Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 EXTENDED RELATED WORK

Mixture-of-Experts The Mixture-of-Experts (MoE) has been investigated thoroughly in Natural
Language Processing (Lou et al., 2022; Mustafa et al., 2022; Shazeer et al., 2017; Lepikhin et al., 2020;
Fedus et al., 2022; Du et al., 2022; Zoph et al., 2022; Clark et al., 2022; Zhou et al., 2022; Komatsuzaki
et al., 2023; Kudugunta et al., 2021; Zuo et al., 2022) as an effective way of increasing the model’s
capacity in parameter size where certain parts of the model are activated while computation is kept
the same or close to its dense counterpart. In the context of MoE, there is a body of work focusing on
improving the routing (Hazimeh et al., 2021; Lewis et al., 2021; Roller et al., 2021; Zhou et al., 2022)
including random routing (Zuo et al., 2022) activating all expert through weighted average (Eigen
et al., 2014) to sparsely select a single or k experts (Fedus et al., 2022; Du et al., 2022). MoE has
also been invested in multi-task settings including multilingual neural machine translation(Hazimeh
et al., 2021; Kudugunta et al., 2021). Unlike these studies, our research addresses MoE by scaling
both the volume of data and the number of tasks, aiming to mitigate the instability inherent in
training the MoE models. But our primary emphasis remains on achieving efficient fine-tuning.
Recently, Shen et al. (2023) highlighted how instruction fine-tuning with scaled tasks can counteract
the generalization challenges tied to MoE models. In distinction from this, our study scrutinizes
the efficacy of instruction fine-tuning in the MoE domain, specifically concentrating on a unique
ensemble of the PEFT components, considering the memory cost of the traditional MoE can be
prohibitive for many practitioners. Similar to the aforementioned work, Ye et al. (2022) utilized MoE
in a multi-task context, employing BART Lewis et al. (2019) as their pre-trained model. However,
they limited their experimental scope to a smaller scale and used replicas of each transformer layer
as experts, simply multiplying the model by the number of experts. Our work, on the other hand,
presents an extreme parameter efficiency with small experts at a large scale up to 11B parameter base
model.

Instruction Tuning Instruction tuning, as elucidated in (Sanh et al., 2022; Wei et al., 2022; Mishra
etal., 2022), is a technique where a language model is fine-tuned over a collection of tasks using paired
prompts and responses. The primary goal of this technique is to enable the model to predict responses
accurately based on the provided prompts, thereby augmenting its ability to understand and execute
instructions effectively. The method has gained considerable attention due to its pronounced success
in enhancing zero-shot performance on tasks to which the model has not been previously exposed.
Additionally, instruction tuning has led to breakthroughs such as Chain of Thought Prompting (Wei
et al., 2023) where a breakdown of complex problems into smaller steps to produce intermediate
reasoning along with the final solution, PaLM (Chowdhery et al., 2022), FLAN (Wei et al., 2022). In
our work, we explore the use of instruction fine-tuning with the intention of harnessing its benefits
that enable the model to learn from a diverse set of inputs where the mixture of expert style models
suits well, for enhanced evaluation performance on unseen tasks. Our objective remains to optimize
computational efficiency without compromising zero-shot performance.

Parameter-Efficient Fine-tuning. Houlsby et al. (2019) established ”adapters” in the NLP domain to
fine-tune BERT. There are many variants of adapters with different design choices (Bapna et al., 2019;
Pfeiffer et al., 2021). Li & Liang (2021) proposed updating soft prompts concatenated to embeddings
or layer outputs instead of adapters. Zaken et al. (2022) show that just updating only a small subset
of parameters during fine-tuning (e.g. just biases) is very effective. Hu et al. (2021) proposed LORA
based on low-rank decomposition matrices of transformer layers. They show superior performance
with a smaller parameter budget and no inference cost as LORA parameters can be applied offline
to the baseline model. Liu et al. (2022) proposed (1 A)3, task-specific vectors to modify attention
activation. Instead of using feedforward layers inserted in transformer layers as adapters, they learn
vectors to update (by broadcast multiplication) key, value, and linear layer weight matrices. Unlike
the other PEFT methods, (IA)3 does not induce any additional inference cost and enables mix-batches
(from different datasets). The multiplicative nature of the (IA)* creates an interesting opportunity
for the mixture-of-expert type of modeling without parallelization overhead. Chen et al. (2023)
experiment with different design spaces (essentially a hyperparameter search) for PEFT. They suggest
four phases: 1) grouping layers into different sets; 2) adding trainable parameters towards each group;
3) deciding which group should be trained; 4) assigning groups with different training strategies.
Their finding is that different architectures have different best settings. We have chosen (1 A4)? and

15



Under review as a conference paper at ICLR 2024

LORA as our PEFT components because they offer an optimal balance between performance and
parameter efficiency (Mahabadi et al., 2021; Liu et al., 2022).

Several studies have explored PEFT in the context of MoE or in a similar fashion, albeit with
certain distinctions. For instance, Wang et al. (2022) focused on single-task fine-tuning employing a
mixture of adapters for BERT} s with 110M parameters (Devlin et al., 2019) and RoBERT )44
with 355M parameters (Liu et al., 2019), incorporating random routing, and adopting a few-shot
evaluation. In divergence from this, our work centers on instruction-tuning with multiple tasks
present during fine-tuning. We underscore the efficacy of this approach by rigorously testing up
to 11B parameter text-to-text model Raffel et al. (2020), implementing token routing, and strictly
emphasizing evaluation on a set of unseen (held-out) tasks to underscore the potential of instruction
tuning. In another work, Ponti et al. (2022) introduced Polytropon, which involves learning adapters
(termed as ’skills’) specific to each task and employing a task-skills binary matrix to determine the
skill set associated with each task. In their method, input examples dictate the selection of adapters.
These adapters are then aggregated, and the resultant single adapter is integrated into the overall
architecture. Extending upon the Polytropon framework, Caccia et al. (2023) implemented a distinct
skill set for every layer in their variant named Polytropon-S. They introduce a deterministic routing
function, delve into supplementary inductive biases, show effectiveness up to 3B models, and they
don’t employ MoE style architecture. Our research presents a departure from these two studies.
Specifically, our primary experimental setup employs MoEs that do not require any specific task
identifier during fine-tuning by the use of their token routing strategy. In this way, we can evaluate our
instruction-tuned MoEs on unseen tasks without any further task-specific few-shot fine-tuning. We
showed the scaling property of our MoEs in this setting by fine-tuning models up to 11B parameters.

A.2 ZERO-SHOT EVALUATION FOR P3 DATASET

In our study, we conducted a comprehensive evaluation of the variants of our proposed methods
in comparison to our established baselines. This evaluation encompassed various sizes of the TS
model, specifically 770M, 3B, and 11B. These results are given in Table 2, 3 and 4. Both mean and
median scores were reported for every evaluation set derived from the P3 dataset, which covers a
range of tasks. For further details and a more in-depth exploration, please refer to the following URL:
https://huggingface.co/datasets/bigscience/P3.

T5-Large (770M)

Model % Params. Metric ANLI CB RTE WSC WIC Copa WNG HS  Average
100% median 356 7143 7563 5721 5141 770 5304 2678 5601
Full-FT T0-770M (ours) mean 3557 5774 7588 5231 5252 746 5293 2674  53.54
(IAY 0.036% median 335 4286 6787 6202 5235 670 5122 2633 5039
pEFT mean 3327 4512 6708 5817 5274 6663 5135 2632 50.09
LoRA 0.497% median 350 5536 574 6346 5024 770 5328 2667 523
mean 3526 5167 5935 6298 5066 765 5241 2724 520
MOV-5 0.27% median  33.6  41.07 7148 6154 5086 765 5146 2602 5157
mean 3351 4262 7126 6096 5114 738 5155 2601 5136
MoV-10 0.55% median 339 4286 7419 625 S031 770 5264 2634 5247
mean 3368 4238 7451 5903 5074 7482 522 2672 5178
Our Method MOV-20 1.10% median 337 4107 7383 6346 5094 7546 5114 2548  51.89
mean 3398 4512 7336 5913 5133 7347 513 2545 5164
MoV-30 1.66% median 3375 4107 7292 5577 5125 770 5146 2655 5122
mean 3381 4488 7256 5615 5129 7743 5181 2652 5181
MoV-60 3.32% median 340 5357 7581 57.69 5055 7796 5312 2633  53.63
mean 3424 5226 75.02 5837 5078 7706 5287 2674 5342
MoLoRA-10  5.60% median 332 6786 6841 649 5039 800 5264 5264 5552

mean 3337 5631 6888 6337 51.55 7935 5231 5231 53.99

Table 2: Zero-shot evaluation of the 770M parameter model across all unseen tasks, comparing
different numbers of experts for both MoV and MoLoRA.

A.3 TOKEN VS. SENTENCE EMBEDDINGS FOR ROUTING

We present the mean and median results for our routing strategies in Table 5. Specifically, we assessed

performance by either passing tokens directly to the router or by passing sentence embeddings.
Our findings indicate that, particularly for the T5-XL (3B) model, token routing consistently yields

16



Under review as a conference paper at ICLR 2024

T5-XL (3B)

Model % Params. Metric  ANLI CB RTE WSC WIC Copa WNG HS  Average
100% median 3346 500 6408 6442 5039 7492 5051 2751 5191
ey B (Sanhetal, 2022) mean 3342 4536 6455 6510 5069 7240 5097 2729 5122
T0.35 (our replication)  100% median 4108 8036 7617 5337 5392 8894 5746 2919  60.06
mean 4073 7452 7682 5221 5384 8899 5683 202  59.14
aay? 0018%  median 3408 500 6643 5625 5541 7908 5200 2991 5290
pEFT mean 3456 5107 6838 549 5561 7823 5214 2897 5298
LoRA (rank 4) 03% median 375 7557 7353 6102 5125 836 5433 2532 5751
mean 3785 669 7704 5673 5229 8283 5564 2679 5701
LoRA (rank 8) 0.6% median 375 750 7798 625 5149 8367 5572 273 5889
mean 3764 6405 7791 5671 5177 8284 5523 2683  57.03
LoRA (rank 16) 1.2% median 385 8036 7671 6346 5102 845 547 2701 5954
mean 3711 656 77.62 6048 5149 8229 5514 2671  57.05
MoV-2 0.18% median 347 4643 6606 5625 5486 8542 5375 2925 5334
mean 3514 5036 6931 5615 544 8379 5360 2847 5391
MoV-5 0.23% median  37.1 7679 7816 57.60 5227 8677 5399 2931 5901
mean 3766 6214 783 5846 5354 8652 5454 283 5743
MoV-10 0.32% median 3892 750 7888 625 5219 8577 5596 3024  59.93
mean 3883 6345 7949 60.19 5304 8641 5627 29.11  58.35
MoV-20 0.50% median 392 750 7671 57.60 5345 890 5564 3089 597
mean 3925 6405 7653 5663 5345 8693 5624 2936  57.81
MoV-30 0.68% median 387 7857 8087 6346 SLI 8725 5627 2863  60.61
mean 389 675 8123 509 5243 8628 5630 27.57 5877
MoV-60 122% median  38.83 7679 7455 601 5266 89.79 5549 3047 5983
Our Method mean 3897 6393 7538 5779 535 8604 5588 2928  57.59
MoV-10 (top-1) 0.32% median 339 750 7112 6106 5071 700 517 2589 5492
mean 3431 606 7141 5894 5124 6839 5179 2508 5282
MoV-10 (top-2) 0.32% median 387 8214 7563 4808 53.68 7988 5414 2737 5745
mean 3889 6976 7495 47.60 5351 79589 5383 2691 5567
MOLORA-2 (rank ) 0.75% median 392 8214 8032 625 5039 8058 5738 2847  60.12
mean 3886 6571 800 600 508 8217 5651 2803 5776
MOoLORA-5 (rank 4) 1.66% median 3675 7143 7996 5625 5517 8581 558 27.63 586
mean 3752 6214 8022 526 5534 8405 5604 2662 5682
MOLORA-10 (rank 4 3.18% median 385 7857 7816 6346 5086 865 5541 2672 5977
mean 3849 6643 7744 599 5163 8496 561 267 5771
MOLORA-15 (rank 4)  4.69% median  40.0 8036 8051 6298 5086 890 5533 273 6079

mean 39.73  69.52 8097 60.67 51.54 865 5503 2725 58.9

Table 3: In our most comprehensive experimental setup, we conducted a zero-shot evaluation across
all unseen tasks using a 3B parameter model. We compared varying numbers of experts for both
MoV and MoLoRA and experimented with a top-k selection routing strategy

T5-XXL (11B)

Model % Params. Metric ANLI CB RTE WSC WIC Copa WNG HS  Average
TO-11B (Sanh et al., 2022)  100% median  42.17 7857 8123 6442 5721 90.79 6046 33.65  63.56
Full-FT mean 41.16  70.12 80.83 61.45 56.58 90.02 59.94 3358  61.70
TO-11B (our replication) 100% median  47.1 80.36  81.41 60.1 5627 96.08 67.32 31.61 65.03
mean 4583  72.62 8152 58.17 56.66 96.0 66.77 3095  63.57
PEFT (1A)? 0.0098% median 423 7321 7599 58.65 5204 8627 543 3027 59.12
mean 42.1 6327 7531 5549 5227 8574 5506 30.09 5741
MoV-10 0.143% median 45.83 7679 7852 53.85 51.88 9423 63.77 335 62.3
mean 4473 70.12 78.88 54.23 5326 93.64 63.57 33.59 61.5
MoV-20 0.287% median  44.58 7679 73.83 5577 5298 950 6227 3292 61.77
Our Method mean 4354 69.17 744 5288 545 9393 6295 3285 6053
MoV-30 0.431% median  43.6 76.79 77.62 5673 5384 93.62 6425 3134 6222
mean 4332 69.29 7722 5356 56.03 93.65 6352 31.32  60.99
MoV-60 0.862% median 45.17 750 83.03 60.1 53.68 9542 6582 3438  64.08

mean 439 69.88 83.07 56.54 5451 9401 6456 3417  62.58

Table 4: We evaluated the largest available model size from the original TS pre-trained checkpoint,
T5-XXL with 11B parameters, to demonstrate the efficacy of our proposed mixture of PEFT experts
at this scale.

better performance in terms of both mean and median values. The Anli dataset is excluded from our
embedding dataset.

A.4 FINE-TUNING EFFICIENCY: MOV Vs (IA)3

Table 6 shows the updated parameter count and training time ratios for Mixture of Vectors (MoV)
and (IA)® with respect to full-fine tuning. These metrics confirm that our MoV achieves a better
performance-efficiency trade-off compared to (IA)°.

17



Under review as a conference paper at ICLR 2024

MoV - Token vs. Sentence Embedding

Model Metric CB RTE WSC WIC Copa WNG HS  Average

MoV-10 (Token) - 770M median 42.86 74.19 625 5264 5264 770 2634 55.12
mean 4238 74,51 5923 522 522 7482 26.72 54.37
MoV-10 (Embedding) - 770M median 48.21 67.15 6298 51.8 5099 67.0 2638 53.5
mean 51.67 6729 5837 51.79 5099 658 @ 26.57 53.21
MoV-10 (Token) - 3B median 75.0 788 625 5219 5596 8577 30.24 62.94
mean 6345 7949 60.19 53.04 5627 86.41 29.11 61.14
MoV-10 (Embedding) - 3B median 57.14 67.15 61.06 5533 5249 825 29.08 57.82
mean 51.07 6881 58.65 5528 5257 80.53 28.51 56.49
MoV-10 (Token) - 11B median 76.79 7852 5385 51.88 63.77 9423 335 64.65
mean 70.12  78.88 5423 5326 6357 93.64 33.59 63.9
MoV-10 (Embedding) - 11B median 750 787 57.69 540 5785 92.0 33.08 64.05
mean 66.19 79.1 5837 5483 5878 O9l.17 327 63.02

Table 5: The above results demonstrate the effectiveness of token routing in comparison to imposing
a strong inductive bias, such as sentence embedding across various model parameters.

Base model Model % Params. % Training time Average zero-shot
size updated | reduction 1 performance 1
(IA)? 0.018% 38% 52.90
3B MoV (10 Experts) 0.32% 31% 59.93
MoV (30 Experts) 0.68% 27% 60.61
(1A)3 0.0098% 36% 59.12
11B MoV (10 Experts) 0.143% 27% 62.30
MoV (30 Experts) 0.431% 23% 62.22

Table 6: Fine-tuning efficiency metrics for Mixture of Vectors (MoV) and its dense PEFT counter-
part, (IA)>. We compare the ratio of updated parameters and the training times with respect to full
fine-tuning (with the same batch size), across different scales. MoV exhibits a marginal difference in
training time compared to (IA)® while demonstrating significant improvement in zero-shot perfor-
mance, achieving a better performance-efficiency trade-off.

18



Under review as a conference paper at ICLR 2024

A.5 MOLORA IMPLEMENTATION

class MoLORA_Layer (nn.module) :
n_experts: int # number of experts
rank: int # low-rank dimension
h_out: int # output dimension

def call(self, inputs):
# inputs shape: [batch, seqg, h_dim]
batch, seq, h_dim = inputs.shape

# MOLORA A: [n_experts, h_dim, rank]
molora_A = self.param('molora_A’,
nn.init.normal (), (self.n_experts, h_dim, self.rank))

# MoLORA B: [n_experts, rank, h_out]
molora_B = self.param('molora_B’,
nn.init.zeros (), (self.n_experts, self.rank, self.h_out))

# Ax: [batch, seq, n_experts, rank]

molora_Ax = jnp.einsum(’...d,edr->...er’,
inputs,
molora_A)

# BAx: [batch, seqg, n_experts, h_out]

molora_BAx = jnp.einsum(’...er,ero->...eo’,
molora_Ax,
molora_B)

# router probs: [batch, seq, n_experts]
router_probs = self.router (inputs,
self.n_experts, dtype=’float32’)

# combined LoRAs’ outputs: [batch, seq, h_out]

molora_combine = jnp.einsum(’...e,...eo0->...0",
router_probs,
molora_BAXx)

return molora_combine

19



