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A EVALUATING Text-to-Vision generation MODELS WITH GENERATE ANY
SCENE

A.1 EXPERIMENT SETTINGS

Models. We conduct experiments on 12 Text-to-image models (54; 50; 22; 51; 52; 55; 56; 57; 58; 3), 9
Text-to-Video models (63; 83; 62; 60; 61; 64; 67; 66; 65), and 5 Text-to-3D models (68; 71; 69; 4; 70).

• For Text-to-Image generation, we select a range of open-source models, including those
utilizing UNet backbones, such as DeepFloyd IF (54), SDv2.1 (22), SDXL (50), Playground
v2.5 (51), and Wuerstchen v2 (52), as well as models with DiT backbones, including SD3
Medium (55), PixArt-ω (56), PixArt-! (57), FLUX.1-schnell (58), FLUX.1-dev (58), and
FLUX 1. Closed-source models, such as DaLL-E 3 (3) and FLUX1.1 PRO (58), are also
assessed to ensure a comprehensive comparison. All models are evaluated at a resolution of
1024 ! 1024 pixels.

• For Text-to-Video generation, we select nine open-source models: ModelScope (63),
ZeroScope (83), Text2Video-Zero (62), CogVideoX-2B (66), VideoCrafter2 (65), Ani-
mateLCM (61), AnimateDiff (60), FreeInit (64), and Open-Sora 1.2 (67). We standardize
the frame length to 16 across all video models for fair comparisons.

• For Text-to-3D generation, we evaluate five recently proposed models: SJC (69), Dream-
Fusion (68), Magic3D (71), Latent-NeRF (70), and ProlificDreamer (4). We employ the
implementation and configurations provided by ThreeStudio (84) and generate videos by
rendering from 120 viewpoints. To accelerate inference, we omit the refinement stage. For
Magic3D and DreamFusion, we respectively use DeepFloyd IF and SDv2.1 as their 2D
backbones.

Metrics. Across all Text-to-Vision generation tasks, we use Clip Score (49) (semantic similarity),
VQA Score (39) (faithfulness), TIFA Score (23; 31) (faithfulness), Pick Score (85) (human preference),
and ImageReward Score (86) (human preference) as general metrics:

• Clip Score: Assesses semantic similarity between images and text.
• VQA Score and TIFA Score: Evaluate faithfulness by generating question-answer pairs and

measuring answer accuracy from images.
• Pick Score and ImageReward Score: Capture human preference tendencies.

We also use metrics in VBench (87) to evaluate Text-to-Video generation models on fine-grained
dimensions, such as consistency and dynamics, providing detailed insights into video performance.

For Text-to-Video generation and Text-to-3D generation tasks:

• We calculate Clip Score, Pick Score, and ImageReward Score on each frame, then average
these scores across all frames to obtain an overall video score.

• For VQA Score and TIFA Score, we handle Text-to-Video generation and Text-to-3D genera-
tion tasks differently:
→ In Text-to-Video generation tasks, we uniformly sample four frames from the 16-frame

sequence and arrange them in a 2 ! 2 grid image.
→ For Text-to-3D generation tasks, we render images at 45-degree intervals from nine

different viewpoints and arrange them in a 3 ! 3 grid.

This sampling approach optimizes inference speed without affecting score accuracy (39).

Synthetic captions. We evaluate our Text-to-Image generation and Text-to-Video generation models
on 10K randomly generated captions, with scene graph complexity ranging from 3 to 12 and scene
attributes from 0 to 5, using unrestricted metadata. The captions exhibit an average graph degree of
1.15, with values spanning from 0.0 to 0.8. The mean number of connected components per scene
graph is 3.51, ranging from 1 to 11. For Text-to-3D generation models, due to their limitations in
handling complex captions and time-intensive generation, we restrict scene graph complexity to 1-3,
scene attributes to 0-2, and evaluate on 1K captions.
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Figure 7: Comparative evaluation of Text-to-Image generation models across different backbones
(DiT and UNet) using multiple metrics: TIFA Score, Pick Score, VQA Score, and ImageReward Score.

A.2 OVERALL RESULTS

We evaluate Text-to-Image generation, Text-to-Video generation, and Text-to-3D generation models
on GENERATE ANY SCENE.

Table 3: Overall performance of Text-to-Image generation models over 10K GENERATE ANY SCENE
captions. †Evaluated on a 1K caption subset due to inference cost constraints.

Model clip score pick score vqa score tifa score image reward score

Playground v2.5 (51) 0.2581 0.2132 0.5734 0.2569 0.2919
Stable Diffusion v2-1 (22) 0.2453 0.1988 0.5282 0.2310 -0.9760
SDXL (50) 0.2614 0.2046 0.5328 0.2361 -0.3463
Wuerstchen v2 (52) 0.2448 0.2022 0.5352 0.2239 -0.3339
DeepFloyd IF XL (54) 0.2396 0.1935 0.5397 0.2171 -0.8687
Stable Diffusion 3 Medium (55) 0.2527 0.2027 0.5579 0.2693 -0.0557
PixArt-ω (56) 0.2363 0.2050 0.6049 0.2593 0.1149
PixArt-! (57) 0.2390 0.2068 0.6109 0.2683 0.0425
FLUX.1-dev (58) 0.2341 0.2060 0.5561 0.2295 0.1588
FLUX.1-schnell (58) 0.2542 0.2047 0.6132 0.2833 0.1251
FLUX1.1 PRO (58)† 0.2315 0.2065 0.5744 0.2454 -0.0361
Dalle-3 (3) 0.2518 0.2006 0.6871 0.4249 0.3464
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Text-to-Image generation results. (Figure 7, Table 3)

1. DiT-backbone models outperform UNet-backbone models on VQA Score and TIFA Score,
indicating greater faithfulness and comprehensiveness to input captions.

2. Despite using a UNet architecture, Playground v2.5 achieves higher Pick Score and Im-
ageReward Score scores than other open-source models. We attribute this to Playground
v2.5 ’s alignment with human preferences achieved during training.

3. The closed-source model DaLL-E 3 maintains a significant lead in VQA Score, TIFA Score,
and ImageReward Score, demonstrating strong faithfulness and alignment with captions
across generated content.

Text-to-Video generation results. (Table 4,5)

Table 4: Overall performance of open-source Text-to-Video generation models over 10K GENERATE

ANY SCENE captions. Red Cell is the highest score. Yellow Cell is the second highest score.†Close-
source models are evaluated on a 1K caption subset due to high inference cost.

Model clip score pick score
image reward

score
VQA score TiFA score

VideoCraft2 (65) 0.2398 0.1976 -0.4202 0.5018 0.2466
AnimateLCM (61) 0.2450 0.1987 -0.5754 0.4816 0.2176
AnimateDiff (60) 0.2610 0.1959 -0.7301 0.5255 0.2208
Open-Sora 1.2 (67) 0.2259 0.1928 -0.6277 0.5519 0.2414
FreeInit (64) 0.2579 0.1950 -0.9335 0.5123 0.2047
ModelScope (63) 0.2041 0.1886 -1.9172 0.3840 0.1219
Text2Video-Zero (62) 0.2539 0.1933 -1.2050 0.4753 0.1952
CogVideoX-2B (66) 0.2038 0.1901 -1.2301 0.4585 0.1997
ZeroScope (83) 0.2289 0.1933 -1.1599 0.4892 0.2388
KLING 1.6 (88)† 0.2215 0.1985 -0.3419 0.5307 0.2802
Wanx 2.1 (89)† 0.2308 0.1969 -0.1418 0.5970 0.3328

Table 5: Overall performance of open-source Text-to-Video generation models over 10K GENERATE

ANY SCENE captions with VBench metrics. Red Cell is the highest score. Blue Cell is the lowest
score.

Model
subject

consistency

background

consistency

motion

smoothness

dynamic

degree

aesthetic

quality

imaging

quality

Open-Sora 1.2 0.9964 0.9907 0.9973 0.0044 0.5235 0.6648
Text2Video-Zero 0.8471 0.9030 0.8301 0.9999 0.4889 0.7018
VideoCraft2 0.9768 0.9688 0.9833 0.3556 0.5515 0.6974
AnimateDiff 0.9823 0.9733 0.9859 0.1406 0.5427 0.5830
FreeInit 0.9581 0.9571 0.9752 0.4440 0.5200 0.5456
ModelScope 0.9795 0.9831 0.9803 0.1281 0.3993 0.6494
AnimateLCM 0.9883 0.9802 0.9887 0.0612 0.6323 0.6977
CogVideoX-2B 0.9583 0.9602 0.9823 0.4980 0.4607 0.6098
ZeroScope 0.9814 0.9811 0.9919 0.1670 0.4582 0.6782

1. Open-source text-to-video models face challenges in balancing dynamics and consistency
(Table 5). This is especially evident in Open-Sora 1.2, which achieves high consistency but
minimal dynamics, and Text2Video-Zero, which excels in dynamics but suffers from frame
inconsistency.

2. All models exhibit negative ImageReward Score (Table 4), suggesting a lack of human-
preferred visual appeal in the generated content, even in cases where certain models demon-
strate strong semantic alignment.
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3. As expected, SOTA close-source text-to-video models outperform others overall, particularly
in image reward, VQA score, and TIFA score. This indicates their superior alignment
with human preferences, as well as stronger faithfulness and compositional capabilities in
generation.

4. Among open-source models, VideoCrafter2 strikes a balance across key metrics, leading in
human-preference alignment, faithfulness, consistency, and dynamic.

Text-to-3D generation results. (Table 6)

Table 6: Overall performance of Text-to-3D generation models over 1K GENERATE ANY SCENE
captions. †Evaluated on a 100 caption subset due to high inference cost.

Model clip score pick score vqa score tifa score
image reward

score

Latent-NeRF (70) 0.2115 0.1910 0.4767 0.2216 -1.5311
DreamFusion-sd (68) 0.1961 0.1906 0.4421 0.1657 -1.5582
Magic3D-sd (71) 0.1947 0.1903 0.4193 0.1537 -1.6327
SJC (69) 0.2191 0.1915 0.5015 0.2563 -1.4370
DreamFusion-IF (68) 0.1828 0.1857 0.3872 0.1416 -1.9353
Magic3D-IF (71) 0.1919 0.1866 0.4039 0.1537 -1.8465
ProlificDreamer (4) 0.2125 0.1940 0.5411 0.2704 -1.2774
Meshy-4 (90)†

0.2163 0.1922 0.5290 0.2908 -1.0496

1. Among open-source models, ProlificDreamer outperforms other models, particularly in
ImageReward Score, VQA Score and TIFA Score.

2. All models receive negative ImageReward Score scores, highlighting a significant gap
between human preference and current Text-to-3D generation generation capabilities.

3. Meshy-4 demonstrates overall superior performance compared to all open-source models,
especially in terms of Clip Score, TIFA Score and ImageReward Score, reflecting its strengths
in semantic generation and human preference alignment.

A.3 VALIDATION OF PHRASING ROBUSTNESS AND HUMAN ALIGNMENT

To assess robustness to linguistic variation and to verify that automated metrics reflect human
preferences, we conduct two focused studies.

A.3.1 PHRASING ROBUSTNESS VIA PARAPHRASING

Setup. We sample 100 scene graphs from the 10K benchmark while preserving the distribution
of object counts, relation density, and attribute complexity. For each graph, GPT-4o generates a
linguistically varied yet graph-faithful caption using the prompt below.
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Paraphrasing Prompt

You are given a scene graph in JSON format, where:

- "nodes" contain objects and their attributes,

- "edges" describe relationships between objects or link attributes

to objects.

Your task:

1. Understand the semantic meaning of each node and edge.

2. Convert the graph into a natural language caption that describes

the entire scene.

3. Include all objects, attributes, and relations from the graph,

and strictly follow the graph structure.

4. Do not introduce new objects or relationships not present in the

graph.

Input: {scene_graph}

We then re-score all models with VQA Score under these paraphrased captions. Results are listed in
Table 7.

Table 7: Paraphrase robustness: VQA Score and ranks on 100 graphs.

Model Orig. Score Para. Score Diff Orig. Rank Para. Rank

DALLE-3 0.6871 0.7542 +0.0671 1 1
FLUX.1-schnell 0.6132 0.6648 +0.0516 2 2
PixArt-! 0.6109 0.6159 +0.0050 3 3
PixArt-ω 0.6049 0.6043 -0.0006 4 4
Playground v2.5 0.5734 0.5075 -0.0659 5 8
Stable Diffusion 3 0.5579 0.5140 -0.0439 6 7
FLUX.1-dev 0.5561 0.5024 -0.0537 7 9
DeepFloyd IF XL 0.5397 0.5606 +0.0209 8 5
Wuerstchen v2 0.5352 0.5014 -0.0338 9 10
SDXL 0.5328 0.5322 -0.0006 10 6
SD v2-1 0.5282 0.4961 -0.0321 11 11

Findings. The Pearson correlation coefficient between model rankings on programmatic versus
paraphrased captions is 0.9232, indicating a very strong positive correlation.

This validation study demonstrates strong consistency between the two approaches. Importantly, the
top-performing models (DaLL-E 3, FLUX.1-schnell, PixArt-!, PixArt-ω) maintain their rankings
across both evaluation conditions, while the relative ordering of models remains largely consistent.
This high correlation validates that our programmatic approach produces rankings that are gener-
alizable and not artifacts of the templated caption generation. The slight variations observed (e.g.,
some mid-tier models showing small rank changes) are within expected bounds and do not affect the
overall conclusions about model capabilities.

A.3.2 HUMAN ALIGNMENT STUDY

Setup. We evaluate six representative models (DaLL-E 3, FLUX.1-schnell, PixArt-!, Playground
v2.5, SD3 Medium, SDv2.1) with diverse performance characteristics and recruit 3 human evaluators.
Three independent evaluators each assess 40 caption–image groups, with 10 shared overlapping
groups across all evaluators to measure inter-annotator agreement. Evaluators ranked the generated
images based on both relevance to the caption and overall visual quality. We show the rankings in
Table 8.

Findings

Inter-annotator reliability. The 3 evaluators showed strong agreement on the 10 shared samples, with
a Spearman correlation coefficient of 0.962, demonstrating consistent human judgment criteria.
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Table 8: Human vs. VQA rankings (lower is better).

Model VQA Rank Human Avg. Rank

DaLL-E 3 1 1
FLUX.1-schnell 2 2
PixArt-! 3 4
Playground v2.5 4 3
SD3 Medium 5 5
SDv2.1 6 6

Human–metric alignment. The correlation between human rankings and our VQA Score rankings is
0.918, indicating strong alignment between automated and human evaluation:

This study validates that our VQA Score-based rankings closely align with human preferences.
The consistency between automated metrics and human judgment strengthens confidence in our
benchmark’s ability to assess model performance in a manner that reflects human perception.

A.4 MORE ANALYSIS WITH GENERATE ANY SCENE

With GENERATE ANY SCENE, we can generate infinitely diverse and highly controllable captions.
Using GENERATE ANY SCENE, we conduct several analyses to provide insights into the performance
of today’s Text-to-Vision generation models.

A.4.1 PERFORMANCE ANALYSIS ACROSS CAPTION PROPERTIES

In this section, we delve into how model performance varies with respect to distinct properties of
GENERATE ANY SCENE captions. While GENERATE ANY SCENE is capable of generating an
extensive diversity of captions, these outputs inherently differ in key characteristics that influence
model evaluation. Specifically, we examine three properties of the caption: Commonsense, Perplexity,
and Scene Graph Complexity (captured as the number of elements in the captions). These properties
are critical in understanding how different models perform across a spectrum of linguistic and semantic
challenges presented by captions with varying levels of coherence, plausibility, and compositional
richness.

Perplexity. (Figure 8) Perplexity is a metric used to measure a language model’s unpredictability
or uncertainty in generating a text sequence. A higher perplexity value indicates that the sentences
are less coherent or less likely to be generated by the model.

As shown in Figure 8, From left to right, when perplexity increases, indicating that the sentences
become less reasonable and less typical of those generated by a language model, we observe no
clear or consistent trends across all models and metrics. This suggests that the relationship between
perplexity and model performance varies depending on the specific model and evaluation metric.

Commonsense. (Figure 9) Commonsense is an inherent property of text. We utilize the Vera
Score (91), a metric generated by a fine-tuned LLM to evaluate the text’s commonsense level.

As shown in Figure 9, from left to right, as the Vera Score increases—indicating that the captions
exhibit greater commonsense reasoning—we observe a general improvement in performance across
all metrics and models, except for Clip Score. This trend underscores the correlation between
commonsense-rich captions and enhanced model performance.

Element Numbers (Complexity of Scene Graph). (Figure 10) Finally, we evaluate model
performance across total element numbers in the captions, which represent the complexity of scene
graphs (objects + attributes + relations).

From left to right, the complexity of scene graphs becomes higher, reflecting more compositional and
intricate captions. Across most metrics and models, we observe a noticeable performance decline
as the scene graphs become more complex. However, an interesting exception is observed in the
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(a) (b) (c)

(d) (e) (f)

Figure 8: Average performance of models across different percentiles of perplexity of captions,
evaluated on various metrics. From left to right, the perplexity decreases, indicating captions that are
progressively more reasonable and easier for the LLM to generate.

(a) (b) (c)

(d) (e) (f)

Figure 9: Average performance of models across different percentiles of Vera Score for captions,
evaluated on various metrics. From left to right, the Vera Score decreases, indicating captions that
exhibit less commonsense reasoning and are more likely to describe implausible scenes.
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(a) (b) (c)

(d) (e) (f)

Figure 10: Average performance of models across different numbers of elements (objects + attributes
+ relations) in the scene graph (complexity of the scene graph) of the captions, evaluated on various
metrics. From left to right, as the number of elements (complexity) increases, the scene graphs
become more complicated and compositional.

performance of DaLL-E 3. Unlike other models, DaLL-E 3 performs exceptionally well on VQA
Score and TIFA Score, particularly on VQA Score, where it even shows a slight improvement as
caption complexity increases. This suggests that DaLL-E 3 may have a unique capacity to handle
complex and compositional captions effectively.

A.4.2 ANALYSIS ON DIFFERENT METRICS

Compared with most LLM and VLM benchmarks that use multiple-choice questions and accuracy as
metrics. There is no universal metric in evaluating Text-to-Vision generation models. Researchers
commonly used model-based metrics like Clip Score, VQA Score, etc. Each of these metrics is created
and fine-tuned for different purposes with bias. Therefore, we also analysis on different metrics.

Clip Score isn’t a universal metric. Clip Score is one of the most widely used metrics in Text-
to-Vision generation for evaluating the alignment between visual content and text. However, our
analysis reveals that Clip Score is not a perfect metric and displays some unusual trends. For instance,
as shown in Figures 8, 9, and 10, we compute the perplexity across 10K captions used in our study,
where higher perplexity indicates more unpredictable or disorganized text. Interestingly, unlike other
metrics, Clip Score decreases as perplexity lowers, suggesting that Clip Score tends to favor more
disorganized text. This behavior is counterintuitive and highlights the potential limitations of using
Clip Score as a robust alignment metric.

Limitations of human preference-based metrics. We use two metrics fine-tuned using human
preference data: Pick Score and ImageReward Score. However, we found that these metrics exhibit
a strong bias toward the data on which they were fine-tuned. For instance, as shown in Table 3,
Pick Score assigns similar scores across all models, failing to provide significant differentiation or
meaningful insights into model performance. In contrast, ImageReward Score demonstrates clearer
preferences, favoring models such as DaLL-E 3 and Playground v2.5, which incorporated human-
alignment techniques during their training. However, this metric shows a significant drawback:
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Figure 11: Average performance scores of all
models across different genders evaluated using
various metrics.

Figure 12: Average performance scores of all
models across different races evaluated using
various metrics.

it assigns disproportionately large negative scores to models like SDv2.1, indicating a potential
over-sensitivity to alignment mismatches. Such behavior highlights the limitations of these metrics in
providing fair and unbiased evaluations across diverse model architectures.

VQA Score and TIFA Score are relative reliable metrics. Among the evaluated metrics, VQA
Score and TIFA Score stand out by assessing model performance on VQA tasks, rather than relying
solely on subjective human preferences. This approach enhances the interpretability of the evaluation
process. Additionally, we observed that the results from VQA Score and TIFA Score show a stronger
correlation with other established benchmarks. Based on these advantages, we recommend prioritizing
these two metrics for evaluation. However, it is important to note that their effectiveness is constrained
by the limitations of the VQA models utilized in the evaluation.

A.4.3 FAIRNESS ANALYSIS

We evaluate fairness by examining the model’s performance across different genders and races.
Specifically, we calculate the average performance for each node and its associated child nodes within
the taxonomy tree constructed for objects. For example, the node “females” includes child nodes
such as “waitresses,” and their combined performance is considered in the analysis.

Gender. In gender, we observe a notable performance gap between females and males, as could be
seen from Figure 11, Models are better at generating male concepts.

Race. There are also performance gaps in different races. From Figure 12, we found that "white
(person)" and "black (person)" perform better than "asian (person)", "Indian (amerindian)", and
"Latin American".

A.4.4 CORRELATION OF GENERATE ANY SCENE WITH OTHER Text-to-Vision generation
BENCHMARKS

The GENERATE ANY SCENE benchmark uniquely relies entirely on synthetic captions to evaluate
models. To assess the transferability of these synthetic captions, we analyzed the consistency in
model rankings across different benchmarks (79; 37; 92). Specifically, we identified the overlap of
models evaluated by two benchmarks and computed the Spearman correlation coefficient between
their rankings.

As shown in the figure 13, GENERATE ANY SCENE demonstrates a strong correlation with other
benchmarks, such as Conceptmix (79) and GenAI Bench (37), indicating the robustness and reliability
of GENERATE ANY SCENE’s synthetic caption-based evaluations. This suggests that the synthetic
captions generated by GENERATE ANY SCENE can effectively reflect model performance trends,
aligning closely with those observed in benchmarks using real-world captions or alternative evaluation
methods.
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Figure 13: Correlation of GENERATE ANY SCENE with other popular Text-to-Vision generation
benchmarks.

(a) SDv2.1 vs. SD3 Medium on average VQA Score in
fine-grained categories.

(b) PixArt-! vs. SD3 Medium on average VQA Score
in fine-grained categories.

(c) FLUX.1-schnell vs. SD3 Medium on average VQA
Score in fine-grained categories.

(d) PixArt-! vs. FLUX.1-schnell on average VQA
Score in fine-grained categories.

Figure 14: Pairwise comparison on average VQA Score in fine-grained categories.
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A.4.5 CASE STUDY: PAIRWISE FINE-GRAINED MODEL COMPARISON

Evaluating models using a single numerical average score can be limiting, as different training data
often lead models to excel in generating different types of concepts. By leveraging the taxonomy we
developed for GENERATE ANY SCENE, we can systematically organize these concepts and evaluate
each model’s performance on specific concepts over the taxonomy. This approach enables a more
detailed comparison of how well models perform on individual concepts rather than relying solely on
an overall average score. Our analysis revealed that, while the models may achieve similar average
performance, their strengths and weaknesses vary significantly across different concepts. Here we
present a pairwise comparison of models across different metrics.
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B DETAILS OF TAXONOMY OF VISUAL CONCEPTS

To construct a scene graph, we utilize three primary types of metadata: objects, attributes, and
relations, which represent the structure of a visual scene. Additionally, scene attributes—which
include factors like image style, perspective, and video time span—capture broader aspects of the
visual content. Together, the scene graph and scene attributes form a comprehensive representation of
the scene.

Our metadata is further organized using a well-defined taxonomy, enhancing the ability to generate
controllable captions. This hierarchical taxonomy not only facilitates the creation of diverse scene
graphs, but also enables fine-grained and systematic model evaluation.

Objects. To enhance the comprehensiveness and taxonomy of object data, we leverage noun synsets
and the structure of WordNet (32). In WordNet, a physical object is defined as "a tangible and visible
entity; an entity that can cast a shadow." Following this definition, we designate the physical object
as the root node, constructing a hierarchical tree with all 28,787 hyponyms under this category as the
set of objects in our model.

Following WordNet’s hypernym-hyponym relationships, we establish a tree structure, linking each
object to its primary parent node based on its first-listed hypernym. For objects with multiple
hypernyms, we retain only the primary parent to simplify the hierarchy. Furthermore, to reduce
ambiguity, if multiple senses of a term share the same parent, we exclude that term itself and reassign
its children to the original parent node. This approach yields a well-defined and disambiguated
taxonomy.

Attributes. The attributes of a scene graph represent properties or characteristics associated with
each object. We classify these attributes into nine primary categories. For color, we aggregate 677
unique entries sourced from Wikipedia (33). The material category comprises 76 types, referenced
from several public datasets (93; 94; 95). The texture category includes 42 kinds from the Describable
Textures Dataset (96), while the architectural style encompasses 25 distinct styles (97). Additionally,
we collect 85 states, 41 shapes, and 24 sizes. For human descriptors, we compile 59 terms across
subcategories, including body type and height. Finally, we collect 465 common adjectives covering
general characteristics of objects to enhance the descriptive richness of our scene graphs.

Relationships. We leverage the Robin dataset (34) as the foundation for relationship metadata,
encompassing six key categories: spatial, functional, interactional, social, emotional, and symbolic.
With 10,492 relationships, the dataset provides a comprehensive and systematic repository that
supports modeling diverse and complex object interactions. Its extensive coverage captures both
tangible and abstract connections, forming a robust framework for accurate scene graph representation.

Scene Attributes. In Text-to-Vision generation tasks, people mainly focus on creating realistic
images and art from a text description (98; 2; 3). For artistic styles, we define scene attributes
using 76 renowned artists, 41 genres, and 126 painting styles from WikiArt (99), along with 29
common painting techniques. For realistic imagery, we construct camera settings attributes across 6
categories: camera models, focal lengths, perspectives, apertures, depths of field, and shot scales. The
camera models are sourced from the 1000 Cameras Dataset (100), while the remaining categories
are constructed based on photography knowledge and common captions in Text-to-Vision generation
tasks (1; 101). To control scene settings, we categorize location, weather and lighting attributes,
using 430 diverse locations from Places365 (35), alongside 76 weathers and 57 lighting conditions.
For video generation, we introduce attributes that describe dynamic elements. These include 12
types of camera rig, 30 distinct camera movements, 15 video editing styles, and 27 temporal spans.
The comprehensive scene attributes that we construct allow for the detailed and programmatic
Text-to-Vision generation generation.
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C DETAILS OF SELF-IMPROVING MODELS WITH SYNTHETIC CAPTIONS
(SECTION 3)

C.1 EXPERIMENT DETAILS

C.1.1 CAPTIONS PREPARATION

To evaluate the effectiveness of our iterative self-improving Text-to-Vision generation model, we
generated three distinct sets of 10K captions using GENERATE ANY SCENE, covering a sample
complexity range from 3 to 12. These captions were programmatically created to reflect a spectrum
of structured scene graph compositions, designed to challenge and enrich the model’s learning
capabilities.

For comparative analysis, we leveraged the Conceptual Captions (CC3M) (102) dataset, a large-scale
benchmark containing approximately 3.3 million image-caption pairs sourced from web alt-text
descriptions. CC3M is renowned for its diverse visual content and natural language expressions,
encompassing a wide range of styles, contexts, and semantic nuances.

To ensure fair comparison, we randomly sampled three subsets of 10K captions from the CC3M
dataset, matching the GENERATE ANY SCENE-generated caption sets in size. This approach stan-
dardizes data volume while enabling direct performance evaluation. The diversity and semantic
richness of the CC3M captions serve as a robust benchmark to assess whether GENERATE ANY
SCENE-generated captions can match or exceed the descriptive quality of real-world data across
varied visual contexts.

C.1.2 DATASET CONSTRUCTION AND SELECTION STRATEGIES

For the captions generated by GENERATE ANY SCENE, we employed a top-scoring selection strategy
to construct the fine-tuning training dataset, using a random selection strategy as a baseline for
comparison. Specifically, for each caption, the model generated eight images. Under the top-scoring
strategy, we evaluated the generated images using the VQA score and selected the highest-scoring
image as the best representation of the caption. This process yielded 10K top-ranked images per
iteration, from which the top 25% (approximately 2.5k images) with the highest VQA scores were
selected to form the fine-tuning dataset.

In the random selection strategy, one image was randomly chosen from the eight generated per
caption, and 25% of these 10K randomly selected images were sampled to create the fine-tuning
dataset, maintaining parity in data size.

For the CC3M dataset, each caption was uniquely paired with a real image. From the 10K real
image-caption pairs sampled from CC3M, the top 25% with the highest VQA scores were selected as
the fine-tuning training dataset. This ensured consistency in data size and selection criteria across all
methods, facilitating a rigorous and equitable comparison of fine-tuning strategies.

C.1.3 FINE-TUNING DETAILS

We fine-tuned the SDv1.5 using the LoRA technique. The training was conducted with a resolution
of 512 ↑ 512 for input images and a batch size of 8. Gradients were accumulated over two steps.
The optimization process utilized the AdamW optimizer with ε1 = 0.9, ε2 = 0.999, an ϑ value of
1↑ 10→8, and a weight decay of 10→2. The learning rate was set to 1↑ 10→4 and followed a cosine
scheduler for smooth decay during training. To ensure stability, a gradient clipping threshold of 1.0
was applied. The fine-tuning process was executed for one epoch, with a maximum of 2500 training
steps. For the LoRA-specific configurations, we set the rank of the low-rank adaptation layers and
the scaling factor ω to be 128.

After completing fine-tuning for each epoch, we set the LoRA weight to 0.75 and integrate it into
SDv1.5 to guide image generation and selection for the next subset. For the CC3M dataset, images
from the subsequent subset are directly selected.

In the following epoch, the fine-tuned LoRA parameters from the previous epoch are loaded and
used to resume training on the current subset, ensuring continuity and leveraging the incremental
improvements from prior iterations.
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Figure 15: Visualization of Different Caption Fine-Tuning.

In Figure 15, we present results using our captions and the CC3M captions. The model fine-tuned
with captions generated by GENERATE ANY SCENE demonstrates superior performance in terms of
text semantic relevance and the generation of complex compositional scenes.

C.2 EVALUATION ON TIFA BENCH

Aside from our own test set and GenAI benchmark, we also evaluated our fine-tuned Text-to-Image
generation models on the Tifa Bench (Figure 16), where we observed the same trend: models
fine-tuned with our captions consistently outperformed the original SDv1.5 and CC3M fine-tuned
models.

Figure 16: Results for Application 1: Self-Improving Models. Average TIFA score of SDv1.5
fine-tuned with different data over TIFA Bench.
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C.3 ADDITIONAL REAL-DATA BASELINES

Setup. We conduct more experiments comparing GENERATE ANY SCENE synthetic captions to
other real-world caption sources. We sampled 10K captions from MS-COCO-2017 and LAION-
COCO for one-epoch LoRA fine-tuning under same experimental settings. The results on GENERATE
ANY SCENE test set are summarized in Table 9.

Table 9: Self-improvement on GENERATE ANY SCENE Test (VQA). One-epoch finetuning, equal
budget.

Method VQA ↓
Baseline (SD-1.5) 0.508
MS-COCO-2017 0.508
LAION-COCO 0.510
CC3M 0.508
GAS (Random) 0.524
GAS (Top-Score) 0.530

Findings. Fine-tuning with MS-COCO-2017 and LAION-COCO captions yields results similar to
CC3M, with none surpassing the significant improvements achieved by our GENERATE ANY SCENE
captions. We think that although MS-COCO-2017 and LAION captions are generally high-quality
and well-aligned with images, they offer limited compositional diversity. These additional results
confirm that the observed gains are not specific to CC3M but generalize across other widely used
real-caption datasets. This further supports our claim that the compositional diversity of GENERATE
ANY SCENE synthetic captions drives the improvement.

C.4 FULL FINE-TUNING VS. LORA FINE-TUNING

Setup. We replicate the self-improvement pipeline with full fine-tuning and compare three strategies:
GENERATE ANY SCENE captions with high-score selection, GENERATE ANY SCENE captions with
random selection, and CC3M captions as the real-data baseline. The results are shown in Tables 10
and 11.

Table 10: Results on GENERATE ANY SCENE test set under full fine-tuning. (VQA Score)

Method Iter-1 Iter-2 Iter-3

Baseline 0.508 — —
CC3M (Full FT) 0.496 0.518 0.519
GAS (Rand, Full FT) 0.510 0.519 0.520
GAS (Top, Full FT) 0.510 0.534 0.540

Table 11: Results on GenAI-Bench under full fine-tuning. (VQA Score)

Method Iter-1 Iter-2 Iter-3

Baseline 0.617 — —
CC3M (Full FT) 0.589 0.619 0.622
GAS (Rand, Full FT) 0.599 0.621 0.617
GAS (Top, Full FT) 0.620 0.626 0.634

Findings. Using our GENERATE ANY SCENE captions with high score selection not only improves
performance consistently across iterations but also surpasses CC3M at every stage. The full fine-
tuning results confirm that our captions and strategy’s effectiveness is not dependent on the specific
training approach (LoRA vs. full fine-tuning). The consistent improvement patterns across both
evaluation benchmarks validate the robustness of our iterative self-improvement framework.
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D DETAILS OF DISTILLING TARGETED CAPABILITIES (SECTION 4)

D.1 COLLECTING HARD CONCEPTS

We selected 81 challenging object concepts where SDv1.5 and DaLL-E 3 exhibit the largest gap in
VQA Score. To determine the score for each concept, we calculated the average VQA score of the
captions containing that specific concept. The full list of hard concepts is shown below:

1. cloverleaf
2. aerie (habitation)
3. admixture
4. webbing (web)
5. platter
6. voussoir
7. hearthstone
8. puttee
9. biretta

10. yarmulke
11. surplice
12. overcoat
13. needlepoint
14. headshot
15. photomicrograph
16. lavaliere
17. crepe
18. tureen
19. bale
20. jetliner
21. square-rigger
22. supertanker
23. pocketcomb
24. filament (wire)
25. inverter
26. denture
27. lidar
28. volumeter
29. colonoscope
30. synchrocyclotron
31. miller (shaper)
32. alternator
33. dicer
34. trundle
35. paddle (blade)
36. harmonica
37. piccolo
38. handrest
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39. rundle
40. blowtorch
41. volleyball
42. tile (man)
43. shuttlecock
44. jigsaw
45. roaster (pan)
46. maze
47. belt (ammunition)
48. gaddi
49. drawer (container)
50. tenter
51. pinnacle (steeple)
52. pegboard
53. afterdeck
54. scaffold
55. catheter
56. broomcorn
57. spearmint
58. okra (herb)
59. goatsfoot
60. peperomia
61. ammobium
62. gazania
63. echinocactus
64. birthwort
65. love-in-a-mist (passionflower)
66. ragwort
67. spicebush (allspice)
68. leadplant
69. barberry
70. hamelia
71. jimsonweed
72. undershrub
73. dogwood
74. butternut (walnut)
75. bayberry (tree)
76. lodestar
77. tapa (bark)
78. epicalyx
79. blackberry (berry)
80. stub
81. shag (tangle)
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D.2 EXPERIMENT DETAILS

We conducted targeted fine-tuning experiments on SDv1.5 to evaluate GENERATE ANY SCENE’s
effectiveness in distilling model compositionality and learning hard concepts. For each task, we
selected a dataset of 778 GENERATE ANY SCENE captions paired with images generated by DaLL-
E 3. For compositionality, we selected multi-object captions from the existing dataset of 10K
GENERATE ANY SCENE captions and paired them with the corresponding images generated by
DaLL-E 3. To address hard concept learning, we first used SDv1.5 to generate images based on
the 10K GENERATE ANY SCENE captions and identified the hard concepts with the lowest VQA
scores. These concepts were then used to create a subset of objects, which we recombined into our
scene-graph based captions with complexity levels ranging from 3 to 9. Finally, we used DaLL-E 3
to generate corresponding images for these newly composed captions.

The fine-tuning configurations were consistent with those used in the self-improving setup (Ap-
pendix C.1.3). To accommodate the reduced dataset size, the maximum training steps were set to
1000.

As a baseline, we randomly selected 778 images from 10K GENERATE ANY SCENE-generated
images, using captions produced by GENERATE ANY SCENE. This ensured a controlled comparison
between the targeted and random fine-tuning strategies.

D.3 BENCHMARK AGAINST WEB-CRAWLED CAPTION–IMAGE PAIRS

Setup. We conduct additional experiments to benchmark against alternative data sourcing strategies,
specifically comparing our DaLL-E 3 distillation approach with web-scraped real images. Using the
Bing Image Search API, we retrieve images matching our multi-object and hard-concept captions
and constructed two datasets of equivalent scale for comparison. We then apply the same fine-tuning
setup described in Application 2. The results are shown in Table 12:

Table 12: Comparison of VQA scores from targeted fine-tuning on different data sources. (SDv1.5)

Test Set Original DaLL-E 3 Distill Web-crawled

Hard Concept 0.303 0.361 0.258
Multi-object 0.271 0.325 0.264

Findings. The results show that web-scraped images not only failed to improve performance but
actually degraded model capabilities.

Upon examination of the retrieved images, we identify several critical issues. The web-crawled
images contain significant noise, including watermarks, overlaid text, and irrelevant visual element.
Our hard concept and multi-object captions feature high compositional complexity and novel object
combinations that rarely exist in real-world photographs. The retrieved images show poor relevance
to our systematically designed compositional scenarios, as real-world images cannot adequately
represent the diverse and controlled compositional variations we programmatically generate. Thus,
training on such misaligned data appears to introduce incorrect visual-textual associations, leading to
performance degradation rather than improvement.

Table 13: VQA Score of targeted distillation on FLUX.1-dev.

Test Set Original Fine-tuned

Hard Concept 0.303 0.361

Multi-object 0.271 0.325
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D.4 DISTILLATION ON FLUX.1-DEV

Setup. We further apply our distillation framework to FLUX.1-dev, a current SOTA open-source
model, using DaLL-E 3 -generated images of hard concepts and multi-object captions to distill these
capabilities into FLUX.1-dev. The results are shown in the Table 13:

Findings. The results demonstrate that our approach’s effectiveness extends to state-of-the-art
models (FLUX.1-dev). The distillation approach yields substantial improvements on challenging
compositional tasks.
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E DETAILS OF REINFORCEMENT LEARNING WITH A SYNTHETIC REWARD
FUNCTION (SECTION 5)

E.1 TRAINING DATA PREPARATION

We adopt SimpleAR-0.5B-SFT (26) as our base model. Given that SImpleAR-0.5B-SFT is pretrained
on high-quality real image datasets such as LAION (11) and CC3M (12), we aim to mitigate potential
distributional shift between the original training data and the reinforcement learning phase. To this
end, we perform metadata pre-selection for GENERATE ANY SCENE by analyzing the frequency of
each object category appearing in the LAION dataset. Leveraging the controllable compositional
capabilities of GENERATE ANY SCENE, we filter object categories by selecting the top 10% most
frequent entries and constrain scene complexity to 3–6 objects per scene. Based on these conditions,
we synthesize a set of 10K captions, ensuring semantic alignment with the base model’s pretraining
distribution while maintaining structural and content diversity.

E.2 EXPERIMENT DETAILS

The detailed training configuration is provided in Table 14. We utilize 8 ↑ NVIDIA H100 GPUs
(80GB HBM3), with one GPU allocated for online generation using vLLM. The total training time is
approximately 14 hours.

Table 14: Scene-graph based GRPO Fine-tuning Configuration for SimpleAR

Component Details

Model Name SimpleAR-0.5B-SFT
Model Size ↔0.5B parameters
Training Policy GRPO
Inference Engine vLLM (GPU utilization = 0.7)
Completion Length 4096 tokens
Training Epochs 1
Batch Size per Device 4
Learning Rate 1↑ 10→5

Scheduler Cosine Annealing (min lr rate = 0.1)
Warm-up Ratio 0.1
Gradient Accumulation 1

Figure 17: Reward progression during scene-graph based GRPO training.

Figure 17 illustrates the reward progression during training. A noticeable improvement in reward
is observed following the application of a learning rate of 1e-5 combined with a warm-up strategy.
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Overall, the reward increases by approximately 0.2, indicating effective learning under the adjusted
training configuration.

In Table 2, we observe that the reproduced results of baseline models on DPG-Bench and GenEval
Bench are slightly lower than those reported in the original paper. Considering the inherent stochas-
ticity in generative model outputs, we cite the original results for comparison. For GenAI-Bench, all
reported results are based on our own experimental evaluations.

E.3 REWARD VARIANTS AND ABLATIONS

Setup. To verify the observed gains arise specifically from the scene-graph–generated QA reward,
rather than simply from using any QA-based reward, we conduct experiments incorporating manually
annotated QA datasets, VQAv2, as additional reward signals under the same RLHF framework.
We sample 10K images from VQAv2, with corresponding QA pairs, matched them to COCO2017
captions, and apply same training frameworks to SimpleAR-0.5B-SFT with RL training. The results
on GenAI Bench are shown in the table:

Table 15: GenAI Bench performance (VQA) under RLHF with different reward sources. All models
start from SimpleAR-0.5B-SFT.

Method Basic ↓ Advanced ↓ All ↓
SimpleAR-0.5B-SFT 0.74 0.60 0.66
SimpleAR-0.5B-RL (CLIP) 0.75 0.60 0.67
SimpleAR-0.5B-RL (VQAv2) 0.73 0.59 0.66
SimpleAR-0.5B-RL (Ours) 0.75 0.61 0.68

Findings. The results show that using VQAv2 captions and QA pairs as rewards yields even lower
performance than CLIP-based RL training. Furthermore, we observe minimal reward improvement
from VQA signals throughout training. We attribute this to the fact that, although VQAv2 QA pairs
are rich, the underlying image captions fail to cover enough visual elements, leading to a mismatch
between QA pairs and captions that undermines RLHF reward alignment.

This highlights the inherent difficulty and cost of constructing high-quality image-caption and QA
annotations, whereas our method leverages scene-graph structures to systematically generate synthetic
caption-QA pairs at minimal cost with unique advantages.
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F DETAILS OF IMPROVING GENERATED-CONTENT DETECTION (SECTION 6)

F.1 EXPERIMENT DETAILS

In this section, our goal is to validate that the more diverse captions generated by GENERATE ANY
SCENE can complement existing datasets, which are predominantly composed of real-world images
paired with captions. By doing so, we aim to train AI-generated content detectors to achieve greater
robustness.

Dataset preparation We conducted comparative experiments between captions generated by
GENERATE ANY SCENE and entries from the D3 dataset. From the D3 dataset, we randomly
sampled 10K entries, each including a caption, a link to a real image, and an image generated by SD
v1.4. Due to some broken links, we successfully downloaded 8.5K real images and retained 10K SD
v1.4-generated images. We also used SD v1.4 to generate images based on 10K GENERATE ANY
SCENE captions.

We varied the training data sizes based on the sampled dataset. Specifically, we sampled N real
images from the 10K D3 real images. For synthetic data, we compared N samples exclusively from
D3 with a mixed set of N/2 samples from 10K GENERATE ANY SCENE images and N/2 sampled
from D3, ensuring a total of N synthetic samples. Combined, this resulted in 2N training images. We
tested 2N across various sizes, ranging from 2K to 10K.

Detector architecture and training We employed ViT-T (47) and ResNet-18 (103) as backbones
for the detection models. Their pretrained parameters on ImageNet-21K were frozen, and the final
classification head was replaced with a linear layer using a sigmoid activation function to predict the
probability of an image being AI-generated. During training, We used Binary Cross-Entropy (BCE)
as the loss function, and the AdamW optimizer was applied with a learning rate of 2e→3. Training
was conducted with a batch size of 256 for up to 50 epochs, with early stopping triggered after six
epochs of no improvement in validation performance.

Testing To evaluate the performance of models trained with varying dataset sizes and synthetic data
combinations, we tested them on both GenImage and GENERATE ANY SCENE datasets to assess
their in-domain and out-of-domain performance under different settings.

For GenImage, we used validation data from four models: SD v1.4, SD v1.5, MidJourney, and
VQDM. Each validation set contained 8K real images and 8k generated images. For GENERATE
ANY SCENE, we sampled 10K real images from CC3M and paired them with 10K generated images
from each of the following models: SDv2.1, PixArt-ω, SD3 Medium, and Playground v2.5. This
created distinct test sets for evaluating model performance across different synthetic data sources.

Table 16: F1-Score Comparison of ResNet-18 and ViT-T Detectors Trained with D3 and D3+
GENERATE ANY SCENE Across In-Domain Settings

Detector Data Scale
(2N)

SDv1.4
(In-domain, same model) SDv2.1 Pixart-ω SDv3-medium Playground v2.5 Average

(In-domain, cross model)
D3 + Ours D3 D3 + Ours D3 D3 + Ours D3 D3 + Ours D3 D3 + Ours D3 D3 + Ours D3

Resnet-18

2K 0.6561 0.6663 0.7682 0.6750 0.7379 0.606 0.7509 0.6724 0.7380 0.5939 0.7488 0.6368
4K 0.6751 0.6812 0.7624 0.6853 0.7328 0.6494 0.7576 0.7028 0.7208 0.6163 0.7434 0.6635
6K 0.6780 0.6995 0.7886 0.6870 0.7493 0.6586 0.7768 0.7285 0.7349 0.6335 0.7624 0.6769
8K 0.6828 0.6964 0.7710 0.6741 0.7454 0.6418 0.7785 0.7186 0.7215 0.6033 0.7541 0.6595
10K 0.6830 0.6957 0.7807 0.6897 0.7483 0.6682 0.7781 0.7326 0.7300 0.6229 0.7593 0.6784

ViT-T

2K 0.6759 0.6672 0.7550 0.6827 0.7585 0.6758 0.7473 0.6941 0.7327 0.6106 0.7484 0.6658
4K 0.6878 0.6871 0.7576 0.7000 0.7605 0.7071 0.7549 0.7217 0.7221 0.6144 0.7488 0.6858
6K 0.6898 0.6891 0.7663 0.6962 0.7666 0.7164 0.7629 0.7238 0.7303 0.6134 0.7565 0.6875
8K 0.6962 0.6974 0.7655 0.6894 0.7712 0.7253 0.7653 0.7253 0.7381 0.6344 0.7600 0.6936
10K 0.6986 0.6984 0.7828 0.6960 0.7777 0.7275 0.7786 0.7334 0.7330 0.6293 0.7680 0.6966

F.2 RESULTS

Table 17 and Table 16 evaluate the performance of ResNet-18 and ViT-T detection backbones trained
on datasets of varying sizes and compositions across in-domain (same model and cross-model) and
out-of-domain settings. While models trained with D3 and GENERATE ANY SCENE occasionally
underperform compared to those trained solely on D3 in the in-domain same-model setting, they
exhibit significant advantages in both in-domain cross-model and out-of-domain evaluations. These
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results demonstrate that incorporating our data (GENERATE ANY SCENE) into the training process
enhances the detector’s robustness. By supplementing existing datasets with GENERATE ANY SCENE
under the same training configurations and dataset sizes, detectors achieve stronger cross-model and
cross-dataset capabilities, highlighting improved generalizability to diverse generative models and
datasets.

Table 17: F1-Score Comparison of ResNet-18 and ViT-T Detectors Trained with D3 and D3+
GENERATE ANY SCENE Across Out-of-Domain Settings

Detector Data Scale
(2N)

SDv1.5 VQDM Midjourney Average
(Out-of-domain)

D3 + Ours D3 D3 + Ours D3 D3 + Ours D3 D3 + Ours D3

Resnet-18

2K 0.6515 0.6591 0.5629 0.5285 0.5803 0.5647 0.5982 0.5841
4K 0.6709 0.6817 0.5693 0.5428 0.6016 0.5941 0.6139 0.6062
6K 0.6750 0.6963 0.5724 0.5327 0.6084 0.6072 0.6186 0.6121
8K 0.6792 0.6965 0.5716 0.5282 0.6097 0.5873 0.6202 0.6040
10K 0.6814 0.6955 0.5812 0.5454 0.6109 0.6040 0.6245 0.6150

ViT-T

2K 0.6755 0.6685 0.5443 0.4966 0.6207 0.6066 0.6135 0.5906
4K 0.6845 0.6865 0.5591 0.4971 0.6416 0.6149 0.6284 0.5995
6K 0.6900 0.6890 0.5580 0.4948 0.6455 0.6259 0.6313 0.6032
8K 0.6940 0.6969 0.5553 0.4962 0.6495 0.6387 0.6329 0.6106
10K 0.6961 0.6988 0.5499 0.4975 0.6447 0.6358 0.6302 0.6107
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G LIMITATION

Programmatically generated prompts can be unrealistic and biased. Programmatically gener-
ated prompts can be unrealistic and biased. Although our system is capable of producing a wide range
of rare compositional scenes and corresponding prompts, some of these outputs may violate rules or
conventions, going beyond what is even considered imaginable or plausible. We also implement a
pipeline to filter the commonsense of the generated prompts using the Vera score (a large language
model-based commonsense metric) and Perplexity, but we make this pipeline optional.

Linguistic diversity of programmatic prompts is limited. While GENERATE ANY SCENE excels
at generating diverse and compositional scene graphs and prompts, its ability to produce varied
language expressions is somewhat constrained. The programmatic approach to generating content
ensures diversity in terms of the elements of the scene, but it is limited when it comes to linguistic
diversity and the richness of expression. To address this, we introduce a pipeline that leverages large
language models (LLMs) to paraphrase prompts, enhancing linguistic variety. However, this addition
introduces new challenges. LLMs are prone to biases and hallucinations, which can affect the quality
and reliability of the output. Furthermore, the use of LLMs risks distorting the integrity of the original
scene graph structure, compromising the coherence and accuracy of the generated content. So we
make this LLM paraphrase pipeline optional for our paper.

Toward curriculum-aware GRPO training. Our proposed GENERATE ANY SCENE framework
plays a central role in GRPO training by providing structured scene graphs that serve as the foun-
dation for a semantically grounded and controllable reward function. This design enables effective
optimization by aligning generation objectives with fine-grained visual semantics. Beyond this, we
also observe that GENERATE ANY SCENE also offers broader potential: the scene graphs it produces
vary in complexity, such as in the number of objects, attributes, relationships and graph degree.
These variations naturally correspond to different levels of generation difficulty and reward variance.
This property suggests an opportunity for curriculum-based training, where the model could be
progressively exposed to increasingly complex scene graphs. Such a strategy may improve training
stability and efficiency, especially in the early stages of learning. We identify this as a promising
direction for future work, further leveraging the controllability of GENERATE ANY SCENE to guide
structured policy learning.
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