
Appendix A Real-world Quadrotor Experiment433

To validate the effectiveness of Event3DGS in real-world robotic applications, we incorporate it into434

a custom-designed quadrotor platform. As illustrated in Fig 7(B), we employs an iPhone 13 Pro435

Max as the data collection device. The drone captures video at 240 FPS with a resolution of 1920 ×436

1080, which is subsequently converted into an event stream via v2e[61]. We utilize COLMAP[33] to437

estimate the corresponding camera matrices. Our experimental setting is challenging and aggressive,438

involving extreme maneuvering conditions: the drone reaches a maximum horizontal acceleration of439

over 6 m/s2, a maximum roll angular velocity of 87 deg/s, and a maximum pitch angular velocity440

of 48 deg/s. Details of these maneuvers are available in our supplementary video.441

Experimental results demonstrates that Event3DGS significantly improves both the qualitative and442

quantitative aspects of event-based 3D dense reconstruction. In Tab. 4, Event3DGS clearly surpasses443

the baseline across all evaluation metrics. In Fig. 7, Event3DGS accurately reconstruct the sharp444

geometric structure of the table and trees, whereas EventNeRF[9] cannot preserve those details.445
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Figure 7: A: Ground truth RGB image. B: Demonstration of the custom-designed quadrotor. C:
Rendered RGB and depth of Event3DGS. D: Rendered RGB and depth of EventNeRF[9].

Scene EventNeRF Event3DGS
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Quadrotor Flight 16.72 0.26 0.77 19.66 0.61 0.31

Table 4: Quantitative comparison on real-world quadrotor experiment. Due to more complex ge-
ometrical structures and larger scale, PSNR of the reported scenes is lower than PSNR of other
real-world scenes. However, our method still outperforms EventNeRF[9] by a clear margin.

Appendix B Comparision with Deblurring Baselines446

In this section, we compare Event3DGS with blur-aware 3DGS baselines: 1) 3DGS + Blur, i.e.447

vanilla 3D Gaussian Splatting[2] trained with motion-blurred RGB images; 2) DeblurGS[4], a novel448

method that reconstructs sharp 3D scenes from blurry images via estimating camera motions. We449

combine the consecutive frames within an event window of length 40 to be a blurry image, and gen-450

erate 100 blurry training views for each scene. For fair comparison, we set all the hyper-parameters451

as default for baseline methods.452

As DeblurGS[4] fails to reconstruct the 3D structure of synthetic scenes, we only report the visu-453

alization results in Fig. 8. Under high-speed rotations, 3DGS[2] is unable to accurately capture454

sharp details, and DeblurGS fails to estimate camera motions under severe motion blurs. In contrast,455

Event3DGS leverages high temporal resolution event data to accurately reconstruct the structure and456

appearance of the target scene. For real-world sequences, we report the numerical and visualization457
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3DGS + Blur[2] DeblurGS[4] Ours (event-only) Ground Truth

Figure 8: Qualitative comparison with deblurring baselines on synthetic dataset. We only report the
scenes where rendering of DeblurGS[4] can align with the test views. Event3DGS demonstrates
more accurate structural details and better multi-view consistency than baseline methods.

results in Tab. 5 and Fig. 9 respectively. Although DeblurGS roughly deblurs the input images and458

achieves higher reconstruction quality than the vanilla 3DGS, it fails to preserve multi-view con-459

sistency due to the existence of motion blur, causing under-representation in structural details (e.g.460

bicycle spokes, keyboard, edges of leaves, shoelaces in Fig. 9). As shown in Tab. 5, Event3DGS461

clearly outperforms baseline methods by an average of +0.44dB higher PSNR, 19% higher SSIM462

and 33% lower LPIPS.463

Scene 3DGS[9] + Blur DeblurGS[4] Event3DGS (event-only)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Bike 21.0 0.42 0.62 23.90 0.54 0.42 23.06 0.71 0.26
Computer 20.75 0.64 0.42 24.58 0.80 0.13 24.11 0.87 0.08

Drum 23.79 0.68 0.41 25.48 0.76 0.18 24.8 0.83 0.15
Plant 17.05 0.34 0.57 19.28 0.52 0.28 22.53 0.8 0.13
Shoes 24.49 0.78 0.43 27.15 0.83 0.21 28.08 0.89 0.16

Average 21.42 0.57 0.49 24.08 0.69 0.24 24.52 0.82 0.16

Table 5: Quantitative comparison with deblurring baselines on real-world dataset. Due to the in-
herent radiance scale ambiguity of event data and the absence of direct color-wise supervision,
Event3DGS does not achieve superior PSNR across all scenes. However, it demonstrates the high-
est structural and perceptual accuracy.

Notably, DeblurGS[8] requires an average of 3.5 hours for training on a synthetic scene due to the464

high computational cost of motion-blur formation and long training rounds. Event3DGS converges465

in just 18 minutes with the same hardware (a single NVIDIA RTX 6000Ada GPU), demonstrating466

significantly higher efficiency.467
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3DGS + Blur[2] DeblurGS[4] Ours (event-only) Ground Truth

Figure 9: Qualitative comparison with deblurring baselines on real-world dataset. Event3DGS re-
constructs sharpest details with least motion-blur effects across all scenes.

Appendix C Additional Implementation Details468

Real-world Data Capture For each real-world scene, we first capture a video from a fast-moving469

RGB camera, then extract frames and use COLMAP[33] to estimate the corresponding camera ex-470

trinsics and intrinsics. We utilize v2e[61] with bayes filter [9] to simulate the colorful event stream.471

Point-cloud Initialization Following [2], we start training from 100K uniformly random Gaus-472

sians inside a volumetric cube that bounds the scene. For synthetic and low-light sequences proposed473

in EventNeRF[9], we initialize the scale of points as l = 0.2; for our real-world sequences, we set474

l = 10 and move the points to the positive half-axis of z.475

Appendix D Additional Low-light Visualization476

For the low-light scenes proposed in [9], objects are placed on a spinning table rotating at a consistent477

speed of 45 RPM, then event sequences are captured with a DAVIS-346C color event camera under478

the illumination from a 5W light source. As ground-truth images are not provided in this dataset,479

we report additional visualization results in Fig. 10. With low-light real sequences, Event3DGS480

exhibits superior performance in accurately reconstructing sharp geometric details (e.g. edges of the481

objects) and removing noises on non-event background pixels.482
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EventNeRF[9] Ours (Event-only)
Figure 10: Visualization results on low-light scenes. We randomly select two rendered views for
each scene. For EventNeRF[9], we directly render images from their official checkpoints.
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