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S1 Supplementary methods

S1.1 Estimating conditional distributions and histograms

For any fixed K > 1, define the sequence ak = k/K for k ∈ {0, . . . ,K}, and let q̂(x) =
(q̂a0(x), . . . , q̂aK

(x)) denote a collection of K + 1 conditional quantile estimators,1 where q̂ak
(x)

attempts to approximate the ak-th quantile of the conditional distribution of Y | X = x, such
that q̂ak

(x) ≤ q̂ak+1
(x) for all k and x. Note that we allow multiple estimated quantiles to be

identical to each other, to accommodate the possibility of point masses. Furthermore, we assume
q̂0(x) and q̂1(x) are conservative upper and lower bounds for the support of Y | X = x, i.e.,
q̂0(X) = b0 < Y < bm = q̂1(X). We will discuss in the next section practical options for
estimating q̂(x). Now, we leverage any given q̂(x) to compute estimates π̂j(x) of the unknown
bin probabilities πj(x) in (6), for all j ∈ {1, . . . ,m}. Although there are multiple way of doing
this, a principled solution is to convert the information contained in q̂ into a piece-wise constant
density estimate, and then integrate that density within each bin. Precisely, for any fixed x, let
ĉ(x) = (ĉ0(x), . . . , ĉm̄(x)(x)) denote the strictly increasing sequence of m̄(x) ≤ m unique values in
q̂(x), and define our estimated conditional density f̂ as

f̂(y | x) = 1

m̄(x)

m̄(x)∑
j=1

hj(x)1 [ĉj−1(x) < y < ĉj(x)] ,

with

hj(x) =
#{j′ ∈ {0, . . . ,m} : q̂aj′ (x) = ĉj(x)}

m · [ĉj(x)− ĉj−1(x)]
.

Intuitively, f̂ is a histogram with m̄(x) bins, whose delimiters are (ĉ0(x), . . . , ĉm̄(x)(x)) and whose
heights are (h1(x), . . . , hm̄(x)(x)). The numerator in the expression for hj(x) counts the number of
estimated quantiles that are identical to the ĉj-th one, accounting for the possible presence of point
masses in the approximation of PY |X captured by q̂(x).

As the tails of the above estimated conditional density may be particularly inaccurate because
relatively little information is available to estimate extremely low or high quantiles, we smooth them.

1Recall the definition of conditional quantiles: each q̂c(x) is an estimate of the true c-th conditional quantile
of Y | X = x: that is, the smallest value of y such that P[Y ≤ y | X = x] ≥ c.
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This ensures any estimation errors will not make f̂ decay too fast, forcing one to look much farther
than necessary in the tails before finding sufficient mass for the desired prediction intervals. The
smoothing approach we adopt simply consists of making f̂ constant between b0 (the uniform lower
bound on Y ) and the 1% quantile, as well as between the 99% quantile and bm (the uniform upper
bound on Y ), distributing these 1% probability masses uniformly in the tails.2

We utilize the same estimated conditional distribution thus obtained for our method as well as for
our implementations of DCP and DistSplit, because it performs relatively well for all of them. In
particular, our method leverages this distribution to construct a conditional histogram as follows. The
probability mass π̂j(x) for the bin [bj−1, bj) is given by:

π̂j(x) =

∫ bj

bj−1

f̂(y | x)dy, (S1)

which is easy to compute because f̂ is piece-wise constant. Finally,
∑m

j=1 π̂j(x) = 1 by construction.

When implemented with a deep neural network [8], the multi-quantile regression method described
above has computational cost comparable to that of the bi-quantile regression model utilized by
CQR [9]. Indeed, the numbers of parameters and the architecture of the neural network are essentially
the same in both cases, the only difference is that our model has a wider output layer. Therefore,
the computational cost and training runtime are approximately the same. Intuitively, this can be
understood as thinking of the neural network as learning an approximate representation of the
conditional distribution of Y | X , regardless of how many different quantiles are explicitly estimated.
Of course, that is not to say that estimating many quantiles is as easy as estimating only two, but
most of the additional statistical difficulty would come from estimating extremely large or small
quantiles, not the intermediate ones. Precisely to avoid this problem, our model does not attempt to
estimate extremely large or small quantiles (below 1% or above 99%); instead, the tails are smoothed
as explained above.

S1.2 Randomized prediction intervals

Due to the discrete nature of the optimization problem in (7), the inequality involving τ may not
be binding at the optimal solution. Therefore, to avoid producing wider intervals than necessary,
we introduce some randomization. Let ε be a uniform random variable between 0 and 1 drawn
independently of everything else. Then, define the following function R, which takes as input
[l, u] ⊆ {1, . . . ,m}, x, π, ε, τ , and outputs a sub-interval of {1, . . . ,m}:

R([l, u], x, ε, π, τ) :=


[l, u], if ε > V ([l, u], x, π, τ),

[l − 1, u], if ε ≤ V ([l, u], x, π, τ) and πl(x) ≤ πu(x),

[l, u− 1], if ε ≤ V ([l, u], x, π, τ) and πl(x) > πu(x),

(S2)

where the function V is given by

V ([l, u], x, π, τ) :=

∑u
j=l πj(x)− τ

min {πl(x), πu(x)}
.

In words, R returns a random subset of [l, u] by removing the extreme bin with the smallest mass
according to π, based on the outcome of a biased coin flip, if the total mass in the original interval
exceeds τ . Consequently, the total mass in R([l, u], x, ε, π, τ) will on average be exactly equal to τ if
[l, u] is given by (7).

Inspired by the above oracle, the randomized version of our algorithm is implemented as follows.
First, fix any starting point t̄ ∈ {0, . . . , T} and define St̄ by applying (7) and (S2) without the nesting
constraints (with S− = ∅ and S+ = {1, . . . ,m}):

S0
t̄ := S(x, π, ∅, {1, . . . ,m}, τt̄), St̄ := R(S0

t̄ , x, ε, π, τt̄). (S3)
Having computed the initial interval St for t = t̄, we recursively extend the definition to the wider
intervals indexed by t = t̄+ 1, . . . , T as follows:

S0
t := S(x, π, St−1, {1, . . . ,m}, τt),

St :=

{
R(S0

t , x, ε, π, τt), if St−1 ⊆ R(S0
t , x, ε, π, τt),

S0
t , otherwise.

(S4)

2We thank Stephen Bates for suggesting a smoothing strategy which inspired this solution.
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Intuitively, the randomization step in (S4) is applied only if it does not violate the nesting constraints,
ensuring St̄ ⊆ St̄+1 ⊆ . . . ⊆ ST . See the top row of Figure 2 for a schematic of this step. Similarly,
the narrower intervals St indexed by t = t̄− 1, t̄− 2, . . . 0 are defined recursively as:

S0
t := S(x, π, ∅, S0

t+1, τt), St := R(S0
t , x, ε, π, τt). (S5)

See the bottom row of Figure 2 for a schematic of this step. Note that S in (7) is applied here in (S5)
with S+ = S0

t+1 to ensure the optimization problem has a feasible solution; this may not necessarily
be the case with S+ = St+1, as the latter is randomized and may therefore sometimes contain less
mass than necessary, according to the input π. Nonetheless, the sequence of intervals {St}Tt=0 thus
obtained is provably nested, as previewed in Figure 2. In the following, it will be convenient to
highlight the dependence of this sequence on x, ε, π by writing it as St(x, ε, π).
Proposition 1. The sequence of intervals {St}Tt=0 defined recursively by (S3)–(S5), and depending
on x, ε, π, always satisfies St−1 ⊆ St for all t ∈ {1, . . . , T}.

Proposition 1 is proved below. Again, note that this results holds regardless of the starting point t̄
in (S3), although the most intuitive choice is to pick t̄ such that τt̄ ≈ 1− α.

Proof of Proposition 1. First, we show St−1 ⊆ St for all t = t̄ + 1, . . . , T . We know from (S4)
that there are two possibilities. (i) If St−1 ⊆ R(S0

t , x, ε, π, τt), then St = R(S0
t , x, ε, π, τt) and

so St−1 ⊆ St. (ii) Otherwise, St = S0
t = S(x, π, St−1, {1, . . . ,m}, τt), which contains St−1 by

definition of S in (7).

Second, we show St ⊆ St+1 for all t = t̄ − 1, . . . , 0, using (S5). Here, we can also distinguish
between two possibilities. (i) If St+1 = S0

t+1, then S0
t ⊆ St+1 by definition of S in (7), and so

St ⊆ St+1 because St ⊆ S0
t . (ii) Otherwise, St+1 must have been randomized and this is the least

obvious case on which we focus below.

Suppose St+1 ⊂ S0
t+1. We know from the definition of S in (7) that S0

t ⊆ S0
t+1. On the one

hand, if S0
t = S0

t+1, it is easy to see from (S2) that St = St+1 because τt < τt+1, and so the same
bin randomly removed from S0

t+1 will also certainly be removed from St. On the other hand, if
S0
t ⊂ S0

t+1, it must be the case that S0
t ⊆ St+1 because St+1 is obtained by removing the boundary

bin of S0
t+1 with the smallest mass. Therefore, S0

t cannot include the aforementioned bin without also
satisfying S0

t = S0
t+1, for otherwise it would be possible to find an alternative S0′

t with equal length
and smaller but still feasible mass above τt, which is inconsistent with optimality of S0

t according to
the definition of S in (7). This implies St ⊂ S0

t+1 because St ⊂ S0
t , completing the proof.

S1.3 The DCP-CQR hybrid method

The DCP-CQR hybrid repurposes the DCP calibration algorithm [3] to adaptively choose which
lower and upper estimated quantiles should be extracted from the machine-learning model; then, it
takes these as a starting point for CQR [9]. By contrast, the original CQR requires one to pre-specify
which two conditional quantiles should be estimated by the machine learning model. For example,
we implement CQR by estimating the α/2 and 1− α/2 quantiles, as this is the most intuitive choice
and it guarantees the method is asymptotically efficient [11], although in a weaker sense compared to
the oracle property established by Theorem 2 for CHR.

The reason why DCP-CQR is more stable than DCP is that our hybrid only considers a limited grid
of possible quantiles (e.g., 1% to 99%). If the machine learning model is very inaccurate and the
fixed quantile grid turns out to be insufficient to reach 90% coverage (assuming α = 0.1) on the
calibration data, then we can simply rely on CQR to correct the coverage by adding a constant shift
to the prediction bands. By contrast, the original DCP [3] may sometimes rely on extreme quantiles
(e.g., 99.99%) of the conditional distribution estimated by the fitted model, which are unreliable.

S1.4 Calibration with cross-validation+

Algorithm S1 extends Algorithm 1 to accommodate a calibration scheme alternative to data splitting:
cross-validation+ [1]. While we do not fully review cross-validation+ for lack of space, readers aware
of the work of [1], or [4], will recognize this as a straightforward combination of their techniques
with our novel conformity scores.
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Algorithm S1: CV+ adaptive predictive intervals for regression
1 Input: data {(Xi, Yi)}ni=1, Xn+1, partition B of the domain of Y , level α ∈ (0, 1), resolution T

for the conformity scores, starting index t̄ for recursive definition of conformity scores,
machine-learning algorithm for estimating conditional distributions.

2 Randomly split the training data into K disjoint subsets, D1, . . . ,DK , each of size n/K.
3 Sample εi ∼ Uniform(0, 1) for each i ∈ {1, . . . , n+ 1}, independently of everything else.
4 for k ∈ {1, . . . ,K} do
5 Train any estimate π̂k of the mass of Y | X for each bin in B, e.g., with (S1), based on all

data points except those in Dk.
6 end
7 Use the function E defined in (11) to construct the prediction interval

ĈCV+
n,α (Xn+1) = Conv (C) , (S6)

where Conv(C) is the convex hull of the set C, which is defined as

C =

{
y :

1

n

n∑
i=1

1
[
E(Xi, Yi, εi, π̂

k(i)) < E(Xn+1, y, εn+1, π̂
k(i))

]
< 1− αn

}
, (S7)

with αn = α(1 + 1/n)− 1/n and k(i) ∈ {1, . . . ,K} is the fold containing the i-th sample.
8 Output: A prediction interval ĈCV+

n,α (Xn+1) for the unobserved label Yn+1.

Theorem S1 (Adapted from Theorem 3 in [4]). Under the same assumptions of Theorem 1, if π̂ is
invariant to permutations of its input samples, the output of Algorithm S1 satisfies:

P
[
{Yn+1 ∈ ĈCV+

n,α (Xn+1)
]
≥ 1− 2α−min

{
2(1− 1/K)

n/K + 1
,
1−K/n

K + 1

}
. (S8)

In the special case where K = n, this bound simplifies to:

P
[
Yn+1 ∈ ĈJK+

n,α (Xn+1)
]
≥ 1− 2α. (S9)

S2 Theoretical analysis

S2.1 Finite-sample analysis

Proof of Theorem 1. The interval Ĉsc
n,α(Xn+1) is such that Yn+1 ∈ Ĉsc

n,α(Xn+1) if and only if

min {t ∈ {0, . . . , T} : Yn+1 ∈ St(Xn+1, εn+1, π̂)} ≤ Q̂1−α({Ei}i∈Dcal).

Equivalently, Yn+1 ∈ Ĉsc
n,α(Xn+1) if and only if

En+1 ≤ Q̂1−α({Ei}i∈Dcal). (S10)

The proof is standard from here: the key idea is that the probability of the event in (S10) is at least
1− α because all conformity scores {Ei}n+1

i=1 are exchangeable; see [9] for details.

S2.2 Asymptotic analysis

Assumption 1 (i.i.d. data). The data {(Xi, Yi)}2n+1
i=1 are i.i.d. from some unknown joint distribution.

Assumption 2 (consistency). For any fixed n, let mn denote the number of bins in the partition B of
the space of Y utilized by our method. Let F (y | x) denote the cumulative distribution function of
Y | X = x, and define F̂ (y | x) as the estimate of the latter according to π̂ from (S1); i.e.,

F̂ (y | x) :=
ĵ(y)∑
j=1

π̂j(x),
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where ĵ(y) = max{j ∈ {1, . . . ,mn} : y ≤ bj}. Then, assume there exists a sequence ηn → 0, as
n → ∞, such that, for all j ∈ {1, . . . ,mn},

P
[
E
[(

F̂ (bj | X)− F (bj | X)
)2

| Dtrain

]
≤ η2n

]
≥ 1− η2n. (S11)

Further, mn = ⌊η−1
n ⌋ and Tn = n, where Tn is the resolution of the conformity scores Ei (11).

Assumption 3 (regularity). For any x ∈ Rp, the conditional distribution of Y | X = x is continuous
with density f(y | x) and support [−C,C], for some finite C > 0. Furthermore, 1/K < f(y | x) <
K/2 within [−C,C], for some K > 0.
Assumption 4 (unimodality). For any x ∈ Rp, the conditional distribution of Y | X = x is
unimodal; i.e., there exists y0 ∈ [−C,C] (depending on x), such that f(y0 + y′′ | x) ≤ f(y0 + y′) if
y′′ ≥ y′ ≥ 0, and f(y0 + y′′ | x) ≤ f(y0 + y′) if y′′ ≤ y′ ≤ 0.
Assumption 5 (smoothing). For any fixed n and x ∈ Rp, the estimated conditional distribution of
Y | X = x characterized by π̂(x) is unimodal. That it, there exists j0 ∈ {1, . . . ,mn} such that
π̂j0+k′′(x) ≤ π̂j0+k′(x) if k′′ ≥ k′ ≥ 0, and π̂j0+k′′(x) ≤ π̂j0+k′(x) if y′′ ≤ y′ ≤ 0, for all k′′, k′
such that j0 + k′′ ∈ {1, . . . ,m} and j0 + k′ ∈ {1, . . . ,m}. Furthermore, assume π̂j ≤ K for all
j ∈ {1, . . . ,mn}, for any n.

Note that, if π̂ is based on a quantile model as described in Section S1.1, Assumption 2 is closely
related to the consistency assumption on the estimated conditional quantiles utilized by [11] to
study CQR [9], although the latter only involved two fixed quantiles. More precisely, leveraging
Assumption 3, one could rewrite (S11) in terms of the consistency of the underlying quantile
regressors,

P
[
E
[
(q̂τt(X)− qτt(X))

2 | Dtrain
]
≤ η̃n

]
≥ 1− ρ̃n, (S12)

for some sequences η̃n → 0 and ρ̃n → 0 as n → ∞. The assumption in (S12) is also similar to that
adopted in [6] for mean regression estimators, and it is weaker than requiring consistency in the sense
of L2 convergence, by Markov’s inequality.

Main result

Theorem S2 (More precise restatement of Theorem 2). For any α ∈ (0, 1], let Ĉsc
n,α(X2n+1) denote

the prediction interval at level 1− α for Y2n+1 obtained by applying Algorithm 1 with εi = 0 for all
i ∈ {n+ 1, . . . , 2n+ 1}; that is, we omit the randomization in (S2). Under Assumptions 1–5, the
prediction interval Ĉsc

n,α(X2n+1) is asymptotically equivalent, as n → ∞, to Coracle
α (X2n+1)—the

output of the ideal oracle from (3)–(4). In particular, the following two properties hold.

(i) Asymptotic oracle length, in the sense that

P
[
|Ĉsc

n,α(X2n+1)| ≤ |Coracle
α (X2n+1)|+ γn

]
≥ 1− ξn,

where γn = 4Cηn +K
(
ϵn + 2η

1/3
n

)
→ 0, and ξn = δn + 2n−2 → 0.

(ii) Asymptotic oracle conditional coverage, in the sense that

P
[
P
[
Y ∈ Ĉsc

n,α(X2n+1) | X2n+1

]
≥ 1− α− ϵn

]
≥ 1− ζn,

where ϵn = 2/n+5η
1/3
n +(1+2K)ηn+2

√
(log n)/n → 0 and ζn = η

1/3
n +ηn+2n−2 → 0.

Proof of Theorem S2. Assumption 4 (unimodality) and Assumption 5 (smoothness) imply the op-
timal intervals solving (7) for different values of τ are nested, so we do not need to define the
prediction intervals recursively. More precisely, under Assumptions 4 and 5, Ĉsc

n,α(X2n+1) =

Ŝ(X, π̂, Q̂1−α(Ei)), where Ŝ(X, π̂, Q̂1−α(Ei)) is the solution to the optimization problem in (7)
with S− = ∅ and S+ = {1, . . . ,m}, while Q̂τ (Ei) is the ⌈τ(n+1)⌉ smallest value among {Ei} for
i ∈ {n+ 1, . . . , 2n} for any τ ∈ (0, 1]. The above simplification, combined with the assumed lack
of randomization, will simplify our task considerably.
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In order to keep the notation consistent, we will refer to Coracle
τ (X2n+1) as the optimal solution

S∗(X2n+1, f, τ) to the oracle optimization problem in (3)–(4), where f is the conditional probability
density of Y | X . Furthermore, without loss of generality, we divide the conformity scores Ei

of Algorithm 1 by T , so that they take values between 0 and 1 and can be directly interpreted as
probabilities.

The proof will develop as follows.

(i) Near-optimal length. First, we will prove in Lemma S1 that each interval Ŝ(X, π̂, τ) typi-
cally cannot be much wider than the corresponding oracle interval S∗(X, f, τ + δτ), for any
fixed τ and an appropriately small δτ > 0. This result will be based on Assumption 2 (con-
sistency). Then, we will prove in Lemma S2 that Q̂1−α({Ei}i∈Dcal) cannot be much larger
than 1− α; this will be based on Assumption 2 (consistency) as well as on Assumption 1
(i.i.d. data), which makes the empirical quantiles to concentrate around their population
values. Combining the above two lemmas will allow us to conclude that Ŝ(X, π̂, τ̂) cannot
typically be much wider than S∗(X, f, 1− α).

(ii) Near-conditional length. First, we will prove in Lemma S3 that Q̂1−α({Ei}i∈Dcal) cannot
be much smaller than 1− α; again, this relies on the concentration of empirical quantiles
due to the i.i.d. assumption. Then, we will prove in Lemma S4 that the conditional coverage
of Ŝ(X, π̂, τ) cannot be much smaller than τ , for any fixed τ ∈ (0, 1]; this result relies on
the consistency assumption. Combining the above two lemmas will allow us to conclude
that Ŝ(X, π̂, τ̂) cannot typically have conditional coverage much smaller than 1− α.

While Assumptions 1–2 will be critical, as previewed above, Assumptions 3–5 will play a subtler yet
important role in connecting the various pieces.

Lemma S1. Under Assumptions 1–5, for any τ ∈ (0, 1) and X |= Dtrain,

P
[
|Ŝ(X, π̂, τ)| ≤ |S∗(X, f, τ + 2η1/3n )|+ 4Cηn

]
≥ 1− δn,

where δn := η
1/3
n + ηn.

Lemma S2. For any τ ∈ (0, 1], let Q̂τ (Ei) denote the ⌈τ(n + 1)⌉ smallest value among the
conformity scores {Ei} for i ∈ Dcal, where n = |Dcal| and

Ei := min
{
τt ∈ {0, 1/Tn, . . . , (Tn − 1)/Tn, 1} : Yi ∈ Ŝ(Xi, π̂, τt)

}
.

Then, under Assumptions 1–5, for any c > 0,

P
[
Q̂τ (Ei) ≤ τ + ϵn

]
≥ 1− 2n−2c2 ,

where ϵn := 3/n+ 3η
1/3
n + ηn + 2c

√
(log n)/n.

(i) Near-optimal length. Define δn := η
1/3
n + ηn as in Lemma S1, and ϵn := 3/n+ 3η

1/3
n + ηn +

2c
√
(log n)/n, for any c > 0, as in Lemma S2. In the event that Q̂1−α(Ei) ≤ 1− α+ ϵn,

P
[
|Ŝ(X, π̂, Q̂1−α(Ei))| ≤ |S∗(X, f, 1− α+ ϵn + 2η1/3n )|+ 4Cηn

]
≥ P

[
|Ŝ(X, π̂, 1− α+ ϵn)| ≤ |S∗(X, f, 1− α+ ϵn + 2η1/3n )|+ 4Cηn

]
≥ 1− δn,

where the second inequality follows by applying Lemma S1 with τ = 1 − α + ϵn. Further, as
Lemma S2 tells us the above event occurs with high probability,

P
[
Q̂1−α(Ei) ≤ 1− α+ ϵn

]
≥ 1− 2n−2c2 ,
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in general we have that

P
[
|Ŝ(X, π̂, Q̂1−α(Ei))| ≤ |S∗(X, f, 1− α+ ϵn + 2η1/3n )|+ 4Cηn

]
≥ 1− δn − 2n−2c2 .

By Assumption 3, f(y | x) > 1/K for all y ∈ [−C,C]. This implies |S∗(X, f, τ)| is K-Lipschitz
as a function of τ . Therefore,

P
[
|Ŝ(X, π̂, Q̂1−α(Ei))| ≤ |S∗(X, f, 1− α)|+ 4Cηn +K

(
ϵn + 2η1/3n

)]
≥ P

[
|Ŝ(X, π̂, Q̂1−α(Ei))| ≤ |S∗(X, f, 1− α+ ϵn + 2η1/3n )|+ 4Cηn

]
≥ 1− δn − 2n−2c2 .

Hence we have proved that

P
[
|Ŝ(X, π̂, Q̂1−α(Ei))| ≤ |S∗(X, f, 1− α)|+ γn

]
≥ 1− ξn,

where γn = 4Cηn +K(ϵn + 2η
1/3
n ) and ξn = δn + 2n−2c2 . For simplicity, we then set c = 1. This

completes the proof of (i).

Lemma S3. For any τ ∈ (0, 1], let Q̂τ (Ei) denote the ⌈τ(n+ 1)⌉ smallest value among {Ei} for
i ∈ Dcal, where n = |Dcal| and

Ei := min
{
τt ∈ {0, 1/Tn, . . . , (Tn − 1)/Tn, 1} : Yi ∈ Ŝ(Xi, π̂, τt)

}
.

Then, under Assumptions 1–5, for any c > 0,

P
[
Q̂τ (Ei) ≥ τ − ϵ̄n

]
≥ 1− 2n−2c2 ,

where ϵ̄n := 2/n+ 3η
1/3
n + (1 + 2K)ηn + 2c

√
(log n)/n.

Lemma S4. Consider a test point (X,Y ) |= Dtrain,Dcal. ∀τ ∈ (0, 1], under Assumptions 1–5,

P
[
P
[
Y ∈ Ŝ(X, π̂, τ) | X

]
≥ τ − 2η1/3n

]
≥ 1− η1/3n − ηn.

(ii) Near-conditional coverage. Define ϵ̄n := 2/n+ 3η
1/3
n + (1 + 2K)ηn + 2c

√
(log n)/n as in

Lemma S3. Then, focus on the event

E :=
{
Q̂1−α(Ei) ≥ 1− α− ϵ̄n

}
.

In this event, for a new test point (X,Y ) |= Dtrain,Dcal,

P
[
P
[
Y ∈ Ŝ(X, π̂, Q̂1−α(Ei)) | X

]
≥ 1− α− ϵ̄n − 2η1/3n

]
≥ P

[
P
[
Y ∈ Ŝ(X, π̂, 1− α− ϵ̄n) | X

]
≥ 1− α− ϵ̄n − 2η1/3n

]
≥ 1− η1/3n − ηn,

where the last inequality follows by applying Lemma S4 with τ = 1 − α − ϵ̄n. Finally, note that
Lemma S3 says the event E occurs with probability at least 1− 2n−2, if we choose c = 1. Therefore,

P
[
P
[
Y ∈ Ŝ(X, π̂, Q̂1−α(Ei)) | X

]
≥ 1− α− ϵ̄n − 2η1/3n

]
≥ 1− η1/3n − ηn − 2n−2.
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Proofs of technical lemmas

The proofs of Lemmas S1–S4 will rely on the following additional lemma, which we state here and
prove last.
Lemma S5. Define the event An as

An :=

{
x : sup

j∈{1,...,mn}
|F̂ (bj | x)− F (bj | x)| > η1/3n

}
.

Then, under Assumptions 1–5, for any X |= Dtrain,

P[X ∈ An] ≤ η1/3n + ηn.

Furthermore, partitioning the calibration data points into

Dcal,a := {i ∈ {n+ 1, . . . , 2n} : Xi ∈ An}, Dcal,b := {i ∈ {n+ 1, . . . , 2n} : Xi ∈ Ac
n},

we have that, for any constant c > 0,

P
[
|Dcal,a| ≥ n

(
η1/3n + ηn

)
+ c

√
n log n

]
≤ n−2c2 .

Proof of Lemma S1. Consider the event An defined in Lemma S5,

An :=

{
x : sup

j∈{1,...,mn}
|F̂ (bj | x)− F (bj | x)| > η1/3n

}
,

and let us restrict our attention to the case in which X belongs to the complement of An.

Omitting the explicit dependence on X and π̂, we can write Ŝ(X, π̂, τ) = [ĵ1, ĵ2], for some ĵ1, ĵ2 ∈
{1, . . . ,mn} such that F̂ (bĵ2) − F̂ (bĵ1−1) ≥ τ . Because we are assuming X belongs to the

complement of An, the triangle inequality implies F (bĵ2)− F (bĵ1−1) ≥ τ − 2η
1/3
n . Consider now

the oracle interval S∗(X, f, τ + 2η
1/3
n ), which we can write in short as [l∗, u∗], for some l∗, u∗ ∈ R

such that F (u∗) − F (l∗) ≥ τ + 2η
1/3
n . Define now j′1, j

′
2 ∈ {1, . . . ,mn} as the indices of the

discretized bins immediately below and above l∗, u∗, respectively; precisely,

j′1 := max{j ∈ {1, . . . ,mn} : bj < l∗},
j′2 := min{j ∈ {1, . . . ,mn} : bj > u∗}.

This definition implies
bj′2 − bj′1 ≤ u∗ − l∗ + 4C/mn,

as each bin has width 2C/mn. Furthermore,

F̂ (bj′2)− F̂ (bj′1) ≥ F̂ (u∗)− F̂ (l∗)

≥ F (u∗)− F (l∗)− 2η1/3n

≥ τ.

Above, the first inequality follows from the fact that j′1 < l∗ and j′2 > u∗, the second inequality
follows from the assumption that X belongs to the complement of An, and the third inequality
follows directly from the definition of the oracle. The result implies that [j′1, j

′
2] would be a feasible

solution for the discrete optimization problem solved by Ŝ(X, π̂, τ); therefore, it must be the case
that ĵ2 − ĵ1 ≤ j′2 − j′1 because ĵ2 − ĵ1 is minimal among all feasible solutions to this problem.
Therefore, we can conclude that, if X belongs to the complement of An, then

|Ŝ(X, π̂, τ)| = bĵ2 − bĵ1 ≤ bj′2 − bj′1

≤ |S∗(X, f, τ + 2η1/3n )|+ 4C/mn.

Finally, the proof is complete by applying Lemma S5.
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Proof of Lemma S2. Take any i ∈ Dcal,b, where Dcal,b is defined as in Lemma S5:

Dcal,b := {i ∈ {n+ 1, . . . , 2n} : Xi ∈ Ac
n},

where

An :=

{
x : sup

j∈{1,...,mn}
|F̂ (bj | x)− F (bj | x)| > η1/3n

}
.

For any fixed t ∈ {0, . . . , Tn} and τt = t/Tn, omitting the explicit dependence on X and π̂, we
can write Ŝ(X, π̂, τt) = [ĵ1, ĵ2], for some ĵ1, ĵ2 ∈ {1, . . . ,mn} such that F̂ (bĵ2)− F̂ (bĵ1−1) ≥ τt.
Then, note that

P[Ei ≤ τt] = P
[
Yi ∈ Ŝ(Xi, π̂, τt)

]
= F (bĵ2)− F (bĵ1−1)

≥ F̂ (bĵ2)− F̂ (bĵ1−1)− 2η1/3n

≥ τt − 2η1/3n .

Above, the first inequality follows from the definition of Dcal,b. Equivalently, we can rewrite this as

P
[
Ei > τt + 2η1/3n + δn

]
≤ 1− τt − δn,

for any δn > 0. Now, partition Dcal,b into the following two disjoint subsets:

Dcal,b1 := {i ∈ Dcal,b : Ei ≤ τt + 2η1/3n + δn},
Dcal,b2 := {i ∈ Dcal,b : Ei > τt + 2η1/3n + δn}.

As in the proof of Lemma S5, we bound |Dcal,b2| with Hoeffding’s inequality. For any i ∈ Dcal,
define Ẽi = Ei if i ∈ Dcal,b and Ei = τt otherwise. For any ϵ > 0,

P
[
|Dcal,b2| ≥ n(1− τt − δn) + ϵ

]
≤ P

 1

n

∑
i∈Dcal,b

1

[
Ẽi > τt + 2η1/3n + δn

]
≥ P

[
Ei > τt + 2η1/3n + δn

]
+

ϵ

n


= P

[
1

n

n∑
i=1

1

[
Ẽi > τt + 2η1/3n + δn

]
≥ P

[
Ei > τt + 2η1/3n + δn

]
+

ϵ

n

]

≤ P

[
1

n

n∑
i=1

1

[
Ẽi > τt + 2η1/3n + δn

]
≥ P

[
Ẽi > τt + 2η1/3n + δn

]
+

ϵ

n

]

≤ exp

(
−2ϵ2

n

)
.

Therefore, setting ϵ = c
√
n log n, for some constant c > 0, yields

P
[
|Dcal,b2| ≥ n(1− τt − δn) + c

√
n log n

]
≤ n−2c2 .

As |Dcal,b1| = n− |Dcal,a| − |Dcal,b2|, combining the above result with that of Lemma S5 yields:

P
[
|Dcal,b1| ≥ nτt + nδn − n

(
η1/3n + ηn

)
− 2c

√
n log n

]
≥ 1− 2n−2c2 .

If we choose δn = τt/n+
(
η
1/3
n + ηn

)
+ 2c

√
(log n)/n, this becomes

P
[
|Dcal,b1| ≥ τt(n+ 1)

]
≥ 1− 2n−2c2 ,

which means

P
[
Q̂τt(Ei) ≤ τt + τt/n+ 3η1/3n + ηn + 2c

√
(log n)/n

]
≥ 1− 2n−2c2 .
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Now, consider any continuous τ ∈ (0, 1], and let t′ = min{t ∈ {0, . . . , Tn} : τt ≥ τ}. As τt′ ≥ τ ,
we know Q̂τt′ (Ei) ≥ Q̂τ (Ei). Therefore,

P
[
Q̂τ (Ei) ≤ τt′ + τt′/n+ 3η1/3n + ηn + 2c

√
(log n)/n

]
≥ P

[
Q̂τt′ (Ei) ≤ τt′ + τt′/n+ 3η1/3n + ηn + 2c

√
(log n)/n

]
≥ 1− 2n−2c2 .

However, as Tn = n, we also have that τt′ ≤ τ + 1/n. Therefore,

P
[
Q̂τ (Ei) ≤ τ + 1/n+ τ/n+ 1/n2 + 3η1/3n + ηn + 2c

√
(log n)/n

]
≥ 1− 2n−2c2 .

Finally, we simplify by replacing 1/n+ τ/n+ 1/n2 with 3/n, which preserves the inequality.

Proof of Lemma S3. The proof is similar to that of the analogous upper bound in Lemma S2. Take
any i ∈ Dcal,b, where Dcal,b is defined as in Lemma S5:

Dcal,b := {i ∈ {n+ 1, . . . , 2n} : Xi ∈ Ac
n},

with

An :=

{
x : sup

j∈{1,...,mn}
|F̂ (bj | x)− F (bj | x)| > η1/3n

}
.

For any t ∈ {0, . . . , Tn} and τt = t/Tn, omitting the explicit dependence on X and π̂, we can write
Ŝ(X, π̂, τt) = [ĵ1, ĵ2], for some ĵ1, ĵ2 ∈ {1, . . . ,mn} such that F̂ (bĵ2)− F̂ (bĵ1−1) ≥ τt. Then,

P[Ei ≤ τt] = P
[
Yi ∈ Ŝ(Xi, π̂, τt)

]
= F (bĵ2)− F (bĵ1−1)

≤ F̂ (bĵ2)− F̂ (bĵ1−1) + 2η1/3n

≤ τt + 2Kηn + 2η1/3n .

Above, the first inequality follows directly from the definition of Dcal,b. The second inequality follows
from the observation that Ŝ(Xi, π̂, τt) could not be optimal if F̂ (bĵ2) − F̂ (bĵ1−1) ≥ τt + 2Kηn
because it would be possible to obtain a shorter feasible interval by removing either the leftmost or
the rightmost bin. In fact, each bin j carries an estimated mass π̂j ≤ Kηn, and π̂ is assumed to be
unimodal. Fix any δn > 0, and let us rewrite the above result as

P
[
Ei ≤ τt − 2Kηn − 2η1/3n − δn

]
≤ τt + δn.

Now, partition Dcal,b into the following two disjoint subsets:

Dcal,b1 := {i ∈ Dcal,b : Ei ≤ τ − 2Kηn − 2η1/3n − δn},
Dcal,b2 := {i ∈ Dcal,b : Ei > τ − 2Kηn − 2η1/3n − δn}.
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As in the proof of Lemma S2, we will bound |Dcal,b2| with Hoeffding’s inequality. For any i ∈ Dcal,
define Ẽi = Ei if i ∈ Dcal,b and Ei = τt otherwise. For any ϵ > 0,

P
[
|Dcal,b1| ≥ n(1− τt − δn) + ϵ

]
≤ P

 1

n

∑
i∈Dcal,b

1

[
Ẽi ≤ τt − 2Kηn − 2η1/3n − δn

]
≥ P

[
Ei ≤ τt − 2Kηn − 2η1/3n − δn

]
+

ϵ

n


= P

[
1

n

n∑
i=1

1

[
Ẽi ≤ τt − 2Kηn − 2η1/3n − δn

]
≥ P

[
Ei ≤ τt − 2Kηn − 2η1/3n − δn

]
+

ϵ

n

]

≤ P

[
1

n

n∑
i=1

1

[
Ẽi ≤ τt − 2Kηn − 2η1/3n − δn

]
≥ P

[
Ẽi ≤ τt − 2Kηn − 2η1/3n − δn

]
+

ϵ

n

]

≤ exp

(
−2ϵ2

n

)
.

Therefore, setting ϵ = c
√
n log n, for some constant c > 0, yields

P
[
|Dcal,b1| ≥ n(1− τt − δn) + c

√
n log n

]
≤ n−2c2 .

As |Dcal,b2| = n− |Dcal,a| − |Dcal,b1|, combining the above result with that of Lemma S5 yields:

P
[
|Dcal,b2| ≥ nτt + nδn − n

(
η1/3n + ηn

)
− 2c

√
n log n

]
≥ 1− 2n−2c2 .

If we choose δn = τt/n+
(
η
1/3
n + ηn

)
+ 2c

√
(log n)/n, this becomes

P
[
|Dcal,b2| ≥ τt(n+ 1)

]
≥ 1− 2n−2c2 ,

which means

P
[
Q̂τt(Ei) ≥ τt − τt/n− 3η1/3n − (1 + 2K)ηn − 2c

√
(log n)/n

]
≥ 1− 2n−2c2 .

Now, consider any continuous τ ∈ (0, 1], and let t′ = max{t ∈ {0, . . . , Tn} : τt ≤ τ}. As τ ≥ τt′ ,
we know Q̂τ (Ei) ≥ Q̂τt′ (Ei). Therefore,

P
[
Q̂τ (Ei) ≥ τt′ − τt′/n− 3η1/3n − (1 + 2K)ηn − 2c

√
(log n)/n

]
≥ P

[
Q̂τt(Ei) ≥ τt − τt/n− 3η1/3n − (1 + 2K)ηn − 2c

√
(log n)/n

]
≥ 1− 2n−2c2 .

However, as Tn = n, we also have that τt′ ≥ τ − 1/n. Therefore,

1− 2n−2c2 ≤ P
[
Q̂τ (Ei) ≥ (τ − 1/n)(1− 1/n)− 3η1/3n − (1 + 2K)ηn − 2c

√
(log n)/n

]
≤ P

[
Q̂τ (Ei) ≥ τ − τ/n− 1/n+ 1/n2 − 3η1/3n − (1 + 2K)ηn − 2c

√
(log n)/n

]

Finally, we simplify by replacing −1/n− τ/n+ 1/n2 with −2/n, which preserves the inequality.

Proof of Lemma S4. Let us begin by conditioning on X = x, assuming x ∈ Ac
n, where An is

defined as in Lemma S5:

An :=

{
x : sup

j∈{1,...,mn}
|F̂ (bj | x)− F (bj | x)| > η1/3n

}
.
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Omitting the explicit dependence on x and π̂, we can write Ŝ(x, π̂, τ) = [ĵ1, ĵ2], for some ĵ1, ĵ2 ∈
{1, . . . ,mn} such that F̂ (bĵ2)− F̂ (bĵ1−1) ≥ τ .

P
[
Y ∈ Ŝ(x, π̂, τ) | X = x

]
= F (bĵ2)− F (bĵ1−1)

≥ F̂ (bĵ2)− F̂ (bĵ1−1)− 2η1/3n

≥ τ − 2η1/3n ,

where the second inequality follows from the definition of the complement of An. Finally, we know
from Lemma S5 that P[X ∈ Ac

n] ≥ 1− η
1/3
n − ηn.

Proof of Lemma S5. The first part of this result follows from the definition of An by a union bound.
For any fixed j ∈ {1, . . . ,mn},

P[X ∈ An] = P

[
sup

j′∈{1,...,mn}
|F̂ (bj′ | x)− F (bj′ | x)|2 > η2/3n

]
≤ mn P

[
|F̂ (bj | x)− F (bj | x)|2 > η2/3n

]
≤ mn

(
η−2/3
n E

[
E
[
|F̂ (bj | x)− F (bj | x)|2 | Dtrain

]])
≤ mn

(
η−2/3
n η2n + η2n

)
≤ mn

(
η4/3n + η2n

)
≤ η1/3n + ηn.

The second inequality above is Markov’s inequality, while the third inequality follows directly from
Assumption 2. The last inequality is a consequence of mn = ⌊η−1

n ⌋, also from Assumption 2.

The second part of this result follows from Hoeffding’s inequality. As we know from the above that
P[X ∈ An] ≤ η

1/3
n + ηn, for any ϵ > 0,

P
[
|Dcal,a| ≥ n

(
η1/3n + ηn

)
+ ϵ

]
≤ P

[
|Dcal,a| ≥ nP[X ∈ An] + ϵ

]
≤ P

[
1

n

2n∑
i=n+1

1 [Xi ∈ An] ≥ P[Xi ∈ An] +
ϵ

n

]

≤ exp

(
−2ϵ2

n

)
.

Therefore, setting ϵ = c
√
n log n, for some constant c > 0, yields

P
[
|Dcal,a| ≥ n

(
η1/3n + ηn

)
+ c

√
n log n

]
≤ n−2c2 .

S3 Numerical experiments

This section provides additional details about the numerical experiments with synthetic and real data.

S3.1 Base machine learning models

We estimate the distribution of Y | X using the following quantile regression models.

• Deep neural network. The network is composed of three fully connected layers with a
hidden dimension of 64, and ReLU activation functions. We use the pinball loss [12] to
estimate the conditional quantiles, with a dropout regularization of rate 0.1. The network is
optimized using Adam [5] with a learning rate equal to 0.0005. We tune the optimal number
of epochs by cross validation, minimizing the loss function on the hold-out data points; the
maximal number of epochs is set to 2000.
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• Random forest. We use the Python Scikit-garden implementation of quantile regression
forests [7]. We adopt the default hyper-parameters, except for the minimum number of
samples required to split an internal node, which we set to 50, and the total number of trees,
which we fix equal to 100.

Our numerical experiments were conducted on Xeon-2640 CPUs in a computing cluster. Each data
set was analyzed using a single core and less than 5 GB of memory; the longest job took less than 12
hours. The computational cost of the novel part of CHR is negligible: the majority of the computing
resources were dedicated to training the base models.

S3.2 Additional experiments with synthetic data

Figure S1: Performance of our method (CHR) compared to that of naive uncalibrated prediction
intervals based on the same deep neural network regression model, in the experiments of Figure 3.

S3.3 Additional experiments with real data

In Section 4.3 of the main article, we compared the performance of our method to that of several
benchmarks using a deep neural network base model. Figure S2 provides additional comparisons
using a random forest base model. The bottom panel of this figure shows the average interval
length. Our method (CHR) significantly outperforms all benchmarks by this metric, as it consistently
constructs shorter intervals. The top panel of Figure S2 compares these alternative methods in terms
of their worst-slab conditional coverage [2], which we estimate as in [10]. All methods achieve high
conditional coverage on most data sets, except for CHR which tends to slightly undercover in the
case of the two Facebook data sets (fb1 and fb2). Lastly, we note that all methods achieve exact 90%
marginal coverage, as guaranteed theoretically; see Table S1 for additional performance details.
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Table S1: Performance of our method and benchmarks on several real data sets, using either a deep
neural network or a random forest base model. The numerical values indicate values averaged over
100 random test sets (standard deviations are in parenthesis). Other details are as in Figures 4 and S2.

Neural Network Random Forest

Coverage Coverage

Data Method Marginal Condit. Width Marginal Condit. Width

CHR 0.90 (0.01) 0.88 (0.03) 13.1 (0.3) 0.90 (0.01) 0.90 (0.03) 10.4 (0.3)
CQR 0.90 (0.01) 0.88 (0.03) 14.5 (0.2) 0.90 (0.01) 0.89 (0.03) 12.9 (0.1)
DCP 0.90 (0.01) 0.88 (0.03) 14.6 (0.3) 0.90 (0.01) 0.90 (0.02) 11.7 (0.2)

DCP-CQR 0.90 (0.01) 0.87 (0.03) 14.8 (0.4) 0.90 (0.01) 0.89 (0.03) 11.9 (0.3)

bio

DistSplit 0.90 (0.01) 0.88 (0.03) 14.7 (0.3) 0.90 (0.01) 0.90 (0.03) 11.9 (0.3)

CHR 0.90 (0.01) 0.88 (0.03) 10.9 (1.2) 0.90 (0.01) 0.88 (0.03) 10.3 (1.2)
CQR 0.90 (0.01) 0.87 (0.04) 15.0 (1.5) 0.90 (0.01) 0.90 (0.02) 21.1 (1.6)
DCP 0.90 (0.01) 0.89 (0.03) 1422.3 (0.1) 0.90 (0.01) 0.90 (0.03) 1421.3 (0.1)

DCP-CQR 0.90 (0.01) 0.86 (0.04) 14.0 (1.4) 0.90 (0.01) 0.90 (0.03) 21.4 (1.8)

blog

DistSplit 0.90 (0.01) 0.87 (0.04) 15.8 (1.6) 0.90 (0.01) 0.89 (0.03) 16.7 (1.8)

CHR 0.90 (0.01) 0.87 (0.04) 10.6 (0.9) 0.90 (0.01) 0.87 (0.04) 11.2 (0.9)
CQR 0.90 (0.01) 0.89 (0.03) 14.6 (1.0) 0.90 (0.01) 0.90 (0.02) 19.2 (1.5)
DCP 0.90 (0.01) 0.90 (0.03) 1303.3 (0.1) 0.90 (0.01) 0.90 (0.03) 1302.6 (0.1)

DCP-CQR 0.90 (0.01) 0.89 (0.03) 13.2 (1.1) 0.90 (0.01) 0.90 (0.03) 19.4 (1.7)

fb1

DistSplit 0.90 (0.01) 0.89 (0.03) 14.3 (1.1) 0.90 (0.01) 0.90 (0.03) 16.5 (1.3)

CHR 0.90 (0.01) 0.87 (0.03) 11.0 (0.9) 0.90 (0.01) 0.86 (0.03) 10.8 (0.9)
CQR 0.90 (0.01) 0.89 (0.03) 14.2 (0.9) 0.90 (0.01) 0.90 (0.03) 17.7 (1.4)
DCP 0.90 (0.01) 0.90 (0.03) 1964.0 (0.1) 0.90 (0.01) 0.89 (0.03) 1963.4 (0.1)

DCP-CQR 0.90 (0.01) 0.89 (0.03) 12.8 (1.1) 0.90 (0.01) 0.89 (0.03) 17.8 (1.6)

fb2

DistSplit 0.90 (0.01) 0.89 (0.03) 14.2 (1.1) 0.90 (0.01) 0.89 (0.03) 15.1 (1.3)

CHR 0.90 (0.01) 0.90 (0.02) 20.1 (1.3) 0.90 (0.01) 0.89 (0.03) 18.4 (1.3)
CQR 0.90 (0.01) 0.89 (0.03) 29.3 (1.2) 0.90 (0.01) 0.90 (0.02) 32.6 (1.3)
DCP 0.90 (0.01) 0.89 (0.03) 559.3 (0.0) 0.90 (0.01) 0.89 (0.03) 559.0 (0.0)

DCP-CQR 0.90 (0.01) 0.89 (0.03) 33.3 (2.3) 0.90 (0.01) 0.90 (0.03) 32.2 (2.0)

meps19

DistSplit 0.90 (0.01) 0.90 (0.03) 30.0 (2.3) 0.90 (0.01) 0.90 (0.03) 29.8 (2.2)

CHR 0.90 (0.01) 0.90 (0.02) 19.1 (1.2) 0.90 (0.01) 0.90 (0.02) 17.7 (1.1)
CQR 0.90 (0.01) 0.88 (0.02) 28.1 (1.0) 0.90 (0.01) 0.90 (0.03) 30.5 (1.3)
DCP 0.90 (0.01) 0.89 (0.03) 520.3 (0.0) 0.90 (0.01) 0.89 (0.03) 520.1 (0.0)

DCP-CQR 0.90 (0.01) 0.89 (0.02) 32.1 (2.2) 0.90 (0.01) 0.90 (0.02) 29.9 (2.0)

meps20

DistSplit 0.90 (0.01) 0.89 (0.03) 28.8 (2.0) 0.90 (0.01) 0.90 (0.03) 27.9 (2.0)

CHR 0.90 (0.01) 0.90 (0.03) 20.5 (1.2) 0.90 (0.01) 0.90 (0.03) 19.2 (1.1)
CQR 0.90 (0.01) 0.89 (0.03) 30.1 (1.3) 0.90 (0.01) 0.90 (0.02) 33.4 (1.4)
DCP 0.90 (0.01) 0.89 (0.03) 531.3 (0.0) 0.90 (0.01) 0.89 (0.03) 531.0 (0.0)

DCP-CQR 0.90 (0.01) 0.89 (0.03) 34.5 (2.4) 0.90 (0.01) 0.90 (0.02) 32.9 (2.1)

meps21

DistSplit 0.90 (0.01) 0.90 (0.03) 30.5 (2.0) 0.90 (0.01) 0.90 (0.03) 30.6 (2.1)
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Figure S2: Performance of our method and benchmarks on several real data sets, using a random
forest base model. Other details are as in Figure 4.

Figure S3: Performance of our method (CHR) compared to that of naive uncalibrated prediction
intervals based on the same deep neural network regression model, in the experiments with real data
of Figure 4. Note that the top part of this plot shows marginal coverage.
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