
Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 EXTENDED RELATED WORK

Mixture-of-Experts The Mixture-of-Experts (MoE) has been investigated thoroughly in Natural
Language Processing (Lou et al., 2022; Mustafa et al., 2022; Shazeer et al., 2017; Lepikhin et al., 2020;
Fedus et al., 2022; Du et al., 2022; Zoph et al., 2022; Clark et al., 2022; Zhou et al., 2022; Komatsuzaki
et al., 2023; Kudugunta et al., 2021; Zuo et al., 2022) as an effective way of increasing the model’s
capacity in parameter size where certain parts of the model are activated while computation is kept
the same or close to its dense counterpart. In the context of MoE, there is a body of work focusing on
improving the routing (Hazimeh et al., 2021; Lewis et al., 2021; Roller et al., 2021; Zhou et al., 2022)
including random routing (Zuo et al., 2022) activating all expert through weighted average (Eigen
et al., 2014) to sparsely select a single or k experts (Fedus et al., 2022; Du et al., 2022). MoE has
also been invested in multi-task settings including multilingual neural machine translation(Hazimeh
et al., 2021; Kudugunta et al., 2021). Unlike these studies, our research addresses MoE by scaling
both the volume of data and the number of tasks, aiming to mitigate the instability inherent in
training the MoE models. But our primary emphasis remains on achieving efficient fine-tuning.
Recently, Shen et al. (2023) highlighted how instruction fine-tuning with scaled tasks can counteract
the generalization challenges tied to MoE models. In distinction from this, our study scrutinizes
the efficacy of instruction fine-tuning in the MoE domain, specifically concentrating on a unique
ensemble of the PEFT components, considering the memory cost of the traditional MoE can be
prohibitive for many practitioners. Similar to the aforementioned work, Ye et al. (2022) utilized MoE
in a multi-task context, employing BART Lewis et al. (2019) as their pre-trained model. However,
they limited their experimental scope to a smaller scale and used replicas of each transformer layer
as experts, simply multiplying the model by the number of experts. Our work, on the other hand,
presents an extreme parameter efficiency with small experts at a large scale up to 11B parameter base
model.

Instruction Tuning Instruction tuning, as elucidated in (Sanh et al., 2022; Wei et al., 2022; Mishra
et al., 2022), is a technique where a language model is fine-tuned over a collection of tasks using paired
prompts and responses. The primary goal of this technique is to enable the model to predict responses
accurately based on the provided prompts, thereby augmenting its ability to understand and execute
instructions effectively. The method has gained considerable attention due to its pronounced success
in enhancing zero-shot performance on tasks to which the model has not been previously exposed.
Additionally, instruction tuning has led to breakthroughs such as Chain of Thought Prompting (Wei
et al., 2023) where a breakdown of complex problems into smaller steps to produce intermediate
reasoning along with the final solution, PaLM (Chowdhery et al., 2022), FLAN (Wei et al., 2022). In
our work, we explore the use of instruction fine-tuning with the intention of harnessing its benefits
that enable the model to learn from a diverse set of inputs where the mixture of expert style models
suits well, for enhanced evaluation performance on unseen tasks. Our objective remains to optimize
computational efficiency without compromising zero-shot performance.

Parameter-Efficient Fine-tuning. Houlsby et al. (2019) established ”adapters” in the NLP domain to
fine-tune BERT. There are many variants of adapters with different design choices (Bapna et al., 2019;
Pfeiffer et al., 2021). Li & Liang (2021) proposed updating soft prompts concatenated to embeddings
or layer outputs instead of adapters. Zaken et al. (2022) show that just updating only a small subset
of parameters during fine-tuning (e.g. just biases) is very effective. Hu et al. (2021) proposed LORA
based on low-rank decomposition matrices of transformer layers. They show superior performance
with a smaller parameter budget and no inference cost as LORA parameters can be applied offline
to the baseline model. Liu et al. (2022) proposed (IA)3, task-specific vectors to modify attention
activation. Instead of using feedforward layers inserted in transformer layers as adapters, they learn
vectors to update (by broadcast multiplication) key, value, and linear layer weight matrices. Unlike
the other PEFT methods, (IA)3 does not induce any additional inference cost and enables mix-batches
(from different datasets). The multiplicative nature of the (IA)3 creates an interesting opportunity
for the mixture-of-expert type of modeling without parallelization overhead. Chen et al. (2023)
experiment with different design spaces (essentially a hyperparameter search) for PEFT. They suggest
four phases: 1) grouping layers into different sets; 2) adding trainable parameters towards each group;
3) deciding which group should be trained; 4) assigning groups with different training strategies.
Their finding is that different architectures have different best settings. We have chosen (IA)3 and

15

Under review as a conference paper at ICLR 2024

LORA as our PEFT components because they offer an optimal balance between performance and
parameter efficiency (Mahabadi et al., 2021; Liu et al., 2022).

Several studies have explored PEFT in the context of MoE or in a similar fashion, albeit with
certain distinctions. For instance, Wang et al. (2022) focused on single-task fine-tuning employing a
mixture of adapters for BERTbase with 110M parameters (Devlin et al., 2019) and RoBERTalarge
with 355M parameters (Liu et al., 2019), incorporating random routing, and adopting a few-shot
evaluation. In divergence from this, our work centers on instruction-tuning with multiple tasks
present during fine-tuning. We underscore the efficacy of this approach by rigorously testing up
to 11B parameter text-to-text model Raffel et al. (2020), implementing token routing, and strictly
emphasizing evaluation on a set of unseen (held-out) tasks to underscore the potential of instruction
tuning. In another work, Ponti et al. (2022) introduced Polytropon, which involves learning adapters
(termed as ’skills’) specific to each task and employing a task-skills binary matrix to determine the
skill set associated with each task. In their method, input examples dictate the selection of adapters.
These adapters are then aggregated, and the resultant single adapter is integrated into the overall
architecture. Extending upon the Polytropon framework, Caccia et al. (2023) implemented a distinct
skill set for every layer in their variant named Polytropon-S. They introduce a deterministic routing
function, delve into supplementary inductive biases, show effectiveness up to 3B models, and they
don’t employ MoE style architecture. Our research presents a departure from these two studies.
Specifically, our primary experimental setup employs MoEs that do not require any specific task
identifier during fine-tuning by the use of their token routing strategy. In this way, we can evaluate our
instruction-tuned MoEs on unseen tasks without any further task-specific few-shot fine-tuning. We
showed the scaling property of our MoEs in this setting by fine-tuning models up to 11B parameters.

A.2 ZERO-SHOT EVALUATION FOR P3 DATASET

In our study, we conducted a comprehensive evaluation of the variants of our proposed methods
in comparison to our established baselines. This evaluation encompassed various sizes of the T5
model, specifically 770M, 3B, and 11B. These results are given in Table 2, 3 and 4. Both mean and
median scores were reported for every evaluation set derived from the P3 dataset, which covers a
range of tasks. For further details and a more in-depth exploration, please refer to the following URL:
https://huggingface.co/datasets/bigscience/P3.

T5-Large (770M)
Model % Params. Metric ANLI CB RTE WSC WIC Copa WNG HS Average

Full-FT T0-770M (ours) 100% median 35.6 71.43 75.63 57.21 51.41 77.0 53.04 26.78 56.01
mean 35.57 57.74 75.88 52.31 52.52 74.6 52.93 26.74 53.54

PEFT

(IA)3 0.036% median 33.5 42.86 67.87 62.02 52.35 67.0 51.22 26.33 50.39
mean 33.27 45.12 67.08 58.17 52.74 66.63 51.35 26.32 50.09

LoRA 0.497% median 35.0 55.36 57.4 63.46 50.24 77.0 53.28 26.67 52.3
mean 35.26 51.67 59.35 62.98 50.66 76.5 52.41 27.24 52.0

Our Method

MOV-5 0.27% median 33.6 41.07 71.48 61.54 50.86 76.5 51.46 26.02 51.57
mean 33.51 42.62 71.26 60.96 51.14 73.8 51.55 26.01 51.36

MoV-10 0.55% median 33.9 42.86 74.19 62.5 50.31 77.0 52.64 26.34 52.47
mean 33.68 42.38 74.51 59.23 50.74 74.82 52.2 26.72 51.78

MoV-20 1.10% median 33.7 41.07 73.83 63.46 50.94 75.46 51.14 25.48 51.89
mean 33.98 45.12 73.36 59.13 51.33 73.47 51.3 25.45 51.64

MoV-30 1.66% median 33.75 41.07 72.92 55.77 51.25 77.0 51.46 26.55 51.22
mean 33.81 44.88 72.56 56.15 51.29 77.43 51.81 26.52 51.81

MoV-60 3.32% median 34.0 53.57 75.81 57.69 50.55 77.96 53.12 26.33 53.63
mean 34.24 52.26 75.02 58.37 50.78 77.06 52.87 26.74 53.42

MoLoRA-10 5.60% median 33.2 67.86 68.41 64.9 50.39 80.0 52.64 52.64 55.52
mean 33.37 56.31 68.88 63.37 51.55 79.35 52.31 52.31 53.99

Table 2: Zero-shot evaluation of the 770M parameter model across all unseen tasks, comparing
different numbers of experts for both MoV and MoLoRA.

A.3 TOKEN VS. SENTENCE EMBEDDINGS FOR ROUTING

We present the mean and median results for our routing strategies in Table 5. Specifically, we assessed
performance by either passing tokens directly to the router or by passing sentence embeddings.
Our findings indicate that, particularly for the T5-XL (3B) model, token routing consistently yields

16

Under review as a conference paper at ICLR 2024

T5-XL (3B)
Model % Params. Metric ANLI CB RTE WSC WIC Copa WNG HS Average

Full-FT
T0-3B (Sanh et al., 2022) 100% median 33.46 50.0 64.08 64.42 50.39 74.92 50.51 27.51 51.91

mean 33.42 45.36 64.55 65.10 50.69 72.40 50.97 27.29 51.22

T0-3B (our replication) 100% median 41.08 80.36 76.17 53.37 53.92 88.94 57.46 29.19 60.06
mean 40.73 74.52 76.82 52.21 53.84 88.99 56.83 29.2 59.14

PEFT

(IA)3 0.018% median 34.08 50.0 66.43 56.25 55.41 79.08 52.09 29.91 52.90
mean 34.56 51.07 68.38 54.9 55.61 78.23 52.14 28.97 52.98

LoRA (rank 4) 0.3% median 37.5 75.57 73.53 61.02 51.25 83.6 54.33 25.32 57.51
mean 37.85 66.9 77.04 56.73 52.29 82.83 55.64 26.79 57.01

LoRA (rank 8) 0.6% median 37.5 75.0 77.98 62.5 51.49 83.67 55.72 27.3 58.89
mean 37.64 64.05 77.91 56.71 51.77 82.84 55.23 26.83 57.03

LoRA (rank 16) 1.2% median 38.5 80.36 76.71 63.46 51.02 84.5 54.7 27.11 59.54
mean 37.11 65.6 77.62 60.48 51.49 82.29 55.14 26.71 57.05

Our Method

MoV-2 0.18% median 34.7 46.43 66.06 56.25 54.86 85.42 53.75 29.25 53.34
mean 35.14 50.36 69.31 56.15 54.4 83.79 53.69 28.47 53.91

MoV-5 0.23% median 37.1 76.79 78.16 57.69 52.27 86.77 53.99 29.31 59.01
mean 37.66 62.14 78.3 58.46 53.54 86.52 54.54 28.3 57.43

MoV-10 0.32% median 38.92 75.0 78.88 62.5 52.19 85.77 55.96 30.24 59.93
mean 38.83 63.45 79.49 60.19 53.04 86.41 56.27 29.11 58.35

MoV-20 0.50% median 39.2 75.0 76.71 57.69 53.45 89.0 55.64 30.89 59.7
mean 39.25 64.05 76.53 56.63 53.45 86.93 56.24 29.36 57.81

MoV-30 0.68% median 38.7 78.57 80.87 63.46 51.1 87.25 56.27 28.63 60.61
mean 38.9 67.5 81.23 59.9 52.43 86.28 56.39 27.57 58.77

MoV-60 1.22% median 38.83 76.79 74.55 60.1 52.66 89.79 55.49 30.47 59.83
mean 38.97 63.93 75.38 57.79 53.5 86.04 55.88 29.28 57.59

MoV-10 (top-1) 0.32% median 33.9 75.0 71.12 61.06 50.71 70.0 51.7 25.89 54.92
mean 34.31 60.6 71.41 58.94 51.24 68.39 51.79 25.98 52.82

MoV-10 (top-2) 0.32% median 38.7 82.14 75.63 48.08 53.68 79.88 54.14 27.37 57.45
mean 38.89 69.76 74.95 47.69 53.51 79.89 53.83 26.91 55.67

MoLORA-2 (rank 4) 0.75% median 39.2 82.14 80.32 62.5 50.39 80.58 57.38 28.47 60.12
mean 38.86 65.71 80.0 60.0 50.8 82.17 56.51 28.03 57.76

MoLORA-5 (rank 4) 1.66% median 36.75 71.43 79.96 56.25 55.17 85.81 55.8 27.63 58.6
mean 37.52 62.14 80.22 52.6 55.34 84.05 56.04 26.62 56.82

MoLORA-10 (rank 4) 3.18% median 38.5 78.57 78.16 63.46 50.86 86.5 55.41 26.72 59.77
mean 38.49 66.43 77.44 59.9 51.63 84.96 56.1 26.7 57.71

MoLORA-15 (rank 4) 4.69% median 40.0 80.36 80.51 62.98 50.86 89.0 55.33 27.3 60.79
mean 39.73 69.52 80.97 60.67 51.54 86.5 55.03 27.25 58.9

Table 3: In our most comprehensive experimental setup, we conducted a zero-shot evaluation across
all unseen tasks using a 3B parameter model. We compared varying numbers of experts for both
MoV and MoLoRA and experimented with a top-k selection routing strategy

T5-XXL (11B)
Model % Params. Metric ANLI CB RTE WSC WIC Copa WNG HS Average

Full-FT

T0-11B (Sanh et al., 2022) 100% median 42.17 78.57 81.23 64.42 57.21 90.79 60.46 33.65 63.56
mean 41.16 70.12 80.83 61.45 56.58 90.02 59.94 33.58 61.70

T0-11B (our replication) 100% median 47.1 80.36 81.41 60.1 56.27 96.08 67.32 31.61 65.03
mean 45.83 72.62 81.52 58.17 56.66 96.0 66.77 30.95 63.57

PEFT (IA)3 0.0098% median 42.3 73.21 75.99 58.65 52.04 86.27 54.3 30.27 59.12
mean 42.1 63.27 75.31 55.49 52.27 85.74 55.06 30.09 57.41

Our Method

MoV-10 0.143% median 45.83 76.79 78.52 53.85 51.88 94.23 63.77 33.5 62.3
mean 44.73 70.12 78.88 54.23 53.26 93.64 63.57 33.59 61.5

MoV-20 0.287% median 44.58 76.79 73.83 55.77 52.98 95.0 62.27 32.92 61.77
mean 43.54 69.17 74.4 52.88 54.5 93.93 62.95 32.85 60.53

MoV-30 0.431% median 43.6 76.79 77.62 56.73 53.84 93.62 64.25 31.34 62.22
mean 43.32 69.29 77.22 53.56 56.03 93.65 63.52 31.32 60.99

MoV-60 0.862% median 45.17 75.0 83.03 60.1 53.68 95.42 65.82 34.38 64.08
mean 43.9 69.88 83.07 56.54 54.51 94.01 64.56 34.17 62.58

Table 4: We evaluated the largest available model size from the original T5 pre-trained checkpoint,
T5-XXL with 11B parameters, to demonstrate the efficacy of our proposed mixture of PEFT experts
at this scale.

better performance in terms of both mean and median values. The Anli dataset is excluded from our
embedding dataset.

A.4 FINE-TUNING EFFICIENCY: MOV VS (IA)3

Table 6 shows the updated parameter count and training time ratios for Mixture of Vectors (MoV)
and (IA)3 with respect to full-fine tuning. These metrics confirm that our MoV achieves a better
performance-efficiency trade-off compared to (IA)3.

17

Under review as a conference paper at ICLR 2024

MoV – Token vs. Sentence Embedding

Model Metric CB RTE WSC WIC Copa WNG HS Average
MoV-10 (Token) - 770M median 42.86 74.19 62.5 52.64 52.64 77.0 26.34 55.12

mean 42.38 74.51 59.23 52.2 52.2 74.82 26.72 54.37
MoV-10 (Embedding) - 770M median 48.21 67.15 62.98 51.8 50.99 67.0 26.38 53.5

mean 51.67 67.29 58.37 51.79 50.99 65.8 26.57 53.21
MoV-10 (Token) - 3B median 75.0 78.8 62.5 52.19 55.96 85.77 30.24 62.94

mean 63.45 79.49 60.19 53.04 56.27 86.41 29.11 61.14
MoV-10 (Embedding) - 3B median 57.14 67.15 61.06 55.33 52.49 82.5 29.08 57.82

mean 51.07 68.81 58.65 55.28 52.57 80.53 28.51 56.49
MoV-10 (Token) - 11B median 76.79 78.52 53.85 51.88 63.77 94.23 33.5 64.65

mean 70.12 78.88 54.23 53.26 63.57 93.64 33.59 63.9
MoV-10 (Embedding) - 11B median 75.0 78.7 57.69 54.0 57.85 92.0 33.08 64.05

mean 66.19 79.1 58.37 54.83 58.78 91.17 32.7 63.02

Table 5: The above results demonstrate the effectiveness of token routing in comparison to imposing
a strong inductive bias, such as sentence embedding across various model parameters.

Base model Model % Params. % Training time Average zero-shot
size updated ↓ reduction ↑ performance ↑

3B
(IA)3 0.018% 38% 52.90
MoV (10 Experts) 0.32% 31% 59.93
MoV (30 Experts) 0.68% 27% 60.61

11B
(IA)3 0.0098% 36% 59.12
MoV (10 Experts) 0.143% 27% 62.30
MoV (30 Experts) 0.431% 23% 62.22

Table 6: Fine-tuning efficiency metrics for Mixture of Vectors (MoV) and its dense PEFT counter-
part, (IA)3. We compare the ratio of updated parameters and the training times with respect to full
fine-tuning (with the same batch size), across different scales. MoV exhibits a marginal difference in
training time compared to (IA)3 while demonstrating significant improvement in zero-shot perfor-
mance, achieving a better performance-efficiency trade-off.

18

Under review as a conference paper at ICLR 2024

A.5 MOLORA IMPLEMENTATION

class MoLORA_Layer(nn.module):
n_experts: int # number of experts
rank: int # low-rank dimension
h_out: int # output dimension

def call(self, inputs):
inputs shape: [batch, seq, h_dim]
batch, seq, h_dim = inputs.shape

MoLORA A: [n_experts, h_dim, rank]
molora_A = self.param(’molora_A’,
nn.init.normal(), (self.n_experts, h_dim, self.rank))

MoLORA B: [n_experts, rank, h_out]
molora_B = self.param(’molora_B’,
nn.init.zeros(), (self.n_experts, self.rank, self.h_out))

Ax: [batch, seq, n_experts, rank]
molora_Ax = jnp.einsum(’...d,edr->...er’,

inputs,
molora_A)

BAx: [batch, seq, n_experts, h_out]
molora_BAx = jnp.einsum(’...er,ero->...eo’,

molora_Ax,
molora_B)

router probs: [batch, seq, n_experts]
router_probs = self.router(inputs,
self.n_experts, dtype=’float32’)

combined LoRAs’ outputs: [batch, seq, h_out]
molora_combine = jnp.einsum(’...e,...eo->...o’,

router_probs,
molora_BAx)

return molora_combine

19

