.T ϵtrainϵtrainϵtrain

Figure 29: Plots for visualizing gradients of the top proof feature for PGD and COLT networks
trained using different values of ϵtrain ∈ {0.1, 0.3} The gradient map corresponding to the networks
trained with the higher value of ϵtrain filter out more input features than the ones trained with smaller
ϵtrain value.

32

Published as a conference paper at ICLR 2024

C.11 PLOTS FOR THE TOP PROOF FEATURE VISUALIZATION OF SABR NETWORKS

(a) Gradient maps generated on MNIST networks (b) Gradient maps generated on CIFAR-10 networks

Figure 30: Visualization of gradient maps of the top proof feature (having highest priority) generated
for networks including those trained with recent state-of-the-art training method SABR (Mueller et al.,
2023). For the SABR CIFAR10 network, the gradient map of the top feature highlights semantically
meaningful features while successfully removing spurious background pixels. However, for the
SABR MNIST network, the gradient map of the top proof feature is not human-aligned. This is
potentially because the SABR MNIST networks are over-regularized to achieve high robust accuracy.

D WORST-CASE RUNTIME ANALYSIS OF PROFIT

In this section, We provide a formal worst-case analysis of the ProFIt.

Theorem 3. If the size of the penultimate layer is dl−1 then the number of incremental verifier calls
made by ProFIt is always ≤ ⌈log dl−1⌉+ 1.

Proof. Every iteration of the while loop (Algorithm 1 on page 6 of the paper) makes a single
incremental verifier call. So, first, we calculate the maximum number of incremental verifier calls
made in the while loop. At the end of each iteration FS is replaced by either FS1

(line 14 of Algorithm
1) or FS2

(line 17 of Algorithm 1). Now, max(|FS1
|, |FS2

|) ≤ (|FS | + 1)/2 where | · | denotes
the cardinality of a set. Initially, FS = F and |FS | = |F| = dl−1. Then after ith iteration of the
while loop the following inequality holds |FS | ≤ dl−1

2i +
∑i

j=1
1
2j . Let, I denote the total number of

iterations of the while loop. Given the while loop only executes when FS is non-empty (line 9 of
Algorithm 1), 1 ≤ dl−1

2(I−1) +
∑I−1

j=1
1
2j =⇒ (I − 1) ≤ ⌈log dl−1⌉ =⇒ I ≤ ⌈log dl−1⌉+ 1.

Hence, the total number of incremental verifier calls is always ≤ ⌈log dl−1⌉+ 1. Note, since we only
modify the final layer we run incremental verification that avoids rerunning verification on the entire
network from scratch. However, computing proof features (line 6 of Algorithm 1) requires a single
verifier call which can not be run incrementally.

For a network with n neurons and l layers a single incremental DeepZ (Singh et al., 2018a) verifier
call in the worst case takes O(n3) time whereas a single call to incremental CROWN (Zhang et al.,
2018) verifier in the worst case takes O(l × n3) time. The cost for a single non-incremental DeepZ
verifier call is in the worst case O(l × n3) whereas for CROWN it is O(l2 × n3). Overall, the
complexity of ProFIt with CROWN is O((log dl−1 + l)× l × n3). We will update our paper with
detailed proof of the worst-case runtime of ProFIt.

33

Published as a conference paper at ICLR 2024

Dataset Network Training # Layers # Params Theoretical Bound Avg. verifier calls Avg. CPU time Avg. GPU time

MNIST ConvSmall Standard 4 90K 9 7.81 0.85s 0.14s
ConvMed PGD 5 200K 12 9.90 1.80s 0.16s
ConvSmall COLT 4 90K 9 7.25 0.39s 0.11s
IBP-Small CROWN-IBP 4 80K 9 6.99 0.34s 0.09s
ConvBig DiffAI 7 1.8M 11 7.12 2.57s 0.29s
ConvSuper DiffAI 7 10M 11 7.08 6.28s 0.30s

CIFAR10 ConvSmall Standard 4 120K 9 5.36 0.30s 0.07s
ConvSmall PGD 4 120K 9 6.04 0.32s 0.09s
ConvSmall COLT 4 120K 10 5.64 0.52s 0.15s
IBP-Small CROWN-IBP 4 100K 10 6.2 0.48s 0.11s
ConvBig DiffAI 7 2.5M 11 7.8 3.93s 0.50s

Table 4: ProFIt Runtime Analysis

E EXPERIMENTAL RESULTS ON PROFIT RUNTIME

E.1 EXPERIMENT SETUP

We run ProFIt on multiple networks including those mentioned in Table 1 on both CPUs and GPUs.
For CPU-related experiments, we use the same setup as mentioned in Section 5.1. In GPU-related
experiments, we utilize a single NVIDIA A100-PCI GPU with 40 GB RAM. We use the state-of-the-
art incomplete verifier α-CROWN from auto-LiRPA (Xu et al., 2020) toolbox and show results for
100 local L∞ robustness properties. As done in the paper, for MNIST and CIFAR10 networks, we
use ϵ = 0.02 and ϵ = 0.2/255 respectively to define L∞ input regions.

E.2 SIZE AND ARCHITECTURE OF THE NETWORKS:

We present the runtime analysis of ProFIt on the DNNs used in Table 1 and also showcase results
on some of the largest verifiable network architectures, namely DiffAi trained (Mirman et al., 2018)
ConvBig and ConvSuper. These architectures are de facto benchmarks employed for testing the
scalability of state-of-the-art verifiers (Ferrari et al., 2022b; Müller et al., 2022) and are featured in
the International Verification of Neural Networks Competition (Brix et al., 2023). All the networks
used in this experiment are selected from the ERAN (Singh et al., 2019b), and CROWN-IBP (Zhang
et al., 2020) repositories and belong to the category of convolutional neural networks (CNNs).

E.3 COMPATIBILITY WITH GPU ACCELERATION:

ProFIt is not restricted to CPUs and works with DNN verifiers whose computation can benefit from
GPU acceleration. For example, ProFIt can be run with GPU implementation of auto-LiRPA (Xu
et al., 2020). We show the runtime improvement of ProFIt with GPUs below. Runtimes on GPUs are
up to 20x shorter than those on CPUs.

E.4 EXPERIMENTAL RESULTS:

We present results for all networks in Table 4. Column 1 shows the dataset, column 2 displays the
network name, column 3 outlines the training method, and columns 4 and 5 describe the network’s
structure. Column 6 indicates the worst-case bound on the number of incremental verifier calls,
as described in Theorem 3, while column 7 displays the average number of incremental verifier
calls per property. Columns 8 and 9 present the average runtime in seconds for ProFIt on CPU
and GPU, respectively. Notably, on GPUs, the average runtime for ProFIt is less than 1 second
for all the networks. Note that, for ConvBig architectures, the timeout used in the International
Verification of Neural Networks Competition (Brix et al., 2023) is in minutes. In comparison, ProFIt
with α-CROWN is significantly faster.

34

