
A Experiment Details529

A.1 Non-Cooperative Navigation530

Non-Cooperative Navigation is developed based on the Multi-agent Particles Environment531

(MPE) [10]. n agents are required to maximize their coverage over n landmarks without any ex-532

plicit cooperation or inter-agent communication mechanism. Instead of being assigned some pre-533

determined landmarks as their destinations, agents are attracted to the immediate closest landmark534

at each time step. This indicates that an agent’s destination is not fixed in an episode and that mul-535

tiple agents can be attracted to a specific landmark simultaneously. Agents should properly select536

their intention landmarks, reach and stay at their intended landmarks, and avoid any conflicts with537

other agents. The length of each episode is 50 steps. Agents and landmarks are randomly initialized538

within a 2 × 2 world space. All plots in Non-Cooperative Navigation are averaged over 3 random539

seeds.540

In Non-Cooperative Navigation, there are three different kinds of agents that are controllable by541

MARL policies and one kind of agent that is controlled by the pre-defined random policy taking542

random actions at each time step. Table 2 shows the parameters of different kinds of agents; their543

major differences come from their sizes and acceleration values:544

Agent Type Size Acceleration
Normal 0.08 1.0

Tiny 0.06 1.1
Bulky 0.10 0.9

Random 0.08 1.0
Table 2: Parameters for Agents used in Non-cooperative Navigation

Scenarios. Two scenarios with different heterogeneity levels are included in this paper:545

• Easy: 1 Normal agent, 1 Tiny agent, and 1 Bulky agent.546

• Hard: 1 Normal agent, 1 Tiny agent, 1 Bulky agent, and 1 Random agent.547

Note that all agents in the easy scenario are controllable. One uncontrollable agent exists along with548

three controllable agents in the hard scenario, which makes this scenario more heterogeneous.549

Observation Space. Non-Cooperative Navigation is a fully-observable environment with a con-550

tinuous observation space for each agent. The observation vector of an agent is composed of state551

vectors of all entities within the world space, including the states of all agents and landmarks. Here,552

we denote the state of an entity in Non-Cooperative Navigation as a vector with its ID, current posi-553

tion, and velocity. Within agent i’s observation vector, the positions of all entities are their positions554

with respect to agent i. Agent i’s ego state vector locates it at the top of its observation vector and555

uses its own absolute position in the world space. For those centralized MARL algorithms requiring556

the global state, the global state is the collection of all entities’ state vectors composed of their IDs,557

absolute positions, and velocities in the world space.558

Action Space. Non-Cooperative Navigation has a discrete action space with 5 identical high-level559

actions, {idle, up, down, left, right}. Taking action in any direction (i.e., all actions except idle)560

makes this agent accelerate by one step size in that direction. The acceleration step size varies in561

different kinds of agents.562

Reward. Each agent has an individual reward function in Non-Cooperative Navigation. An agent563

gets a penalty that equals its distance from the closest landmark in the environment at each time564

step. Notably, multiple agents may get this penalty with respect to their distances to a specific565

landmark if this landmark is the closest to all of them. If a collision happens between two agents,566

both will receive a penalty of −5. If an agent reaches the scope with a distance of less than 0.1 to567

any landmarks, this agent receives a positive reward of 10. We denote this scope as the rewarding568

scope. If all controllable agents reach and stay within the rewarding scope without conflicts, they569

all receive a positive reward of 100.570

A.2 Heterogeneous Highway571

Heterogeneous Highway is developed based on Highway-env [20], which is a 2D autonomous driv-572

ing simulator based on PyGame. Traffic scenarios in our environment are designed based on the573

Highway scenario given by Highway-env with simulated vehicles driving on a multi-lane highway.574

The objective of vehicles controlled by MARL algorithms is to maintain a collision-free trajectory575
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with a proper speed between 20 and 30 m/s when driving through heterogeneous traffic. Uncon-576

trollable vehicles are controlled by three different behavior-driven vehicle models modified from577

models proposed in [61], and we denote them as Normal, Aggressive and Conservative vehicles.578

Their major differences come from their kinematic features, given in Table 3.579

Kinematic Parameters Normal Aggressive Conservative

Max Speed (m/s) 40 50 40
Default Speed Range (m/s) [23, 25] [35, 40] [23, 25]
Max Acceleration (m/s2) 6.0 9.0 5.0

Desired Acceleration (m/s2) 3.0 6.0 2.0
Desired Deceleration (m/s2) −5.0 −9.0 −4.0
Desired Front Distance (m) 5.0 + l 0.5 8.0 + l

Time Wanted (Before Stop) (s) 1.5 1.2 1.8
Table 3: Kinematics for the behavior-driven vehicle model used in Heterogeneous Highway scenarios. All
vehicles are assumed to have the same size l.

The length of each episode is 90 steps. Initially, vehicles are randomly placed throughout the world580

space with a density of 1. All results in Heterogeneous Highway are averaged over 3 random seeds.581

Scenarios. Two scenarios under mild and chaotic traffic are included in this paper. Each scenario has582

5 controllable vehicles and 50 behavior-driven vehicles uniformly distributed over an 8-lane high-583

way. The compositions of different behavior-driven vehicles relate to the heterogeneity of traffic.584

The mild traffic has mostly normal-behaving vehicles, so we consider this scenario more homoge-585

neous. In the chaotic traffic scenario, more aggressive vehicles exist, which makes the environment586

more heterogeneous. Here are the propositions of each kind of behavior-driven vehicle in the mild587

and chaotic traffic scenarios:588

• Mild: 80% Normal vehicles + 10% Aggressive vehicles + 10% Conservative vehicles.589

• Chaotic: 40% Normal vehicles + 30% Aggressive vehicles + 30% Conservative vehicles.590

Observation Space. Heterogeneous Highway is a partially-observable environment in that agents591

can only observe 15 other vehicles within their predefined observation scope. The observation scope592

for each agent is 100 m in both directions of the x-axis and 20 m in both directions of the y-axis.593

Each agent has a continuous observation space. The observation vector of an agent is composed594

of stacked state vectors of all vehicles within its observable scope. Here, we denote a state vector595

of a vehicle as a vector with its ID, current position, and velocity in the world space. For agent596

i’s observation vector, its ego state vector locates it at the top of its observation vector and uses its597

own absolute position in the world space. The remaining state vectors are state vectors of vehicles598

observed by agent i using their positions relative to agent i. The global state for centralized MARL599

baselines is made up of concatenated state vectors of all controllable and uncontrollable vehicles600

within the environment.601

Action Space. The action space for each controllable agent is discrete with 5 distinct actions, {lane602

left, idle, lane right, faster, slower}. Vehicles convert their high-level discrete action orders into a603

sequence of x, y coordinates when taking actions. All vehicles’ low-level motion models follow the604

Kinematic Bicycle Model [62], and their kinematic parameters are given in Table 3.605

Reward. For distributed MARL algorithms, each agent receives an individual reward, while for606

centralized MARL algorithms, all agents receive a global reward by summing their individual re-607

wards together. Once an agent collides with other vehicles, this agent gets a −1 penalty. Agents are608

encouraged to keep right, and an agent gets a linear reward from 0 to 0.1 with respect to its distance609

to the rightmost lane. Agents are encouraged to keep a speed within the rewarding speed range of610

20 to 30 m/s. At each time step, an agent is rewarded with respect to its speed within the reward611

speed range. If an agent can reach a speed of 30 or higher at this time step, it gets a reward of 0.4.612

If an agent keeps a speed of 20 or lower at this time step, it gets a reward of 0.613
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B Visual Results614

(a) (Easy) iPLAN: All 5 agents (green) are successful.

(b) (hard) iPLAN: All 5 agents (green) are successful.

(c) (Easy) MAPPO: 2 agents (green) are successful. The first 3 crash (red vehicles).

(d) (hard) MAPPO: 2 agents (green) are successful. The first, second, and fourth crash (red vehicles).

(e) (Easy) QMIX: 3 agents (green) are successful. The first and the last crash (red vehicles).

(f) (hard) QMIX: 4 agents (green) are successful. The third vehicle crashes (red vehicle).

Figure 3: Qualitative results on Heterogeneous Highway: We visually compare the performance of iPLAN
with QMIX and MAPPO. Each baseline is tested with multiple learning agents shown in green, and each figure
above shows 5 such learning agents from their respective viewpoints. In each figure, we show cases when the
green agents succeeded versus when they crashed. Conclusion: All 5 agents succeed using iPLAN as shown in
Figures 3a and 3b whereas on average 2 or more agents crash using QMIX or MAPPO.
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C Implementation Details615

Behavioral Incentive Inference. The encoder of the behavioral incentive inference module uses a616

1-layer GRU network with a size of 32 and generates an 8-length vector as the latent representation617

of the behavioral incentive. The decoder uses another 1-layer GRU network with a size of 64 to618

reconstruct the state sequences, with a dropout rate of 0.1. The truncated length th of the observation619

history is 10 in Heterogeneous Highway, and 5 in Non-Cooperative Navigation. The learning rate620

for behavioral incentive inference is 1× 10−4.621

Instant Incentive Inference. The encoder of the instant incentive inference module uses a GAT622

with a hidden-layer size of 32 and a 1-layer GRU with a hidden-layer size of 32. The decoder623

uses another 32-size GRU to predict the trajectory, with a dropout of 0.1. The trajectory prediction624

length tp is 5 in Heterogeneous Highway, and 2 in Non-Cooperative Navigation. The learning rate625

for instant incentive inference is 2× 10−5.626

IPPO Controller. The input of the PPO controller for an agent is the flattened vector of its ob-627

servation of all entities’ (vehicles in Heterogeneous Highway; other agents and landmarks in Non-628

Cooperative Navigation) states and the inference of all other agents’ (or other vehicles’) behavioral629

incentive and instant incentive. The PPO controller has a buffer size of 256 and a learning rate of630

5 × 10−4 for its actor and critic. All fully-connected and recurrent layers in the actor and critic of631

PPO have a dimension of 64.632
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Figure 4: Non-Cooperative Navigation with recurrent and fully-connected behavioral incentive inference
modules: Comparing the episodic reward in the (left) easy and (right) hard scenarios. Conclusion: iPLAN
(orange) performs better than others in the easy scenario. IPPO-BM (green) outperforms IPPO-BMFC (blue)
in the hard scenario.

Figure 5: Heterogeneous Highway with recurrent and fully-connected behavioral incentive inference
modules: Comparing the episodic reward in the (left) mild and (right) chaotic traffic scenarios. Conclusion:
Approaches using recurrent behavioral incentive inference modules, including iPLAN (orange) and IPPO-BM
(green), outperform those using fully-connected behavioral incentive inference modules.

D Supplementary Experiments: Behavioral Incentive Inference Module633

D.1 Choice of Behavioral Incentive Inference Module634

During our design process for the behavioral incentive inference module, we experimented with635

different architectures in the encoder-decoder framework. Specifically, we tested the usage of a636

recurrent layer and a fully-connected layer. While the latter design has been utilized in prior works637

for similar tasks [16, 17, 47], we want to address the temporal relationship presented in the historical638

observation sequences. To evaluate the performance of these two designs, we conduct experiments639

on the comparison between iPLAN and an alternative approach that uses a fully-connected behavioral640

incentive inference module.641

In this module, we take the flattened historical observation sequence as input and employed a 3-layer642

fully-connected network with a hidden layer dimension of 64 as the encoder. This encoder generates643

an 8-length latent representation of the behavioral incentive. Additionally, we use another 3-layer644

fully-connected network with the same hidden layer dimension as the decoder to reconstruct the645

state sequences for opponents. The learning rate for this alternative behavioral incentive inference646

module is set to 1× 10−4.647

We depict the episodic rewards over both environments in Figure 4 and Figure 5. In these figures,648

the approach employing the fully-connected network in the behavioral incentive inference module649

is denoted as iPLAN-FC, and the same notation applies to IPPO-BMFC. The results indicate that650

incorporating the recurrent layer improves the performance of the behavioral incentive inference651

module. Specifically, our approach (iPLAN, orange curve) demonstrates better performance than652

iPLAN-FC (red curve). Similarly, IPPO-BM (green curve) outperforms IPPO-BMFC (blue curve) in653

general.654

D.2 Soft Updating Policy655

Another important aspect to consider in our behavioral incentive inference module design is the656

updating policy for behavioral incentives. Drawing inspiration from previous works [16, 17, 47],657
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Figure 6: Non-Cooperative Navigation with and without soft-updating policy: Comparing the episodic
reward in the (left) easy and (right) hard scenarios. Conclusion: IPPO-BM-Hard (blue) performs the best in
the easy scenario and the worst in the hard scenario. iPLAN (orange) has a better performance in general.

Figure 7: Heterogeneous Highway with and without soft-updating policy: Comparing the episodic reward
in the (left) mild and (right) chaotic traffic scenarios. Conclusion: iPLAN (orange) that uses soft-updating
policy for behavioral incentive inference module greatly outperforms its alternative approach iPLAN-Hard (red)
that uses a hard-updating policy.

we divide the behavioral incentive inference within an episode into multiple sub-episodes. We aim658

to update the behavioral incentive inferences at the end of each sub-episode. This updating pol-659

icy is referred to as the hard-updating policy, in contrast to the soft-updating policy, which treats660

the behavioral incentive inference as a converging procedure and iteratively updates the behavioral661

incentive inferences.662

In our experiments, we evaluate the performance of iPLAN and an alternative method, iPLAN-Hard,663

which employs a hard-updating policy. In iPLAN-Hard, the behavioral incentive inference module664

updates the behavior incentives at specific time intervals (e.g., t = 10, 20, 30, . . .), while the behav-665

ior incentive inferences remain unchanged between these updating points (i.e., between t = 10 and666

t = 20). All other hyperparameters used in the behavioral incentive inference module remain the667

same.668

Figure 6 and Figure 7 illustrate the results obtained with different behavior incentive updating poli-669

cies. In Non-Cooperative Navigation, IPPO-BM-Hard achieves the best performance in the easy670

scenario but performs the worst in the hard scenario. This significant gap between scenarios may671

stem from its inability to capture heterogeneity, considering that all agents in the easy scenario are672

controllable. On the other hand, iPLAN exhibits overall better performance, ranking second in the673

easy scenario and first in the hard scenario. This outcome demonstrates that the soft-updating policy674

helps address heterogeneity and stabilize agents’ strategies.675

In Heterogeneous Highway, iPLAN-Hard denotes the approach that uses a hard-updating policy for676

behavioral incentives, and the same notation applies to IPPO-BM-Hard. The results reveal that677

despite the difference in updating policies, their performances remain relatively close in mild traffic678

for both comparison pairs (iPLAN v.s. iPLAN-Hard, IPPO-BM v.s. IPPO-BM-Hard). However, in679

chaotic traffic, where instant incentive inference is not available, the use of the soft-updating policy680

leads to a substantial improvement for iPLAN. As agents become more reliant on their inference of681

others’ behaviors and intentions in a highly heterogeneous environment, the reliability and flexibility682

of their behavioral incentive inference become crucial, enabling them to gain a better understanding683

of their surroundings.684
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Figure 8: Heterogeneous Highway with different learning rates for instant incentive inference module:
Comparing the episodic reward in the (left) mild and (right) chaotic traffic scenarios (with 1.6M training time
steps). Conclusion: Using a smaller learning rate in instant incentive inference (iPLAN, orange) has a better
performance in the mild traffic

Figure 9: Non-Cooperative Navigation with different hidden layer dimensions for behavioral incentive
inference module: Comparing the episodic reward in the (left) easy and (right) hard scenarios. Conclusion:
Approaches like IPPO-BM-128 (blue) and iPLAN-128 (red) that use a larger hidden layer dimension for behav-
ioral incentive inference do not address the heterogeneity well and suffer from the overfitting problem.

E Supplementary Experiments: Hyper-Parameter Study685

E.1 Learning Rate in Instant Incentive Inference686

Figure 8 compares the episodic rewards when using different learning rates for instant incentive687

inference. iPLAN (orange curve) uses a learning rate of 2× 10−5 and iPLAN-large (blue curve) uses688

a learning rate of 1 × 10−4. The result shows that using a smaller learning rate in instant incentive689

inference has a better performance in practice.690

E.2 Hidden Layer Dimension in Behavioral Incentive Inference691

Figure 9 presents a comparison of the effect of hidden layer dimensions used in behavior incentive692

inference. In this figure, we denote the alternative approach iPLAN that utilizes a hidden layer693

dimension of 128 as iPLAN-128, and the same notation applies to the alternative approach IPPO-694

BM-128 of IPPO-BM.695

In the easy scenario, both IPPO-BM-128 (blue curve) and iPLAN-128 (red curve) exhibit signifi-696

cantly better performance than their counterparts using a hidden layer dimension of 64 in the first697

half of training. However, their episodic rewards experience a substantial decline in the second half,698

resulting in a lower ultimate episodic reward compared to iPLAN. This observation suggests that699

these models are overfitting in the easy scenario.700

In the hard scenario, iPLAN (orange curve) outperforms iPLAN-128 (red curve) and IPPO-BM-128701

(blue curve), as the episodic reward of IPPO-BM-128 begins to decrease when iPLAN’s curve is702

still increasing. This phenomenon demonstrates that using a larger hidden layer dimension does not703

necessarily lead to performance improvement, as it can exacerbate the overfitting problem. Addi-704

tionally, a larger hidden layer dimension may not effectively address the heterogeneity in a more705

complex and heterogeneous environment, such as the hard scenario.706

Overall, the results indicate that carefully selecting the hidden layer dimension is crucial. While a707

larger dimension may offer some benefits, it can also lead to overfitting and failure in addressing the708

challenges posed by heterogeneity in certain scenarios.709
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