
Appendix for “Streamlining EM into Auto-Encoder
Networks”

A THE DEFINITION OF TWO METRICS: ACC AND NMI

• Accuracy (ACC): For sample i, let Ri denote its ground truth label and Ci be its label
obtained by clustering.

ACC =

∑N
n=1 δ(Rn, Cn)

N
× 100%, whereδ(x, y) =

{
1 x = y

0 otherwise
,

N denotes the total number of samples.
• Normalized mutual information (NMI): Let R denote the ground truth label and C be

the label obtained by clustering. The NMI is defined as follows:

NMI =
2MI(R,C)

H(R) +H(C)
,

where H(X) is the entropy of X , and MI(X,Y ) is the mutual information of X and Y .

B DISCUSSION ON THE ADVANTAGE OF CLUSTER REWEIGH STRATEGY

Note that the vanilla k-means is designed for the scenario when the samples from different clusters
are balanced, while vanilla GMM would enhance the strength of the majority cluster with the group
ratio π. However, when samples from different clusters are imbalanced and the minority cluster
matters, both k-means and GMM would underestimate the importance of minority clusters and output
inferior clustering performance. Therefore, we propose to pay more attention to the minority clusters,
by increasing the penalty of wrongly clustering the sample from a minority cluster and decreasing the
penalty of wrongly clustering the sample from a majority cluster.

To be specific, we suggest to reweight the within-group variance in Eq.(8) with

wk =
N

KNk
=

N̄

Nk
, k = 1, . . . ,K,

where N is the number of samples, K is the number of clusters, N̄ is the average number of samples
for each cluster, and Nk is the number of samples belongs to cluster k. Then we have:

• wk ≈ 1, k = 1, 2, . . . ,K. When samples from different clusters are balanced, the reweight
becomes invalid and Eq.(8) reduces to regular cluster loss.

• wk > 1. For a minority cluster, we increase the penalty of its within-group variance, being
inversely proportional to its group size.

• wk < 1. For a majority cluster, we decrease the penalty of its within-group variance, also
being inversely proportional to its group size. Therefore, the loss with regards to the majority
cluster would not dominate the whole training process.

In terms of the mini-batch update, the data statistics N,K,Nk for the whole dataset is not available.
We replace it with the data statistics N ′,K ′, N ′k collected on each mini-batch data.

wk =
N ′/K ′ + ∆

N ′k + ∆
, k = 1, 2, . . . ,K.

To avoid instability, we introduce the ∆ which is empirically set to 3 in the experiment.

C EXPERIMENT SETTING

D DISCUSSION ON THE ADVANTAGES OF STREAMLINING EM FOR GMM

We streamline the EM algorithm of the Gaussian mixture model and derive a differential Gaussian
mixture network for clustering. In the following, we compare it to the standard/stochastic EM
algorithm of the Gaussian mixture model to show its superiority.
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Table 1: Network structure for all dataset

Network MNIST / USPS YTF / Fashion

Encoder

(0): Dropout(p=0.25, inplace=False)
(1): Linear(dim, 500, bias=True)

(2): ReLU()
(3): Linear(500, 500, bias=True)

(4): ReLU()
(5): Linear(500, 2000, bias=True)

(6): ReLU()
(7): Linear(2000, 10, bias=True)

(0): Conv2d(channel, 16, kernel_size=3, stride=1, padding=1)
(1): BatchNorm2d(16)

(2): ReLU()
(3): Conv2d(16, 32, kernel_size=3, stride=2, padding=1)

(4): BatchNorm2d(32,)
(5): ReLU()

(6): Conv2d(32, 32, kernel_size=3, stride=1, padding=1)
(7): BatchNorm2d(32)

(8): ReLU()
(9): Conv2d(32, 16, kernel_size=3, stride=2, padding=1)

(10): BatchNorm2d(16)
(11): ReLU()

(12): Linear(Inner-dim, 256, bias=True)
(13): ReLU()

(14): Linear(256, 10, bias=True)

Streamlining EM

Iter 0: E-step (Eq.(3))
Iter 1:T-1: For i in range(T-1):

Moment update (Eq.(5))
Correction loss (Eq.(7))

E-step (Eq.(3))
Iter T: Reconstruction (Eq.(9))

Decoder

(0)Linear(10, 2000, bias=True)
(1): ReLU()

(2): Linear(2000, 500, bias=True)
(3): ReLU()

(4): Linear(500, 500, bias=True)
(5): ReLU()

(6): Linear(500, dim, bias=True)
(7): Sigmoid()

(0): Linear(10, 256, bias=True)
(1): ReLU()

(2): Linear(256, Inner-dim, bias=True)
(3): ConvTranspose2d(16, 32, kernel_size=3, stride=2, padding=1)

(4): BatchNorm2d(32)
(5): ReLU()

(6): ConvTranspose2d(32, 32, kernel_size=3, stride=1, padding=1)
(7): BatchNorm2d(32)

(8): ReLU()
(9): ConvTranspose2d(32, 16, kernel_size=3, stride=2, padding=1)

(10): BatchNorm2d(16)
(11): ReLU()

(12): ConvTranspose2d(16, channel, kernel_size=3, stride=1)

• Mini-batch update. Different from the standard EM algorithm which requires the full batch
to update, we adopt the moment update formulation in Eq.(4) which allows the mini-batch
noisy update. Meanwhile, the mini-batch update is helpful to escape the local minimum,
yielding a better solution (Liang & Klein, 2009).

• Streamlining alternative updates into forward propagation. Many online/stochastic
EM algorithms have been proposed to apply the GMM model for large-scale applications.
However, all of them still adopt an alternative update paradigm between the E-step and
M-step. It still restricts its efficiency when joint learning GMM with other learning tasks. On
the contrary, we streamline the EM algorithm of GMM into a network design and replace the
M-step with a correction on the loss. Therefore, our differential Gaussian mixture network
can be end-to-end updated.

• Portability with popular deep learning platform. Since our differential Gaussian mixture
network can be end-to-end updated with standard stochastic gradient descent, it can be easily
implemented with popular deep learning platforms. To be specific, we initialize network
work weights, i.e., the centroids, as usual. Then, the forward propagation executes the
E-step (Eq.(3)) and the modified M-step (Eq.(4)) alternatively in T times. After the loss
being calculated following Eq.(7), we can optimize the network weight with any integrated
optimizer. In particular, we implement our work with PyTorch and adopt Adam to optimize
the network weight.

• Backbone architecture for capturing multiple modalities. Similar to other backbone
architectures, our differential Gaussian mixture network can also be incorporated into
existing network structures. In particular, it helps to induce a latent space with a significant
group structure. Meanwhile, due to the skip connection-based reconstruction, i.e., Eq.(9),
the whole structure can capture the common group information in the latent space with little

2



information loss. From the overall structure, it is similar to the non-local network (Wang
et al., 2018), but enjoys more interpretability (Li et al., 2019).

E PARAMETER INITIALIZATION

There are two types of parameters in our EDGaM network, i.e., neural network weights and trade-
off parameters. In the following, we discuss the initialization of these two types of parameters,
respectively.

E.1 NEURAL NETWORK WEIGHTS

All neural network weight, including the cluster centroids, are initialized using a uniform distribution
following (Glorot & Bengio, 2010).

E.2 TRADE-OFF PARAMETERS

There are five trade-off hyperparameters in EDGaM: β1, β2, used in Eq.(7), and η1, η2, η3, used in
Eq.(10). The hyperparameter setting for four dataset are summarized in Table 2.

Table 2: Hyperparameter setting for four datasets

Hyperparameter β1 β2 η1 η2 η3

MNIST 0.9 0.9 10−2 10−2 10−4

USPS 0.9 0.9 10−1 5 × 10−2 10−4

YTF 0.9 0.9 5 × 10−2 5 × 10−2 10−5

Fashion 0.9 0.9 5 × 10−2 10−3 10−4

The learnable parameters β1, β2 is initialized to 0.9 for all four datasets, which can be gradually
adjusted during the learning process.

Some hits for initializing the trade-off hyperparameters η1, η2, η3:

1. When a small validation dataset is available, the validation dataset can be used for initializing
the hyperparameter. In particular, we find that the cluster accuracy calculated with the soft
assignment in EDGaM is close to the k-means cluster accuracy on the obtained latent
embedding when converge. It means we can online compare the clustering performance
instead of evaluating it offline each time, which will improve the efficiency for setting the
hyperparameters.

2. A suggest hyperparameter setting is η1 = 10−2, η2 = 10−2, η3 = 10−4. For a complex
dataset η1 should be larger, e.g., YTF and Fashion. For a small dataset η1, η2 should be
larger, e.g., USPS and YTF.

3. Since EDGaM relies on the AE structure to extract the nonlinear features, the hyperparam-
eter setting should not hinder the reconstruction loss from achieving its optimum values.
Especially, the skip structure ensures the reconstruction loss can achieve its optimum.

4. The trade-off hyperparameters of the entropy loss (η3) should be appropriate, to ensure
the average of the maximum group assignment 1

N

∑
n maxk λnk is around 0.5 in the first

few iterations. The entropy loss would lead the average of the maximum group assignment
1
N

∑
n maxk λnk to approximate 1 gradually during the learning process.

F TIME EFFICIENCY

To evaluate the efficiency of our EDGaM in dealing with large-scale (7 × 104) and high dimensional
(784) data, we compare EDGaM its most competing algorithms JULE and DEPICT. All four versions
of JULE are evaluated. We run JULE and DEPICT using their released codes, respectively. In
particular, we run our EDGaM and other baselines for 103 iterations on the cluster (GeForce RTX
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2080 Ti), and collect the time cost of each method, respectively. The mini-batch size is set to 128 for
all methods.

The time cost of all methods is consistent with our analysis in Sect. ??. Note since the computation
cost of EDGaM is comparable with DEPICT since the extra complexity introduced by EDGaM and
DEPICT is not significant compared to that of the basic AE framework during the whole training
process. However, due to the lack of an efficient mechanism for dealing with imbalanced datasets,
DEPICT suggests adopting the highly energy-consuming agglomerative clustering instead of k-means
to ensure good performance. Therefore, DEPICT will suffer the same issues as JULE for large-data
imbalanced datasets.

G FAILURE CASES ANALYSIS FOR UNCERTAIN IMAGE CLUSTERING

In Fig. 1, we select the images with the ground truth label 3, 4, 5, and sort them in descending
order according to its group assignment of the ground-truth cluster. It is clear that our EDGaM can
confidently (high λ) group the images to its correct cluster as long as images show sufficient identities.
Otherwise, EDGaM would wrongly group the images to the corresponding cluster which they really
look like, for which even humans would make a similar guess.
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Figure 1: Uncertainty image clustering with soft assignment
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