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Abstract—This paper explores how large language model-
based robots assist in detecting anomalies in high-risk environ-
ments and how users perceive their usability and reliability in
a safe virtual environment. We present a system where a robot
using a state-of-the-art vision-language model autonomously an-
notates potential hazards in a virtual world. The system provides
users with contextual safety information via a VR interface. We
conducted a user study to evaluate the system’s performance
across metrics such as trust, user satisfaction, and efficiency.
Results demonstrated high user satisfaction and clear hazard
communication, while trust remained moderate.

Index Terms—Large Language Models, Virtual Reality,
Human-Robot Interaction, Hazard Detection, Safety Annotation

I. INTRODUCTION

Human-Robot Interaction (HRI) is becoming increasingly
important in high-risk environments, from search and rescue
operations to industrial safety and space exploration [1], [2].
These domains often involve safety standards that require
individuals to follow strict regulations, such as those set by
the Occupational Safety and Health Administration (OSHA).
Traditional hazard mitigation approaches can be inefficient in
ensuring such regulations [3]. For example, human fatigue can
increase the risk of turning minor hazards into serious inci-
dents, and information overload may reduce human awareness
of useful data during disasters.

In this paper, we describe a tool intended to reduce these
risks by improving hazard awareness and risk management [4].
We imagine this tool to be used as part of a scenario in
which an autonomous robot such as a drone is released to
build up a virtual map of a high risk environment. Our system
can then autonomously label hazards in that environment,
allowing a responder to explore the annotated environment
in virtual reality, allowing for safe decision making and situa-
tional awareness. Figure 1 shows an example of an annotated
environment. Broadly speaking, our approach works by taking
images of areas in a virtual environment and presenting them
to a large vision-and-language model (VLM), with instructions
to identify any risks or hazards present. The environment is
then annotated with the responses in the form of pop-ups that
appear when a person exploring the space approaches a hazard.
We refer to these annotations as points of interest (POIs).
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(a) A high level view of an annotated environment.

(b) A participant’s point-of-view showing a hazard.

Fig. 1: An example of a hazardous environment used in our
experiments (a maker-space after an earthquake), with possible
hazards autonomously annotated by interaction with a large
vision-and-language model.

Risk management is typically broken down into mitigation,
preparedness, response, and recovery [4]. Our focus is on
the proactive side of risk management, mitigation and pre-
paredness, as preventing people from encountering hazards
unexpectedly is ultimately more effective than reacting to
them. At the same time, the sometimes overwhelming flood of
information during disaster response [4] means that even reac-
tive strategies may benefit from structured hazard annotation.
Our hypothesis is that this interface will increase situational



awareness for people who must respond to potentially danger-
ous situations, allowing information gathered by a robot to be
explored and presented in a safe, intuitive way.

Despite growing interest in robotics for emergency re-
sponse, industrial safety, and military operations, human-robot
teams still struggle with adaptability, coordination, and clear
communication [5], [6]. One approach to managing human-
robot interfaces is using natural language to enable robots
to comprehend complex, context-rich commands so that non-
expert users have an intuitive way of accessing information
and interacting with a robot teammate [7]. Recent advances
in Large Language Models (LLMs) have been widely used
to help robots understand [8] and plan over [9] human-
like language. Similarly, large Vision-and-Language Models
(VLMs) are particularly capable in visual reasoning tasks,
and are currently being studied for purposes such as safety
planning, navigation, and scene understanding [10].

There are a number of high-level ways in which LLMs
and VLMs can be tied into HRI systems. They can be
“Scarecrows [11],” stand-ins for more principled approaches
that will ultimately be replaced by more carefully developed
technologies, or they can be a carefully selected component of
a larger system in their own right. Our use of VLMs is in the
latter category; we use careful prompt design and limited natu-
ral language interactions to construct a system that makes use
of the power of large pre-trained models without the problems
associated with direct human/model communication. Unlike
studies that only discuss the interaction between humans and
AI-enabled systems [11]–[13], we design and test this interface
for a possible setting, and incorporate user feedback to refine
it for practical future use.

Virtual and augmented reality are progressively more inte-
gral to HRI research, and well-designed interfaces for them
improve interactions between intelligent systems and opera-
tors [12]. We use the Robot Interactions in Virtual Reality
(RIVR) simulator [14], a simulation environment designed to
support Human-Robot Interaction in VR. RIVR’s combination
of VR interaction support, ROS robot management, and Unity
environments allows us to implement an immersive user-
friendly system of annotations for an intuitive user experience.

Hypotheses: Building on these foundations, we hypothesize
that LLM-supported robots can identify at least 80% of
hazardous items in a given space (H1). Furthermore, we expect
that people will generally feel improved situational awareness
when navigating a scene with annotations as opposed to an
un-annotated scene (H2).

To investigate these hypotheses, we present an LLM-
powered system that autonomously annotates hazards in VR,
aiming to improve robotic hazard communication, reduce
operator cognitive overload, and enhance proactive risk man-
agement in HRI. We evaluate this system in a user study to
assess its effectiveness in improving hazard perception and
user comfort in VR-based HRI scenarios.

Specifically, our contributions in this study are as follows:
1) We present a system designed to autonomously annotate

hazards in Virtual Reality environments using VLMs

that provides an open-source framework for robotic haz-
ard annotation, including structured prompts, messages,
and Python scripts, integrated with robotic platforms via
ROS and the RIVR simulation.

2) We present and evaluate an immersive interface fea-
turing virtual markers with auditory message playback,
enhancing user interaction and accessibility within the
framework.

3) We demonstrate that use of this framework provides im-
proved user comfort and an increased sense of situational
awareness for participants interacting with a virtual
setting, in this case a maker-space after an earthquake.

II. BACKGROUND AND RELATED WORK

A. VLM-based Approaches

VLMs have demonstrated wisdom-of-the-crowd capabilities
in 3D reasoning [15], [16] and show promise in specialized
tasks such as hazard analysis and disaster response [17]–[20].
These models have so much information that to extract desired
information from them, it is encouraged to use guidelines
such as system definitions and “lines of inquiry,” even if the
system’s output degrades as complexity increases [17]. Apart
from the need for well-structured prompts, key challenges also
include hallucination risks and computational costs, reducing
which is particularly prioritized in critical scenarios.

For disaster response, large language models can effec-
tively analyze details of a scenario based on pictures of the
scene [18]–[20]. This includes abilities such as extracting
water depth information from images of floods [18], [19].
A data pipeline can be constructed with existing tools and
cloud services like Google’s reverse geocoding, Microsoft
Azure, various GIS systems, and an LLM at the head to
generate detailed reports of disasters in near-real time to aid
first-responders [19]. Using these data pipelines, VLMs can
augment or replace the role of people in reporting emergen-
cies, whose ability to do so may be impaired in disastrous
situations [19]. This is further supported by evidence than
VLM analysis of disasters closely matches that of humans
[18]. There has also been significant research regarding VLMs’
ability to understand and annotate 3D scenes, an essential
component of hazard analysis. It has been shown that zero-shot
prompting techniques can uncover latent geometric and spatial
reasoning capabilities and improve VLMs’ ability to answer
questions about a scene [15], [16]. Furthermore, VLMs can
be used to generate position data that can then be used by
standard LLMs to perform similar 3D reasoning tasks [16].
Although VLMs perform better in scene understanding than
their LLM counterparts, they tend to have a heavy bias towards
a text prompt rather than the image prompt when both are
included [22]. As will be discussed later, our work confirms
this observation that VLM output quality depends highly on
the detail of the text prompt.

B. Non-VLM Approaches

As alternate approaches to analyzing hazards, researchers
typically train models from scratch and use standard image
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Fig. 2: An overview of our system’s architecture. The RIVR simulator communicates with ROS, and a VLM server responds
to the robot’s queries about hazards and generating points of interest. (Diagram created in Lucid [21])

classifiers to drive such analysis [23], [24]. These approaches
use deep learning methods to identify hazards, such that
given RGB-D images of a scene, they generate labeled point
clouds containing semantic hazard information like fire or
tripping hazards [24]. Furthermore, standard classifiers like
YOLO [25], [26] can detect the presence or absence of safety
equipment in a scenario and unsafe behaviors like people
entering a hazardous area. Extracted information from these
object detection models can be used to determine hazards and
take steps to avoid them [23], [27]. However, their ability
to analyze risks is limited by their training data, as they are
inherently closed-set models, making them less adaptable to
scenarios outside their training scope. In this paper, we choose
to employ a VLM in particular to address the domain adaption
challenges where our VLM prompt and pipeline might be
applied to new scenes.

C. VR for Training and Hazard Analysis

VR can perform as an effective medium for hazard analysis
and training in dangerous scenarios compared to conventional
2D methods like images on paper on presentations [28]–[31].
Simulators already exist for harsh environments like space,
but often do not have a good interface for human interaction;
VR can be used to make training in such environments more
stimulating [28]. Generalizing to other industries like mining,
electronics, and construction, VR can be used to increase the
immersion and presence of trainees in managing hazards; it is
more immersive than CAVE systems or desktop VR, making
the medium an effective tool [29], [30]. Training presented
in this manner has shown to be retained better over a period
of several weeks [29]. Although this work does not directly
address training, this existing work demonstrates the potential
of VR as an effective interface for understanding risks.

In addition to training, VR has also proven effective in
aiding hazard analysis. Simulations often require simplification
of models at the risk of omitting information regarding haz-
ards [31]. Increasing the fidelity of a simulation and including
human models increase the number of risks identified by
participants [31]. The ability for participants to perceive the
true scale of objects may also aid in this process [30], [31].

However, it should be noted that the effectiveness of VR can
be limited by the experience of the participants [30].

Preceding work has also examined VR as an interface
for presenting data from robotic exploration of a hazardous
scenario [32]. It was shown that auditory cues can be generated
by robots to help participants recognize hazards in a simulated
scenario. However, a large number of sounds occurring at
the same time proved stressful. Our approach offloads the
duty of hazard recognition to VLMs; we hope this is a more
comfortable user experience.

We note that there is an absence of research studying how
LLM and VLM-guided robots can help with hazard analysis
and annotation of anomalies. Specifically, we study the ability
of GPT-4o to evaluate anomalies given images of a hazardous
scenario and propose a way to present this information to users
in VR.

III. APPROACH

As shown in Figure 2, we design a system where the
RIVR simulator is integrated with ROS and the VLM an-
notation server. The annotations are generated using GPT-
4o [33], which is widely utilized in research due to its ease
of use, broad API capabilities, and multimodal processing.The
VR application is developed in Unity (version 2019.4.21f1),
utilizing the High-Definition Rendering Pipeline (HDRP) for
high-quality graphics.

A. System Design

Various high-risk environments were considered, including
a train derailment, a maker-space after an earthquake, and a
construction site equipment failure. The makerspace setting
was chosen for our experiments because the indoor setting
facilitates robot exploration of the environment in order to
build the virtual world. It also offers a diverse range of
potential hazards (hazardous chemicals, pressurized gas, tools,
obstructed eyewash and fire suppressant stations). We simu-
lated robot exploration of the environment with a Husky UGV
with a full suite of sensors. The availability and efficiency
of the Husky makes the sim2real process easier. Autonomous
exploration through SLAM is yet to be fully integrated into our



system; at this time, the robot exploration of the environment
to be annotated is manual.

During the robot’s exploration of the room, it captures
photos at a fixed rate and makes queries to the VLM service
about safety issues in the image with an engineered prompt.
After the robot has made a complete circuit of the environment
and sent a large number of images to the VLM server to
identify points of interest, any identified hazards are inserted
as Points of Interest into the environment. We define POIs as
virtual markers that draw users’ attention to certain areas in the
simulator. These markers have two states: idle and activated.
When idle, their visibility is a transparent red pin bouncing
up and down; once a person enters the proximity of a marker,
it is activated, which brings up an information panel designed
to present information in an intuitive way to help decision
making. Pilot studies on the system suggested that some users
found it difficult to read in virtual reality, motivating us to
add a virtual button on the panel that allows users to listen to
the annotations being read out loud. To do this, we used the
audio file provided by ChatGPT-4o, generated separately for
each response.

B. Prompting VLMs

Prompting is providing the VLM model with a natural
language instruction that explains how to complete a task. It
stands out as a promising, lightweight solution for eliciting
the capabilities of LLMs and VLMs without model parameter
tuning [34]. To identify the most effective prompt for hazard
identification, we experimented with a range of queries—from
simple, short prompts (e.g., ‘Identify hazards in this image’),
to more complex, detailed instructions that incorporated role
definitions, context, and safety standards.

To evaluate prompt effectiveness, we conducted a small
pilot study with ten participants who rated the safety reports
generated by a Vision-Language Model (VLM) based on
different prompts. Participants assessed the reports on several
criteria, including hallucination in hazard detection, overall
acceptability, precision in hazard detection, and the influence
of different fields of view (FOVs) on report quality. Our
initial prompts were only a few dozen tokens and resembled
human commands; for instance, one of them was “This is a
photo of a maker-space. Do you see any misplaced, potentially
dangerous, or hazardous items?”, which yielded ambiguous
outputs and lower accuracy in hazard detection. By gradually
increasing the prompt’s complexity—specifying the system’s
role as a safety inspector, outlining the available robot actions,
and structuring the output—we observed a marked improve-
ment in the precision and clarity of the model’s responses.

To keep our system generalizable to other environments
with different safety concerns, we avoid specific details and
scenario-dependent variables. Thus, we keep it simple by
stating the room is a high-risk environment with potential haz-
ardous items and situations. The main linguistic components
of the prompt for the VLM, as used for the user study, are
shown below; these prompts are paired with an image that the
system can analyze for hazards:

Prompt: Robot Actions

The set of robot actions you can choose from is:
{Generate POI, Do Not Generate POI}.

Prompt: System Role

You are an expert safety inspector specializing in
hazard identification. Your primary role is to accu-
rately and thoroughly identify potentially hazardous
items in various environments. Provide clear, detailed
explanations for why each item might be hazardous
and suggest appropriate safety measures, ensuring high
standards of safety are maintained. Respond concisely.

Prompt: Output Structure

Respond in the form of a JSON object, based on the
class provided below.
class HazardReport:
int hazards Found;
string safetyMessage;
Vector3 coordinates;
string image;
bool generatePOI;
Only a single JSON object with no extra words. Follow
the given instructions to populate it.

1) Populate hazards_found with the count of
hazards found.

2) Populate safetyMessage with hazard de-
scriptions, starting with each hazard’s name, fol-
lowed by a caution note explaining why it is
dangerous and what safety measures should be
taken. Begin each hazard on a new line using \n
to create the line break.

3) Populate coordinates with the location pro-
vided in {data.position}.

4) Populate image with the path {data.image}.
5) If at least one hazard is identified, set

generatePOI to true, otherwise false.

Response Example

{
"hazards_found": 1,
"safetyMessage":
"1 Potential dangers found!
Hazardous Waste Container: The
container labeled as hazardous
waste is stored on a low shelf...",
"coordinates": {12.3, 56.7, 0.0},
"image": "image.png",
"generatePOI": true

}



IV. USER STUDY

HRI is a field in which robotic systems are designed and
evaluated for use by or with humans [35]. To assess this
system, an IRB-approved user study was conducted. The study
used survey-based evaluations to determine the feasibility and
usefulness of the interface for people of various technical
backgrounds. In this user study, the baseline condition is an
unannotated scene compared against the LLM-powered anno-
tated scene. After listening to the details of the experiment,
they wear the VR headset (HTC VIVE Pro 2) to step into the
virtual environment. In the simulation, first a tutorial scene
is displayed in which participants can familiarize themselves
with the VR technology, teleportation, and interaction with
example POIs. After participants complete the tutorial, the
system displays the fully annotated makerspace.

We recruit 12 participants from a university setting, rep-
resenting a diverse group in terms of age, gender, and prior
experience with VR. The participants included 7 females and
5 males, and ages ranged from 22 to 50 years, with the
majority (8 participants) aged between 22 and 32 years. Four
participants were aged between 25 and 50 years. Among the
participants, 9 had no prior experience with VR, while 3 were
familiar with the technology. We believe this demographic
sample is representative of gender, age, and VR experience,
allowing for a more comprehensive understanding of the
system’s impact across different user backgrounds.

Participants rated their experience on a 5-point Likert
scale, across the following key dimensions:

Evaluation Questions

1) Clarity – How clearly were hazards marked in
the virtual environment?

2) Text Effectiveness – How well did the system
convey safety information through annotations?

3) Trust in System – How confident are you in the
system’s ability to accurately detect hazards?

4) UI Usefulness – How useful is the VR interface
for improving safety awareness?

5) Future Use – How likely are you to use this
system in real-world scenarios?

All work was performed after the lead authors’ Institutional
Review Board (IRB) evaluated the study protocols and all
materials. Participants were asked to sign a consent form
before beginning the familiarization task, and were informed
clearly that they could withdraw from the task at any time
without penalty.

V. RESULTS

The average ratings for each of the five key aspects were
consistently high, reflecting the system’s effective perfor-
mance, clear annotations, and strong user engagement. Clarity
received the highest mean rating (4.6, SD = 0.65), indicating
that most participants found the hazard indicators clear. Text
Effectiveness was rated 4.25 (SD = 0.62), with suggestions for

improved positioning and clarity. Trust in the System scored
4.16 (SD = 0.83), reflecting moderate trust, with real-world
application identified as critical for confidence building. UI
Usefulness (4.58, SD = 0.79) and Future Use (4.5, SD = 0.79)
highlight the system’s positive impression and strong potential
for operational adoption (See fig. 3).

Fig. 3: Boxplot of core metrics evaluated in the user study,
with mean scores ranging from 4.16 to 4.6 on a 5-point scale.

Additionally, participants were asked to select whether they
preferred the annotated or unannotated environment for
safety assessment. Only one participant preferred the unanno-
tated scene over the annotated one. Finally, an open-ended
response section allowed them to provide comments and
suggestions for system improvements. This helped us to better
understand our system’s shortcomings. Most people showed
much enthusiasm towards our system, working with robots,
and VR. Some suggested that the information panel’s height
should be user-adjustable for easier reading. Additionally, they
recommended adding a minimize feature to allow users to hide
or show the panel as needed. A few recommended integration
of other sensors like temperature, pressure, and sound. One
suggested to use more recent VR devices such as Quest 3 for
a wireless experience. The collected responses were analyzed
to identify trends, with correlation analysis used to determine
relationships between trust, usability, and user adoption.

The correlation confusion matrix (fig. 4) highlights key
relationships between system components and user percep-
tions. The strongest correlation is between Clarity of hazard
indicators and Future Use (0.7), suggesting that the easier it is
to spot hazards, the more likely users are to adopt the system.
A similarly high correlation exists between UI Usefulness and
Future Use (0.65), indicating that a well-designed interface
also drives continued use. Trust in the system (0.55) is a factor,
but not as strong as clarity or usability. Meanwhile, the low
correlation between Clarity and UI Usefulness (0.06) shows
that users view the clarity of hazard markers and the overall
interface design as separate issues. This shows the importance
of trust, clarity, and usefulness in encouraging non-experts to



use such systems regularly.

Fig. 4: The confusion matrix shows correlations between the
different evaluated components of the system and suggests
relatively high relationships across all five metrics (as expected
given the system’s consistently high scores). For example, the
strongest correlation (0.70) is between Future Use and Clarity,
suggesting that participants who found the hazards easier to
spot were more likely to adopt the system in the future.

A. Hypothesis Evaluation

In this work, we demonstrated how capabilities of GPT-
4o can be utilized in robot-assisted hazard detection, enabling
them to perform as a sociable, useful assistant in critical
situations. Although the system missed one potential hazard,
it successfully identified 18 out of 19 potential hazards in the
virtual environment. This supports Hypothesis H1: VLMs are
able to identify most (more than 80%) of the hazards in the
space.

The human feedback gathered from our user study strongly
supports our Hypothesis H2: people generally feel more
at ease navigating a scene with annotations as opposed to
one without any. Although we worked with a small sample
size, we showed statistically that most users moderately trust
and highly accept LLM-supported robots in regulating their
safety concerns, suggesting that assistant robots can play a
meaningful role in improving safety awareness in high-risk
environments like disaster response and industrial settings.

Studies on human-automation trust consistently highlight
the need for situational adaptability. This necessitates the
active involvement of operators with diverse expertise in the
design phase to create more human-centered assistance sys-
tems [12]. As such critical scenarios are not easily accessible
or repeatable, we emphasize on the positive impacts of our
VR-based simulation and hazard analysis in HRI systems.

VI. VLM REPORTING AND ETHICAL CONSIDERATIONS

The use of large pre-trained models has, or has the poten-
tial to have, significant implications regarding privacy, social

justice, environmental concerns, and reproducibility. In this
section we briefly describe the specifics of the model used
and the impact of our work.

Model specifications: The system described in this work
depends on the use of a Large Vision and Language Model for
automatically annotating points of interest in an environment.
The VLM was a separate API that was queried to find possible
hazards. For the implemented system, we used OpenAI’s
GPT, specifically model gpt-4o-2024-11-20. No fine-tuning
was performed, and no seeds were specified. This model was
selected based on its accessibility and performance on a range
of queries obtained during pilot studies. We performed all
queries during October and November 2024.

Privacy: Although we let humans virtually interact with the
scene, no human avatar is included in GPT’s input images for
the Sim2Real process in this study due to privacy and safety
concerns. Additionally, human participants are not interacting
directly with the VLM, reducing the risk of data leakage based
on human inputs.

Future studies and applications will likely incorporate hu-
man avatars resembling study participants. Human state is
important to the task and could lead to life-threatening conse-
quences if ignored; however, sending images of people to GPT
may not be in their best interest in regards to their privacy.
Another concern is protecting sensitive information in the
environment itself, such as proprietary technology. A potential
solution to this is running models locally on the robot;
however, this may undermine the performance requirements
for accurate hazard annotation, exacerbating accuracy issues.
Therefore, more research such as [36] that evaluates how much
LLMs are able to keep secrets is essential. Work on smaller
multimodal language models like TinyLLaVa [37] may also
enable all computation to be done locally, limiting the scope
information is shared in.

Social implications: Because the VLM is not interacting
directly with human participants, concerns such as models that
perform unevenly based on voice or skin tone [38], [39] are
not relevant to this study, nor is demographic information (or
indeed any user specific information) transmitted to the model.

Hallucinations: To maximize situational awareness, hu-
mans need to rely on the information being presented in the
environment. Supporting human trust crucially requires that
users be able to observe the system’s reasoning in identifying
certain items as hazardous, which is currently an opaque
operation. To address this concern, in future we will explore
using Chain of Thought (CoT) [40] and other XAI [41] tech-
niques. This would be beneficial in cases where similar hazards
need to be treated differently in different environments, so
as to ensure that the system performs equitably across all
environments and scenarios by conducting a series of various
experiments in different spaces. Integrating human feedback
to fine-tune the VLMs and the pipeline as a whole may help
avoid false positives, negatives, and hallucinations in different
environments [42]. For this user study, no hallucinations
in anomaly detection were presented, as per evaluator and
participant analysis; however, in larger scale deployments,



where hallucinations are inevitable, it may become necessary
to demonstrate the system’s reasoning.

Environmental: Environmentally, although detailed figures
are difficult to obtain, a conservative estimate is that each of
our GPT inferences is responsible for approximately 0.047
kilowatt-hours of electricity [43]. We estimate that the elec-
tricity usage of our study was roughly 1.88 kWh (0.047 times
the approximately 40 images evaluated). This does not include
one-time development costs. Novel CoT models like DeepSeek
R1 [44] may help to address environmental concerns by
reasoning through what safety standards are relevant for a
given scenario with less computational power.

Omitting the VLM: Without the use of a vision and lan-
guage model, this work would have relied on simpler methods
of automatically annotating points of interest, possibly with
manual involvement (see section II-B). However, because the
VLM is core to the contributions of this work, ablation studies
were not performed.

VII. LIMITATIONS AND FUTURE WORK

Integrating AI into any system can introduce uncertainty
and skepticism. Additionally, the evolving nature of this field
makes it hard to be confident about the system’s current state
and performance. Some of these limitations are discussed here.

A. Limitations

VLM-guided robots show promise for handling disastrous
scenarios and aiding first-responders; however, improvements
can be made in their hazard reporting. For instance, GPT
recognized most of the obvious safety issues in the scenario,
but did not always consider the interaction between objects,
exemplified by its failure to recognize the blockage at the
emergency shower (fig. 1a). For this reason, the use of seg-
mentation models like SAM [45] may be warranted to isolate
or emphasize certain objects and help VLMs recognize the
more intricate interactions in the scenario. One key challenge
in hazard detection involves distinguishing between different
types of failures.

In hazard detection tasks, two main types of errors can
occur: false positives and false negatives. A false positive
arises when the system incorrectly classifies a safe object or
situation as hazardous, such as mistakenly flagging a prop-
erly stored chemical container as a risk. Conversely, a false
negative occurs when the system fails to identify an actual
hazard, potentially leading to dangerous situations. In high-risk
environments, false negatives are particularly concerning, as
undetected hazards can have severe consequences. To mitigate
this risk, the system should favor over-identification rather
than under-identification, ensuring that potential dangers are
consistently recognized and addressed.

Although not examined in this study, environmental sounds
can play a crucial role in identifying dangerous situations,
such as faulty machinery, leaking fluids, or sparking electrical
circuits [32]. Future research could incorporate this additional
modality by utilizing advanced multimodal models, potentially
enhancing the accuracy and detail of annotations. Additionally,

with the rapid emergence of powerful VLMs like LLaVA,
Gemini, GPT-4 Vision, and NeVA, the VLM component in our
system can be upgraded to improve multimodality, precision,
and performance, as well as to reduce hallucinations [46].

The biggest limitation of the work to date is the size of
our user study, which was limited to ten participants (with an
additional ten participating in a pilot study to inform interface
design and prompt development). Although it is our intention
to conduct larger studies in future, it is also possible that future
large-scale evaluations could utilize platforms such as Prolific
to allow more people to experiment with the interface. This is
made more difficult by the requirement that participants have
access to a VR headset, but as such equipment becomes more
widespread, crowdsourcing VR work become a more realistic
possibility.

B. Future Work

There are many avenues for future work that build upon
the foundation of the methodology presented in this paper,
as well as the strong findings of the user study for utilizing
VLMs for effective hazard analysis in the VR interface with
POI indicators.

As methodological enhancements, prior work has shown
that imposing a coordinate grid on image inputs for VLMs can
significantly improve question-answering, image captioning,
and segmentation [15]. Future work may improve our system
by modifying input images with such a grid or other tools
to help the VLM better understand the scene. Since VLMs
are starting to support video analysis, future work should also
explore whether providing a video to (rather than downsam-
pled still images from the robot’s video camera) increases
annotation accuracy.

Future work could also explore active hazard response in
VR, such as virtually resolving anomalies (e.g., straightening a
precariously balanced waste container) to simulate mitigation.
Task prioritization and resource management in such hazard
response scenarios could also be investigated. Our work to
date prioritizes interfaces and situational awareness rather than
physical manipulation.

The scope of this study could also be expanded to include
team interactions in our hazard identification interface, testing
the feasibility of a team of humans interacting with the robot
virtually. Furthermore, different personnel require different
information in disaster scenarios. For instance, annotations
that are useful to firefighters may differ from those needed
by paramedics or police officers. Future work could explore
generating different classes of annotations tailored to different
first responders in team settings.

Disaster scenarios are also dynamic; annotations produced
may rapidly become outdated. Future research should explore
how autonomous agents can adapt to these changing environ-
ments, such as tracking the spread of fire or monitoring the
status of injured victims. Modeling these evolving conditions
in our simulation framework could allow us to test dynamic
analysis informed by hazard message reports.



These results should also be evaluated in real-world con-
ditions through the Sim2Real [47] process before practical
use. Reconstructions and digital twins created with Gaussian
Splats can accelerate the creation of virtual environments
representing hazardous environments. We advocate for the use
of such digital twins, as they can represent the status, features,
and behavior of their physical twins in real time with high
accuracy [48].

VIII. CONCLUSION

This study supports the cautious integration of large pre-
trained models in HRI systems [49] as a source of environ-
mental analysis for applicable scenarios. Despite a limited
sample size, the results suggest that users found the system
satisfactory. Assistant robots can play a meaningful role in
enhancing safety awareness in high-risk environments, such
as disaster response and industrial settings.
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