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ABSTRACT

Geometric deep learning, which extends deep learning techniques to non-
Euclidean spaces, has gained significant attention in machine learning. Re-
searchers started exploring intrinsic classifiers based on Riemannian geometry to
better classify non-Euclidean features in geometric deep learning. However, ex-
isting approaches suffer from limited applicability due to their strong reliance on
specific geometric properties. This paper proposes a general framework to design
intrinsic Riemannian classifiers. Our framework exhibits broad applicability while
requiring only minimal geometric properties, enabling its use with a wide range
of Riemannian metrics on various Riemannian manifolds. Specifically, we fo-
cus on symmetric positive definite (SPD) manifolds and systematically study five
families of deformed parameterized Riemannian metrics, developing diverse SPD
classifiers respecting these metrics. The versatility and effectiveness of the pro-
posed framework are showcased in three applications: radar recognition, human
action recognition, and electroencephalography (EEG) classification.

1 INTRODUCTION

In recent years, significant advancements have been achieved in deep neural networks (DNNs), en-
abling them to effectively analyze complex patterns from various types of data, including images,
videos, and speech (Hochreiter & Schmidhuber, 1997; Krizhevsky et al., 2012; He et al., 2016;
Vaswani et al., 2017). However, most existing models have primarily assumed the underlying data
with an Euclidean structure. Recently, a growing body of research has emerged, recognizing that
the latent spaces of many applications exhibit non-Euclidean geometries, such as Riemannian ge-
ometries (Bronstein et al., 2017). There has been an increasing interest in developing deep learning
models tailored for non-Euclidean data, commonly referred to as Geometric deep learning. Var-
ious frequently-encountered manifolds in machine learning have posed interesting challenges and
opportunities, including Lie groups, symmetric positive definite (SPD), Gaussian, spherical, and
hyperbolic manifolds (Cavazza et al., 2016; Huang et al., 2017; Vemulapalli et al., 2014; Huang &
Van Gool, 2017; Brooks et al., 2019; Ganea et al., 2018; Chen et al., 2021; López et al., 2021; Chen
et al., 2023b). These manifolds share an important Riemannian property—their Riemannian opera-
tors, such as geodesic, exponential and logarithmic maps, and parallel transportation, often possess
closed-form expressions. Leveraging these Riemannian operators, researchers have successfully
generalized different types of DNNs into manifolds, which we dub Riemannian networks.

Although Riemannian networks demonstrated success in numerous applications, many approaches
still rely on Euclidean spaces for classification, such as tangent spaces (Huang & Van Gool, 2017;
Huang et al., 2017; Brooks et al., 2019; Nguyen, 2021; Wang et al., 2021; Nguyen, 2022a;b; Kobler
et al., 2022; Wang et al., 2022; Chen et al., 2023c), ambient Euclidean spaces (Wang et al., 2020;
Song et al., 2021; 2022), or coordinate systems (Chakraborty et al., 2018). However, these strate-
gies distort the intrinsic geometry of the manifold, undermining the effectiveness of Riemannian
networks. Recently, researchers have started developing intrinsic classifiers based on Riemannian
geometry for Riemannian networks. Inspired by the idea of hyperplane margin (Lebanon & Laf-
ferty, 2004), Ganea et al. (2018) developed a hyperbolic multinomial logistic regression (MLR) in
the Poincaré ball for hyperbolic neural networks (HNNs). Motivated by HNNs, Nguyen & Yang
(2023) developed three kinds of SPD MLRs for SPD manifolds based on distinct gyro-structures
of SPD manifolds. In parallel, Chen et al. (2023a) proposed a framework for Riemannian classi-
fiers covering the family of Riemannian metrics pulled back from the Euclidean space. However,
these classifiers often rely on specific Riemannian properties, limiting their generalizability to other
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Riemannian geometries. For instance, the hyperbolic MLR in Ganea et al. (2018) relies on the
generalized law of sine, while the SPD MLRs in Nguyen & Yang (2023) rely on the gyro-structures.

This paper presents a general framework for designing Riemannian classifiers for geometric deep
learning. In contrast to previous works, our framework only requires the existence of Rieman-
nian logarithm, which is the minimal requirement in extending the Euclidean MLR into manifolds.
Since this property is satisfied by common manifolds in machine learning, our framework can be
broadly applied to various types of manifolds. More specifically, we mainly focus on SPD mani-
folds throughout this paper. We leverage the concept of deformed metrics to generalize five kinds of
popular metrics on SPD manifolds in a unified and systematic manner. Grounded on the proposed
Riemannian MLR framework, we propose SPD classifiers induced by these deformed metrics. We
further show that some previous works (Nguyen & Yang, 2023; Chen et al., 2023a) are special cases
of our framework. Extensive experiments conducted on widely-used SPD benchmarks demonstrate
that our proposed SPD classifiers achieve consistent performance gains, outperforming the previous
classifiers by about 10% on human action recognition, and by 4.46% on electroencephalography
(EEG) inter-subject classification. In summary, our main theoretical contributions are as follows:
(a) We develop a general framework for designing intrinsic classifiers for Riemannian networks. (b)
On SPD manifolds, we systematically investigate comprehensive generalizations of existing popu-
lar Riemannian metrics. (c) Based on the derived deformed Riemannian metrics, we propose five
families of deformed SPD classifiers.

Paper structure: Sec. 2 gives a preliminary review of the geometry of SPD manifolds. Sec. 3
revisits the existing Riemannian MLRs and points out their limitations, then proposes our general
framework of Riemannian MLR (Thm. 3.4). Sec. 4 focuses on SPD manifolds, by systematically
studying five families of deformed Riemannian metrics (Tab. 1), and proposing five families of SPD
classifiers induced by these metrics (Tab. 2). We present the experimental results and some in-depth
analysis in Sec. 5. Finally, Sec. 6 summarizes the conclusions.

Main theoretical results: We solve the Riemannian margin distance to the hyperplane in Thm. 3.3
and present our Riemannian MLR in Thm. 3.4. For specific SPD manifolds, two existing
parametrized metrics can be characterized by the deformation map defined in Def. 4.1. Based on
this deformation map, Thm. 4.2 extends and defines three parametrized Riemannian metrics on SPD
manifolds in a consistent manner. As these five families of parametrized metrics are pullback met-
rics, we present Lem. 4.3 for calculating Riemannian MLR (Eq. (14)) under pullback metrics. By
this lemma, SPD MLRs under five families of parametrized metrics can be readily obtained, as
shown in Tab. 2. Due to page limits, we put all the proofs in the appendix.

2 PRELIMINARIES

This section provides a brief review of the basic geometries of SPD manifolds. More details are
exposed in App. B. For better clarity, we also summarize notations in App. B.1.

As every smooth manifold admits a Riemannian structure (Do Carmo & Flaherty Francis, 1992),
we may use the terms smooth manifold, manifold, or Riemannian manifold interchangeably in this
paper. Let Sn

++ be the set of n × n symmetric positive definite (SPD) matrices. As shown in Ar-
signy et al. (2005), Sn

++ is an open submanifold of the Euclidean space Sn consisting of symmetric
matrices. In machine learning, there are five kinds of popular Riemannian metrics on Sn

++: Affine-
Invariant Metric (AIM) (Pennec et al., 2006), Log-Euclidean Metric (LEM) (Arsigny et al., 2005),
Power-Euclidean Metrics (PEM) (Dryden et al., 2010), Log-Cholesky Metric (LCM) (Lin, 2019),
and Bures-Wasserstein Metric (BWM) (Bhatia et al., 2019). Note that, when power equals 1, the
PEM is reduced to the Euclidean Metric (EM). Some of these basic metrics have been generalized
into parametrized families of metrics. We define ST = {(α, β) ∈ R2 | min(α, α + nβ) > 0}, and
denote the O(n)-invariant Euclidean metric on Sn (Thanwerdas & Pennec, 2023) as

⟨V,W ⟩(α,β) = α⟨V,W ⟩+ β tr(V ) tr(W ), with (α, β) ∈ ST. (1)

By O(n)-invariant Euclidean metric on Sn, Thanwerdas & Pennec (2023) generalized AIM, LEM,
and EM into two-parameters families of O(n)-invariant metrics, i.e.,(α, β)-AIM, (α, β)-LEM, and
(α, β)-EM, with (α, β) ∈ ST. We denote the metric tensor of (α, β)-AIM, (α, β)-LEM, (α, β)-
EM, LCM, and BWM as g(α,β)-AIM, g(α,β)-LEM, g(α,β)-EM, gBWM, and gLEM, respectively. We leave
their properties and the formula of associated Riemannian operators in App. B.3. Although there
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also exist other metrics on SPD manifolds (Thanwerdas & Pennec, 2019b; 2022a; 2023), their lack
of closed-form Riemannian operators makes them problematic to be applied in machine learning.

Now, we review the definition of pullback metric, a common technique in Riemannian geometry.

Definition 2.1 (Pullback Metrics). Suppose M,N are smooth manifolds, g is a Riemannian metric
on N , and f : M → N is smooth. Then the pullback of g by f is defined point-wisely,

(f∗g)p(V1, V2) = gf(p)(f∗,p(V1), f∗,p(V2)), (2)

where p ∈ M, f∗,p(·) is the differential map of f at p, and Vi ∈ TpM. If f∗g is positive definite, it
is a Riemannian metric on M, which is called the pullback metric defined by f .

3 RIEMANNIAN MULTICLASS LOGISTIC REGRESSION

Inspired by Lebanon & Lafferty (2004), Ganea et al. (2018); Nguyen & Yang (2023); Chen et al.
(2023a) extended the Euclidean MLR into hyperbolic and SPD manifolds. However, these classifiers
were developed in an ad-hoc manner, relying on specific Riemannian properties, such as the gener-
alized law of sines, gyro-structures, and Euclidean pullback metrics, which limits their generality.
In this section, we first revisit several existing MLRs and then propose our Riemannian classifiers
with minimal geometric requirements.

3.1 REVISITING THE EXISTING MLRS

We now summarize the abstract ideas behind the development of Riemannian classifiers by Lebanon
& Lafferty (2004); Ganea et al. (2018); Nguyen & Yang (2023); Chen et al. (2023a).

Given C classes, the Euclidean MLR computes the multinomial probability of each class as follows:

∀k ∈ {1, . . . , C}, p(y = k | x) ∝ exp (⟨ak, x⟩ − bk) , bk ∈ R, x, ak ∈ Rn\{0}. (3)

As shown in previous work such as Ganea et al. (2018); Chen et al. (2023a), the Euclidean MLR
can be reformulated by the margin distance to the hyperplane:

p(y = k | x) ∝ exp(sign(⟨ak, x− pk⟩)∥ak∥d(x,Hak,pk
)), pk, x ∈ Rn, and ak ∈ Rn\{0}, (4)

where ⟨ak, pk⟩ = bk, and the hyperplane Hak,pk
is defined as:

Hak,pk
= {x ∈ Rn : ⟨ak, x− pk⟩ = 0}. (5)

It is now natural to adapt Eq. (4) and Eq. (5) to manifolds by Riemannian operators:

p(y = k | S) ∝ exp(sign(⟨Ãk,LogPk
(S)⟩Pk

)∥Ãk∥Pk
d̃(S, H̃Ãk,Pk

)), (6)

H̃Ãk,Pk
= {S ∈ M : gPk

(LogPk
S, Ãk) = ⟨LogPk

S, Ãk⟩Pk
= 0}, (7)

where Pk ∈ M, Ãk ∈ TPk
M\{0}, and gPk

(·, ·) (LogPk
(·)) is the Riemannian metric (Riemannian

logarithmic map) at Pk. The margin distance is defined as an infimum:

d̃(S, H̃Ãk,Pk
)) = inf

Q∈H̃Ãk,Pk

d(S,Q). (8)

The MLRs proposed in Lebanon & Lafferty (2004); Ganea et al. (2018); Nguyen & Yang (2023);
Chen et al. (2023a) can be viewed as different implementations of Eq. (6)-Eq. (8).

To calculate the MLR in Eq. (6), one has to compute the associated Riemannian metrics, logarith-
mic maps, and margin distance. The associated Riemannian metrics and logarithmic maps often
have closed-form expressions in machine learning applications. However, the computation of the
margin distance can be challenging. On the Poincaré ball of hyperbolic manifolds, the generalized
law of sines simplifies the calculation of Eq. (8) (Ganea et al., 2018). However, the generalized law
of sines is not universally guaranteed on other manifolds, even when considering other metrics on
hyperbolic spaces. Additionally, Chen et al. (2023a) demonstrated that when working with metrics
pulled back from Euclidean spaces, closed-form solutions of margin distance can be readily ob-
tained. For curved manifolds, solving Eq. (8) would become a non-convex optimization problem.
To address this challenge, Nguyen & Yang (2023) defined gyro-structures on SPD manifolds and
proposed a pseudo-gyrodistance to calculate the margin distance. It is also important to note that
gyro-structures do not generally exist in other types of Riemannian metrics. In summary, the afore-
mentioned methods often rely on specific properties of their associated Riemannian metrics, which
usually do not generalize to other Riemannian metrics.
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3.2 RIEMANNIAN MLR
Recalling Eq. (6) and (7), the weakest requirement of extending Euclidean MLR in manifolds is
the well-definedness of LogPk

(S) for each k. If the LogPk
(S) does not exist, even the hyperplane

Eq. (6) and (7) are all ill-defined. In this subsection, we will develop Riemannian MLR depending
solely on the existence of the Riemannian logarithm, without any additional requirements, such as
gyro structures and generalized lay of sines. In the following, we always assume the existence of the
Riemannian logarithm. We start by reformulating the Euclidean margin distance to the hyperplane
from another perspective and then present our Riemannian MLR.

Remark 3.1. In terms of the existence of the Riemannian logarithm, we make the following remarks.

(a). The existence of LogPk
(S) is more precisely described as S lies in the local injectivity radius

(Groisser, 2004) of Pk. However, in machine learning, cases are much easier. The Riemannian loga-
rithm always exists for a pair of data on many manifolds or metrics, such as the five metrics on SPD
manifolds mentioned in Sec. 2, different metrics on hyperbolic manifolds (Cannon et al., 1997),
spherical manifolds (Chakraborty, 2020), and various types of Lie groups (Iserles et al., 2000).
Therefore, without loss of generality, this paper assumes that Riemannian logarithm LogPk

(S) al-
ways exists on the manifold M.

(b). This property is a much weaker condition compared to the existence of the gyro structure.
For instance, on SPD manifolds, EM and BWM (Thanwerdas & Pennec, 2023) are incomplete,
which might bring problems when defining gyro operations (Nguyen & Yang, 2023, Eqs. (1-2)). In
contrast, they have the Riemannian logarithm for any data pair.

As we discussed before, on manifolds, obtaining the margin distance of Eq. (8) could be challenging.
Inspired by Nguyen & Yang (2023), we resort to another perspective to reinterpret Euclidean margin
distance. In Euclidean space, the margin distance is equivalent to

d(x,Ha,p)) = sin(∠xpy∗)d(x, p) (9)

where y∗ is given by
y∗ = argmax

y∈Ha,p\{p}
(cos∠xpy) (10)

The Riemannian counterparts of Euclidean trigonometry and distance in Eq. (9) and Eq. (10) are
Riemannian trigonometry and geodesic distance. Therefore, we can readily extend the margin dis-
tance to manifolds.

Definition 3.2 (Riemannian Margin Distance). Let H̃Ã,P be a Riemannian hyperplane defined in
Eq. (7), and S ∈ M. The Riemannian margin distance from S to H̃Ã,P is defined as

d(S, H̃Ã,P ) = sin(∠SPQ∗)d(S, P ), (11)

where d(S, P ) is the geodesic distance, and Q∗ = argmax
Q∈H̃Ã,P \{P}

(cos∠SPQ). The initial velocities

of geodesics define cos∠SPQ:

cos∠SPQ =
⟨LogP Q,LogP S⟩P

∥LogP Q∥P , ∥LogP S∥P
, (12)

where ⟨·, ·⟩P is the Riemannian metric at P , and ∥ · ∥P is the associated norm.

The following theorem can calculate the Riemannian margin distance.

Theorem 3.3. The Riemannian margin distance defined in Eq. (11) is given as

d(S, H̃Ã,P ) =
|⟨LogP S, Ã⟩P |

∥Ã∥P
. (13)

Putting the margin distance (Eq. (13)) into Eq. (6), RMLR can be obtained. However, In Eq. (6), as
Pk varies during training, Ãk becomes a non-Euclidean parameter. Inspired by Chen et al. (2023a),
Ãk can be generated by parallel transportation, or if M admits Lie group structures, Lie group
translation (we focus on left translation). Now, we give the final expression of our Riemannian
MLR.
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Theorem 3.4 (Riemannian MLR). Given a Riemannian manifold {M, g}, the Riemannian MLR
induced by g is

p(y = k | S ∈ M) ∝ exp(⟨LogPk
S, Ãk⟩Pk

), (14)
where Pk ∈ M, Ãk ∈ TPk

M\{0}, and Log is the Riemannian logarithm. Ãk can be generated by
parallel transportation, or, if M admits a Lie group operation ⊙, Lie group left translation:

Ãk = ΓQ→Pk
Ak, (15)

Ãk = LPk⊙Q−1
⊙ ∗,QAk, (16)

where Q ∈ M is a fixed point, Ak ∈ TQM\{0}, Γ is the parallel transportation along geodesic
connecting Q and Pk, and LPk⊙Q−1

⊙ ∗,Q denotes the differential map at Q of left translation

LPk⊙Q−1
⊙

with Pk ⊙ Q−1
⊙ denoting Lie group product and inverse. We call Eq. (14) + Eq. (15)

the Riemannian MLR by parallel transportation, and Eq. (14) + Eq. (16) the Riemannian MLR by
left translation.

Remark 3.5. Compared with the specific classifiers on hyperbolic or SPD manifolds in Ganea et al.
(2018); Nguyen & Yang (2023); Chen et al. (2023a), our framework enjoys broader applicability, as
our framework only requires the existence of Riemannian logarithm, which is commonly satisfied
by most manifolds encountered in machine learning. Besides, optimization of Ãk in our framework
incorporates the methods in Ganea et al. (2018); Nguyen & Yang (2023); Chen et al. (2023a). In-
terestingly, our definition of Riemannian MLR is a natural generalization of Euclidean MLR: When
M = Rn, our Riemannian MLR becomes the Euclidean MLR. Please refer to App. C for more
details.

4 SPD MLRS

In this section, we aim to propose SPD MLRs based on our previously defined Riemannian MLR
framework. To achieve this, we first systematically discuss the diverse geometries of SPD manifolds.
Subsequently, we will develop five families of SPD MLRs.

4.1 FIVE FAMILIES OF DEFORMED GEOMETRIES OF SPD MANIFOLDS

As discussed in Sec. 2, there are five kinds of popular Riemannian metrics on SPD manifolds. In
Thanwerdas & Pennec (2019a), (α, β)-AIM is further generalized into three-parameters families of
metrics by the pullback of matrix power function Pθ and scaled by 1

θ2 , i.e.,(θ, α, β)-AIM. Thanwer-
das & Pennec (2022a) identified the alpha-Procrustes metric (Minh, 2022) with one-parameter fami-
lies of BWM pulled back by P2θ and scaled by 1

4θ2 , which we call as 2θ-BWM in this paper. Besides,
the pullback of the power function can be viewed as deformation. The family of (θ, α, β)-AIM com-
prises (α, β)-AIM for θ = 1 and includes (α, β)-LEM with θ → 0 (Thanwerdas & Pennec, 2019a).
Similarly, 2θ-BWM becomes BWM with θ = 0.5 (Thanwerdas & Pennec, 2022a).

Inspired by the deforming utility of power function, in the following, we generalize the basic LCM,
LEM, and EM into parameterized families of metrics, and systematically study the deformation
between different families of metrics. We first define a deformation map between SPD manifolds to
present a unified discussion encompassing all metrics.

Definition 4.1 (Power Deformation Map). A power deformation map ϕθ : Sn
++ → Sn

++ is defined
as ϕθ(S) = 1

|θ|S
θ, where | · | denotes the absolute value and θ ∈ R\{0}.

Easy computation shows that 2θ-BWM is the pullback metrics by ϕ2θ from the standard BWM. So
is (θ, α, β)-AIM from the (α, β)-AIM. Inspired by this observation, we use the power deformation
map to consistently generalize the standard EM, LCM, and LEM.

Theorem 4.2. We define the (θ, α, β)-LEM, (θ, α, β)-EM, and θ-LCM as the pullback metrics by ϕθ
from the (α, β)-LEM, (α, β)-EM, and LCM, respectively, with (α, β) ∈ ST. Then (θ, α, β)-LEM
interpolates between (α, β)-LEM (θ → 0) and (α, β)-LEM (θ = 1), while (θ, α, β)-EM interpolates
between (α, β)-LEM (θ → 0) and LCM (θ = 1).

Define log∗,P as the differential map at P ∈ Sn
++ of matrix logarithm, g̃(V1, V2) = 1

2 ⟨V1, V2⟩ −
1
4 ⟨D(V1),D(V2)⟩, where D(Vi) is a diagonal matrix consisting of the diagonal elements of Vi. Then
θ-LCM interpolates between g̃-LEM (θ = 0) and itself (θ = 1), with g̃-LEM defined as

⟨V,W ⟩P = g̃(log∗,P (V ), log∗,P (W )),∀P ∈ Sn
++,∀V,W ∈ TPSn

++. (17)
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(", $, %)-AIM

(", $, %)-EM

(", $, %)-LEM

Riemannian Metrics on 
SPD Manifolds

"-LCM

O ' -Invariant Metrics

("-BWM

Figure 1: Illustration on the deformation (left) and Venn diagram (right) of metrics on SPD man-
ifolds, where IEM, SREM, and 1

4 PAM denotes Inverse Euclidean Metric, Square Root Euclidean
Metric, and Polar Affine Metric scaled by 1/4.

So far, all five standard popular Riemannian metrics on SPD manifolds have been generalized into
parameterized families of metrics. We summarize their associated properties in Tab. 1 and present
their theoretical relation in Fig. 1. We leave technical details in Apps. D.1 and D.2.

Table 1: Properties of five families of parameterized Riemannian metrics on SPD manifolds.
Name Riemannian Metric Properties

(θ, α, β)-LEM ϕ∗θg
(α,β)-LEM Lie Group Bi-Invariance, O(n)-Invariance, Geodesically Completeness

(θ, α, β)-AIM ϕ∗θg
(α,β)-AIM Lie Group Left-Invariance, O(n)-Invariance, Geodesically Completeness

(θ, α, β)-EM ϕ∗θg
(α,β)-EM O(n)-Invariance

θ-LCM ϕ∗θg
LCM Lie Group Bi-Invariance, Geodesically Completeness

2θ-BWM ϕ∗2θg
BWM O(n)-Invariance

4.2 FIVE FAMILIES OF SPD MLRS

This section presents five families of specific SPD MLRs by leveraging our general framework in
Thm. 3.4 and metrics discussed in Sec. 4.1. We focus on generating Ã by parallel transportation
from the identity matrix, except for 2θ-BWM. Since the parallel transportation under 2θ-BWM
would undermine numerical stability (please refer to App. E.2.1 for more details.), we rely on left
translation to generate Ã for the MLRs under 2θ-BWM.

As the five families of metrics presented in Sec. 4.1 are pullback metrics, we first present a general
result regarding Riemannian MLRs under pullback metrics.

Lemma 4.3 (Riemannian MLRs Under Pullback Metrics). Supposing {N , g} is a Riemannian man-
ifold and ϕ : M → N is a diffeomorphism between manifolds, the Riemannian MLR by parallel
transportation (Eq. (14) + Eq. (15)) on M under g̃ = ϕ∗g can be obtained by g:

p(y = k | S ∈ M) ∝ exp(g̃Pk
( ˜LogPk

S, Γ̃Q→Pk
Ak)), (18)

= exp
[
gϕ(Pk)(Logϕ(Pk)

ϕ(S),Γϕ(Q)→ϕ(Pk)ϕ∗,Q(Ak))
]
, (19)

where ˜Log, Γ̃ are Riemannian logarithm and parallel transportation under g̃, and Log,Γ are the
counterparts under g.

Furthermore, if N has a Lie group operation ⊙, M could be endowed with a Lie group structure ⊙̃
by f . The Riemannian MLR by left translation (Eq. (14) + Eq. (16)) on M under g̃ and ⊙̃ can be
calculated by g and ⊙:

p(y = k | S ∈ M) ∝ exp(g̃Pk
( ˜LogPk

S, L̃R̃k∗,QAk)), (20)

= exp
[
gϕ(Pk)

(
Logϕ(Pk)

ϕ(S), LRk∗,ϕ(Q) ◦ ϕ∗,Q(Ak)
)]
, (21)

where R̃k = Pk⊙̃Q−1
⊙̃ , Rk = ϕ(P )⊙ ϕ(Q)−1

⊙ , and L̃Pk⊙̃Q−1

⊙̃
is the left translation under ⊙̃

For MLRs on SPD manifolds, we set Q = I . For (θ, α, β)-LEM,(θ, α, β)-AIM, (θ, α, β)-EM, and
θ-LCM, MLRs can be readily obtained by Lem. 4.3. For 2θ-BWM, we resort to a newly developed
Lie group operation (Thanwerdas & Pennec, 2022b) defined as S1 ⊙ S2 = L1S2L

T
1 with L1 =

Chol(S1) as the Cholesky decomposition. We also propose a numerically stable backpropagation
for the Lyapunov operator in 2θ-BWM (please refer to App. E.2.2 for technical details.).

By Lem. 4.3, we can readily obtain the specific SPD MLRs induced from five families of parame-
terized metrics. As 2×2 SPD matrices can be embedded into R3 as an open cone (Yair et al., 2019),
we also illustrate SPD hyperplanes induced by five families of metrics in Fig. 2. The SPD MLRs
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Table 2: Five families of SPD MLRs. For simplicity, we omit the subscripts k of Ak and Pk.
Metrics p(y = k | S ∈ Sn

++) = Prototype

(θ, α, β)-LEM exp
[
θ2⟨log(S)− log(P ), A⟩(α,β)

]
Eq. (19)

(θ, α, β)-AIM exp
[
⟨log(P− θ

2SθP− θ
2 ), θA⟩(α,β)

]
Eq. (19)

(θ, α, β)-EM exp
[
1
θ ⟨S

θ − P θ, A⟩(α,β)
]

Eq. (19)

θ-LCM exp

[
sgn(θ)⟨⌊K̃⌋ − ⌊L̃⌋+

√
|θ|

[
Dlog(D(K̃))−Dlog(D(L̃))

]
, ⌊A⌋+

√
|θ|
2 D(A)⟩

]
Eq. (19)

2θ-BWM exp
[
sgn(θ)

2 ⟨(P 2θS2θ)
1
2 + (S2θP 2θ)

1
2 − 2P 2θ,LP 2θ (L̄AL̄⊤)⟩

]
Eq. (21)

Figure 2: Conceptual illustration of SPD hyperplanes induced by five families of Riemannian met-
rics. In each subfigure, the black dots are symmetric positive semi-definite matrices, denoting the
boundary of S2

++. The blue, red, and yellow dots denote three SPD hyperplanes.

are presented in Tab. 2. We leave technical details in App. E.3. The notations in Tab. 2 are defined
in the following. By abuse of notation, we omit the subscripts k of Ak and Pk. For P ∈ Sn

++
and A ∈ TISn

++\{0}, we make the following notations. We denote log(·) as the matrix logarithm,
LP (V ) as the solution to the matrix linear system LP [V ]P + PLP [V ] = V , which is known as the
Lyapunov operator, Dlog(·) as the diagonal element-wise logarithm, ⌊·⌋ as the strictly lower part of
a square matrix, and D(·) as a diagonal matrix with diagonal elements of a square matrix. Besides,
log∗,P is the differential maps at P . We set K̃ = Chol(Sθ), L̃ = Chol(P θ), and L̄ = Chol(P 2θ).

Remark 4.4. Our SPD MLRs extend the SPD MLRs in Nguyen & Yang (2023); Chen et al. (2023a):

Nguyen & Yang (2023) introduced SPD MLRs induced by gyro-structures under standard LEM,
LCM, and AIM, and Chen et al. (2023a) discussed SPD MLRs under pullback Euclidean metrics
and specifically focused on (α, β)-LEM. However, our work covers their theoretical results. In
detail, Nguyen & Yang (2023, Thms. 2.23-2.25) and Chen et al. (2023a, Thm. 3 and Prop. 7) can
be readily obtained by our Thm. 3.3 and Thm. 3.4.

Furthermore, our approach extends the scope of prior work as neither Chen et al. (2023a) nor
Nguyen & Yang (2023) explored SPD MLRs based on EM and BWM. The formal definition of gyro-
operations in Nguyen & Yang (2023, Eq. (1)) implicitly requires geodesic completeness, whereas
EM and BWM are imcomplete. As neither EM nor BWM belongs to pullback Euclidean metrics,
the framework presented in Chen et al. (2023a) cannot be applied to these metrics either. To the
best of our knowledge, our work is the first to apply EM and BWM to establish Riemannian neural
networks, opening up new possibilities for utilizing these metrics in machine learning applications.

5 EXPERIMENTS

Following the previous work (Huang & Van Gool, 2017; Brooks et al., 2019; Kobler et al., 2022),
we evaluate the performance of our classifiers in three different applications: radar recognition on
the Radar dataset (Brooks et al., 2019), human action recognition on the HDM05 dataset (Müller
et al., 2007), and Brain Computer Interface (BCI) application on the Hinss2021 dataset (Hinss et al.,
2021). For the radar recognition and human action recognition tasks, we apply our classifiers to the
baseline SPDNet1 (Huang & Van Gool, 2017). On the BCI application, we utilize our classifiers
with the state-of-the-art SPD neural network, SPD domain-specific momentum batch normalization
(SPDDSMBN 2) (Kobler et al., 2022), which is an improved version of SPDNetBN (Brooks et al.,
2019). Please refer to App. B.4 for a quick review of these baseline models. We use the standard-
cross entropy loss as the training objective and optimize the parameters with the Riemannian AMS-
Grad optimizer (Bécigneul & Ganea, 2018). We denote the network architecture as [d0, d1, · · · , dL],
where the dimension of the parameter in the i-th BiMap layer (App. B.4) is di × di−1. The learning

1https://proceedings.neurips.cc/paper files/paper/2019/file/6e69ebbfad976d4637bb4b39de261bf7-
Supplemental.zip

2https://github.com/rkobler/TSMNet
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rate for the Radar and HDM05 datasets is 1e−2, and the batch size is 30. For the Hinss2021 dataset,
following Kobler et al. (2022), the learning rate is 1e−3 with a 1e−4 weight decay, and batch size is
50. The maximum training epoch is 200, 200, and 50, respectively.

Datasets and preprocessing: Radar3 dataset (Brooks et al., 2019) consists of 3,000 synthetic
radar signals. Following the protocol in Brooks et al. (2019), each signal is split into windows of
length 20, resulting in 3,000 SPD covariance matrices of 20 × 20 equally distributed in 3 classes.
HDM054 dataset (Müller et al., 2007) contains 2,273 skeleton-based motion capture sequences ex-
ecuted by various actors. Each frame consists of 3D coordinates of 31 joints of the subjects, and
each sequence can be, therefore, modeled by a 93×93 covariance matrix. Following the protocol in
Brooks et al. (2019), we trim the dataset down to 2086 sequences scattered throughout 117 classes
by removing some under-represented classes. Hinss20215 dataset (Hinss et al., 2021) is a recent
competition dataset consisting of EEG signals for mental workload estimation. The dataset is used
for two types of experiments: inter-session and inter-subject, which are modeled as domain adap-
tation problems. Recently, geometry-aware methods have shown promising performance in EEG
classification (Yair et al., 2019; Kobler et al., 2022; Abdel-Ghaffar et al., 2022). We choose the
SOTA method, SPDDSMBN (Kobler et al., 2022), as our baseline model on this dataset. We follow
Kobler et al. (2022) to carry out preprocessing and finally extract 40× 40 SPD covariance matrices
(see App. F.2 for more details).

Implementation Details: In the baseline models, namely SPDNet and SPDDSMBN, the Euclidean
MLR in the co-domain of matrix logarithm (matrix logarithm + FC + softmax) is used for classifi-
cation. Following the terminology in Chen et al. (2023a), we call this classifier as LogEig MLR. To
evaluate the performance of our intrinsic classifiers, we substitute the LogEig MLR in SPDNet and
SPDDSMBN with our SPD MLRs. We implement our SPD MLRs induced from five parameterized
metrics. In line with the previous work (Brooks et al., 2019; Kobler et al., 2022), we use accuracy
as the scoring metric for the Radar and HDM05 datasets, and balanced accuracy (i.e.,the average
recall across classes) for the Hinss2021 dataset. 10-fold experiments on Radar and HDM05 datasets
are carried out with randomized initialization and split, while models are fit and evaluated with a
randomized leave 5% of the sessions (inter-session) or subjects (inter-subject) out cross-validation
(CV) scheme on the Hinss2021 dataset.

Hyper-parameters: We implement the SPD MLRs induced by not only five standard metrics,
i.e.,LEM, AIM, EM, LCM, and BWM, but also five families of parameterized metrics. Therefore,
in our SPD MLRs, we have a maximum of three hyper-parameters, i.e.,θ, α, β, where (α, β) are
associated with O(n)-invariance and θ controls deformation. For (α, β) in (θ, α, β)-LEM, (θ, α, β)-
AIM, and (θ, α, β)-EM, recalling Eq. (1), α is a scaling factors, while β measures the relative
significance of traces. As scaling is less important (Thanwerdas & Pennec, 2019a), we set α =
1. As for the value of β, we select it from a predefined set: {1, 1/n, 1/n2, 0,−1/n + ϵ,−1/n2},
where n is the dimension of input SPD matrices in SPD MLRs. The purpose of including ϵ ∈ R+

is to ensure O(n)-invariance ((α, β) ∈ ST). These chosen values for β allow for amplifying,
neutralizing, or suppressing the trace components, depending on the characteristics of the datasets.
For the deformation factor θ, we roughly select its value around its deformation boundary, detailed
in App. F.1.

Table 3: Accuracy comparison of SPDNet with and without SPD MLRs on the Radar dataset.
Network

Architectures SPDNet
(θ, α, β)-AIM (θ, α, β)-EM (θ, α, β)-LEM 2θ-BWM θ-LCM

(1,1,0) (1,1,0) (1,1,1/8) (1,1,0) (0.5,1,1) (0.5) (-0.25) (1) (1.5)

[20,16,8] 92.88±1.05 94.53±0.95 94.24±0.55 94.93±0.60 93.55±1.21 95.29±0.61 92.22±0.83 94.59±0.71 93.49±1.25 93.07±1.08
[20,16,14,12,10,8] 93.47±0.45 94.32±0.94 95.11±0.82 95.01±0.84 94.60±0.70 95.31±0.75 93.69±0.66 94.48±0.58 93.93±0.98 94.64±0.91

Table 4: Accuracy comparison of SPDNet with and without SPD MLRs on the HDM05 dataset.
Network

Architectures SPDNet
(θ, α, β)-AIM (θ, α, β)-EM (θ, α, β)-LEM 2θ-BWM θ-LCM

(1,1,0) (0.75,1.0,1/302) (1,1,0) (0.5,1.0,1/30) (1,1,0) (0.5,1.0,1/30) (0.5) (1)

[93,30] 57.42±1.31 58.07±0.64 59.1±0.59 66.32±0.63 71.65±0.88 56.97±0.61 59.30±0.63 70.24±0.92 48.55±2.35
[93,70,30] 60.69±0.66 60.72±0.62 62.18±0.70 66.40±0.87 70.56±0.39 60.69±1.02 62.84±0.50 70.46±0.71 47.61±1.82

[93,70,50,30] 60.76±0.80 61.14±0.94 62.36±0.98 66.70±1.26 70.22±0.81 60.28±0.91 63.06±0.76 70.20±0.91 49.10±1.94

3https://www.dropbox.com/s/dfnlx2bnyh3kjwy/data.zip?dl=0
4https://resources.mpi-inf.mpg.de/HDM05/
5https://zenodo.org/record/5055046
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5.1 EXPERIMENTAL RESULTS

For each family of SPD MLRs, we report two representatives: the standard SPD MLR induced from
the standard metric (θ = 1, α = 1, β = 0), and the one induced from the deformed metric with
selected hyper-parameters. Besides, if the standard SPD MLR is already saturated, we report the
results of the standard one. In Tabs. 3 to 6, we denote (θ, α, β)-AIM as the baseline model endowed
with the SPD MLR induced by (θ, α, β)-AIM and (1,1,0) as the value of (θ, α, β). So do SPD MLRs
under other metrics. We leave the model efficiency in App. F.3.

Radar: In line with Brooks et al. (2019), we evaluated our classifiers on the Radar dataset using
two network architectures: [20, 16, 8] for the 2-layer configuration and [20, 16, 14, 12, 10, 8] for
the 5-layer configuration. The 10-fold results (mean±std) are presented in Tab. 3. Note that as the
SPD MLR induced by standard AIM is saturated on this dataset, we report the standard SPD MLR
for the family of (θ, α, β)-AIM. Generally speaking, our SPD MLRs achieve superior performance
against the vanilla LogEig MLR. Moreover, for most families of metrics, the associated SPD MLRs
with properly selected hyper-parameters outperform the standard SPD MLR induced by the standard
metric, demonstrating the effectiveness of our parameterization. Besides, among all SPD MLRs, the
ones induced by (θ, α, β)-LEM achieve the best performance on this dataset.

HDM05: Following Huang & Van Gool (2017), three architectures are evaluated on this dataset:
[93, 30], [93. 70, 30], and [93, 70, 50, 30]. Note that the standard SPD MLRs under BWM and
LCM are already saturated on this dataset. Similar observations can be made on this dataset as the
Radar dataset. Our SPD MLRs can bring consistent performance gain for SPDNet, and properly
selected hyper-parameters can bring further improvement. Particularly, among all the SPD MLRs,
the ones based on the 2θ-BWM and θ-EM achieved the best performance. These two families of
classifiers exhibited a remarkable increase of approximately 10% accuracy points compared
to the vanilla LogEig MLR, highlighting the effectiveness of our approach. An intriguing aspect
is that, despite incompleteness, the 2θ-BWM and θ-EM-based classifiers still showed significant
performance improvements over the baseline. This result again confirms our theoretical framework’s
superiority and applicability to a broader range of practical scenarios. However, we observed that the
SPD MLRs based on θ-LCM exhibit considerably slower convergence on this dataset. The models
fail to converge even after 500 training epochs. We therefore report the results at 500 epochs.
This behavior could be attributed to the specific characteristics of the HDM05 dataset, which might
interact differently with the θ-LCM metric compared to other metrics.

Table 5: Results of inter-session experiments on the Hinss2021 dataset.

Methods SPDDSMBN
(θ, α, β)-AIM (θ, α, β)-EM (θ, α, β)-LEM 2θ-BWM θ-LCM

(1,1,0) (0.5,1,0.05) (1,1,0) (1,1,0) (0.5,1,0.05) (0.5) (1) (1.5)

Balanced Acc. 53.83±9.77 53.36±9.92 55.27±8.68 54.48±9.21 53.51±10.02 55.26±8.93 55.54±7.45 55.71±8.57 56.43±8.79

Table 6: Results of inter-subject experiments on the Hinss2021 dataset.

Methods SPDDSMBN
(θ, α, β)-AIM (θ, α, β)-EM (θ, α, β)-LEM 2θ-BWM θ-LCM

(1,1,0) (1.5,1,0) (1,1,0) (1.5,1,1/20) (1,1,0) (1.25,1,0) (0.5) (0.75) (1) (0.5)

Balanced Acc. 49.68±7.88 50.65±8.13 51.15±7.83 50.02±5.81 51.38±5.77 51.41±7.98 52.52±6.83 50.26±7.23 51.67±8.73 52.93±7.76 54.14±8.36

Hinss2021: Following Kobler et al. (2022), we adopt the architecture of [40,20]. The results
(mean±std) of leaving 5% out cross-validation are reported in Tabs. 5 and 6. Once again, our intrinsic
classifiers demonstrate improved performance compared to the baseline, both in the inter-session and
inter-subject scenarios. More interestingly, different from the performance on the HDM05 dataset,
SPD MLRs based on θ-LCM achieve the best performance (increase 2.6% for inter-session and
4.46% for inter-subject), indicating that this metric can faithfully capture the geometry of data in
the Hinss2021 dataset. This finding highlights the adaptability and versatility of our framework, as
it can effectively leverage different Riemannian metrics based on the intrinsic geometry of the data,
leading to improved performance across a wide range of datasets.

6 CONCLUSIONS

In this paper, we presented a novel and versatile framework for designing intrinsic Riemannian clas-
sifiers for matrix manifolds, with a specific focus on SPD manifolds. We systematically explored
five families of Riemannian metrics on SPD manifolds and utilized them to construct five families
of deformed SPD MLRs. Extensive experiments demonstrated the superiority of our intrinsic classi-
fiers. We expect that our work could present a promising direction for designing intrinsic classifiers
in geometric deep learning.
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A LIMITATIONS AND FUTURE AVENUES

Limitation: Recalling our RMLR in Eq. (14), our RMLR is over-parameterized. In RMLR, each
class would require an SPD parameter Pk and Euclidean parameterAk. Consequently, as the number
of classes grows, the classification layer would become burdened with excessive parameters. We will
address this problem in future work.

Future work: We highlight the advantage of our approach compared to existing methods is that it
only requires the existence of the Riemannian logarithm, which is commonly satisfied by various
manifolds encountered in machine learning. Therefore, as a future avenue, our framework offers
various possibilities for designing Riemannian classifiers for geometric deep learning on other man-
ifolds.

B PRELIMINARIES

B.1 NOTATIONS

For better understanding, we briefly summarize all the notations used in this paper in Tab. 7.

Table 7: Summary of notations.
Notation Explanation

{M, g} or abbreviated as M A Riemannian manifold
TPM The tangent space at P ∈ M

gP (·, ·) or ⟨·, ·⟩P The Riemannian metric at P ∈ M
∥ · ∥P The norm induced by ⟨·, ·⟩P on TPM
LogP The Riemannian logarithm at P
ΓP→Q The Riemannian parallel transportation along the geodesic connecting P and Q
Ha,p The Euclidean hyperplane
H̃Ã,P The Riemannian hyperplane
⊙ A Lie group operation

{M,⊙} A Lie group
P−1
⊙ The group inverse of P under ⊙
LP The Lie group left translation by P ∈ M
f∗,P The differential map of the smooth map f at P ∈ M
f∗g The pullback metric by f from g
Sn
++ The SPD manifold
Sn The Euclidean space of symmetric matrices
Ln
+ The Cholesky manifold, i.e.,the set of lower triangular matrices with positive diagonal elements

⟨·, ·⟩ or · : · The standard Frobenius inner product
ST ST = {(α, β) ∈ R2 | min(α, α+ nβ) > 0}

⟨·, ·⟩(α,β) The O(n)-invariant Euclidean inner product
g(α,β)-LEM The Riemannian metric of (α, β)-LEM
g(α,β)-AIM The Riemannian metric of (α, β)-AIM
g(α,β)-EM The Riemannian metric of (α, β)-EM
gBWM The Riemannian metric of BWM
gLCM The Riemannian metric of LCM
log Matrix logarithm
Chol Cholesky decomposition

Dlog(·) The diagonal element-wise logarithm
⌊·⌋ The strictly lower triangular part of a square matrix
D(·) A diagonal matrix with diagonal elements from a square matrix
LP [·] The Lyapunov operator
(·)θ Matrix power
ϕθ Power deformation map

B.2 BRIEF REVIEW OF RIEMANNIAN GEOMETRY

Intuitively, manifolds are locally Euclidean spaces. Differentials are the generalization of deriva-
tives in classic calculus. For more details on smooth manifolds, please refer to Tu (2011); Lee
(2013). Riemannian manifolds are the manifolds endowed with Riemannian metrics, which can be
intuitively viewed as point-wise inner products.

Definition B.1 (Riemannian Manifolds). A Riemannian metric on M is a smooth symmetric co-
variant 2-tensor field on M, which is positive definite at every point. A Riemannian manifold is a
pair {M, g}, where M is a smooth manifold and g is a Riemannian metric.

W.l.o.g., we abbreviate {M, g} as M. The Riemannian metric g induces various Riemannian oper-
ators, including the geodesic, exponential, and logarithmic maps, and parallel transportation. These
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operators correspond to straight lines, vector addition, vector subtraction, and parallel displacement
in Euclidean spaces, respectively (Pennec et al., 2006, Tabel 1). A plethora of discussions on Rie-
mannian geometry can be found in Do Carmo & Flaherty Francis (1992).

When a manifold M is endowed with a smooth operation, it is referred to as a Lie group.

Definition B.2 (Lie Groups). A manifold is a Lie group, if it forms a group with a group operation
⊙ such that m(x, y) 7→ x⊙ y and i(x) 7→ x−1

⊙ are both smooth, where x−1
⊙ is the group inverse of

x.

In the main paper, we rely on pullback isometry to study the deformed geometries on SPD manifolds.
This idea is a natural generalization of bijection from set theory.

Definition B.3 (Pullback Metrics). Suppose M,N are smooth manifolds, g is a Riemannian metric
on N , and f : M → N is smooth. Then the pullback of g by f is defined point-wisely,

(f∗g)p(V1, V2) = gf(p)(f∗,p(V1), f∗,p(V2)), (22)

where p ∈ M, f∗,p(·) is the differential map of f at p, and Vi ∈ TpM. If f∗g is positive definite, it
is a Riemannian metric on M, which is called the pullback metric defined by f .

B.3 BASIC GEOMETRIES OF SPD MANIFOLDS

In this subsection, we will present necessary Riemannian operators and properties for the five basic
geometries on SPD manifolds, namely, (α, β)-LEM, (α, β)-EM, (α, β)-AIM, BWM, and LCM.

For any SPD points P,Q ∈ Sn
++ and tangent vectors V,W ∈ TPSn

++, we follow the notations in
Tab. 7 and further denote Ṽ = Chol∗,P (V ), W̃ = Chol∗,P (W ), L = CholP , and K = CholQ.
For parallel transportation under the BWM, we only present the case where P,Q are commuting
matrices, i.e.,P = UΣU⊤ and Q = U∆U⊤. We summarize the associated Riemannian operators
and properties in Tab. 8.

Table 8: Riemannian operators and properties of five basic metrics on SPD manifolds.
Name gP (V,W ) LogP Q ΓP→Q(V ) Properties

(α, β)-LEM
(Thanwerdas & Pennec, 2023) ⟨log∗,P (V ), log∗,P (W )⟩(α,β) (log∗,P )

−1 [log(Q)− log(P )] (log∗,Q)
−1 ◦ log∗,P (V )

O(n)-Invariance,
Geodesically Completeness

(α, β)-AIM
(Thanwerdas & Pennec, 2023; 2022b) ⟨P−1V,WP−1⟩(α,β) P 1/2 log

(
P−1/2QP−1/2

)
P 1/2 (QP−1)1/2V (P−1Q)1/2

Lie Group Left-Invariance,
O(n)-Invariance,

Geodesically Completeness
(α, β)-EM

(Thanwerdas & Pennec, 2023) ⟨V,W ⟩(α,β) Q− P V O(n)-Invariance

LCM
(Lin, 2019)

∑
i>j ṼijW̃ij +

∑n
j=1 ṼjjW̃jjL

−2
jj (Chol−1)∗,L

[
⌊K⌋ − ⌊L⌋+ D(L)Dlog(D(L)−1D(K))

]
(Chol−1)∗,K

[
⌊Ṽ ⌋+ D(K)D(L)−1D(Ṽ )

] Lie Group Bi-Invariance,
Geodesically Completeness

BWM
(Bhatia et al., 2019)

1
2 ⟨LP [V ],W ⟩ (PQ)1/2 + (QP )1/2 − 2P U

[√
δi+δj
σi+σj

[
U⊤V U

]
ij

]
U⊤ O(n)-Invariance

B.4 BASIC LAYERS IN SPDNET AND SPDDSMBN
SPDNet (Huang & Van Gool, 2017) is the most classic SPD neural network. SPDNet mimics the
conventional densely connected feedforward network, consisting of three basic building blocks

BiMap layer: Sk =W kSk−1W k⊤, with W k semi-orthogonal, (23)

ReEig layer: Sk = Uk−1 max(Σk−1, ϵIn)U
k−1⊤, with Sk−1 = Uk−1Σk−1Uk−1⊤, (24)

LogEig layer: Sk = log(Sk−1). (25)

where max() is element-wise maximization. BiMap and ReEig mimic transformation and non-
linear activation, while LogEig maps SPD matrices into the tangent space at the identity matrix for
classification.

SPDNetBN (Brooks et al., 2019) further proposed Riemannian batch normalization based on AIM:

Centering from geometric mean G : ∀i ≤ N, S̄i = G− 1
2SiG

− 1
2 , (26)

Biasing towards SPD parameter G : ∀i ≤ N, S̃i = G
1
2 S̄iG

1
2 . (27)

SPD domain-specific momentum batch normalization (SPDDSMBN) is an improved version of
SPDNetBN. Apart from controlling mean, it also can control variance. The key operation in
SPDDSMBN of controlling mean and variance is:

ΓI→G ◦ ΓG→I(Si)
ν

ν̄+ε , (28)
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where G and v̄ are Riemannian mean and variance. Inspired by Yong et al. (2020), during the
training stage, SPDDSMBN generates running means and running variances for training and testing
with distinct momentum parameters. Besides, it sets G and v̄ as the running mean and running
variance w.r.t. training for training and the ones w.r.t. testing for testing. SPDDSMBN also applies
domain-specific techniques (Chang et al., 2019), keeping multiple parallel BN layers and distributing
observations according to the associated domains. To crack cross-domain knowledge, v is uniformly
learned across all domains, and G is set to be the identity matrix.

C RIEMANNIAN MLR AS A NATURAL EXTENSION OF EUCLIDEAN MLR
Proposition C.1. When M = Rn is the standard Euclidean space, the Riemannian MLR defined in
Thm. 3.4 becomes the Euclidean MLR in Eq. (3).

Proof. On the standard Euclidean space Rn, Logy x = x− y,∀x, y ∈ Rn. Besides, the differential
maps of left translation and parallel transportation are the identity maps. Therefore, given x, pk ∈
Rn and ak ∈ Rn/{0} ∼= T0Rn/{0}, we have

p(y = k | x ∈ Rn) ∝ exp(⟨Logpk
x, ak⟩pk

), (29)

∝ exp(⟨x− pk, ak⟩), (30)
∝ exp(⟨x, ak⟩ − bk), (31)

where bk = ⟨x, pk⟩.

D THEORIES ON THE DEFORMED METRICS

D.1 PROPERTIES OF THE DEFORMED METRICS (TAB. 1)
In this subsection, we prove the properties presented in Tab. 1.

Proof. Firstly, we prove O(n)-invariance of (θ, α, β)-LEM, (θ, α, β)-EM, (θ, α, β)-AIM, and 2θ-
BWM. Since the differential of ϕθ is O(n)-equivariant, and (α, β)-LEM, (α, β)-EM, (α, β)-AIM,
and BWM are O(n)-invariant (Thanwerdas & Pennec, 2023), O(n)-invariance are thus acquired.

Next, we focus on geodesic completeness. It can be easily proven that Riemannian isometries pre-
serve geodesic completeness. On the other hand, (α, β)-LEM, (α, β)-AIM, and LCM are geodesi-
cally complete (Thanwerdas & Pennec, 2023; Lin, 2019). As a direct corollary, geodesic complete-
ness can be obtained since ϕθ is a Riemannian isometry.

Finally, we deal with Lie group invariance. Similarly, it can be readily proved that Lie group invari-
ance is preserved under isometries. LCM, LEM, and (α, β)-AIM are Lie group bi-invariant (Lin,
2019), bi-invariant (Arsigny et al., 2005), and left-invariant (Thanwerdas & Pennec, 2022b). As an
isometric pullback metric from the standard LEM (Thanwerdas & Pennec, 2023), (α, β)-LEM is,
therefore, Lie group bi-invariant. As pullback metrics, (θ, α, β)-LEM, (θ, α, β)-AIM, and θ-LCM
are therefore bi-invariant, left-invariant, and bi-invariant, respectively.

D.2 LIMITING CASES OF THE DEFORMED METRICS (FIG. 1)
In this subsection, we prove the limiting cases in Fig. 1. In detail, we need to prove the following
cases under θ → 0:

(a) 2θ-BWM tends to be ( 14 , 0)-LEM;

(b) (θ, α, β)-EM tends to be (α, β)-LEM;

(c) (θ, α, β)-LEM tends to be (α, β)-LEM;

(d) θ-LCM tends to be g̃-LEM (defined in Thm. 4.2).

Before starting the proof, we first recall a well-known property of deformed metrics (Thanwerdas &
Pennec, 2022a).

Lemma D.1. Let ϕ∗θg be the deformed metric on SPD manifolds pulled back from g by the power
deformation map ϕθ. Then when θ tends to 0, for all P ∈ Sn

++ and all V ∈ TPSn
++, we have

(ϕ∗θg)P (V, V ) → gI(log∗,P (V ), log∗,P (V )). (32)
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Now, we present our proof for the limiting cases of deformed metrics.

Proof. By Lem. D.1, we only have to compute gI(·, ·) (g could be (α, β)-EM, (α, β)-LEM, LCM,
and BWM). Simple computations show that

g
(α,β)-EM
I (V, V ) = ⟨V, V ⟩(α,β), (33)

g
(α,β)-LEM
I (V, V ) = ⟨V, V ⟩(α,β), (34)

gLCM
I (V, V ) = g̃(V, V ), (35)

gBWM
I (V, V ) =

1

4
⟨V, V ⟩(α,β). (36)

Together with Eq. (32), one can directly get all the results.

E TECHNICAL DETAILS ON THE PROPOSED SPD MLRS

E.1 COMPUTING MATRIX SQUARE ROOTS IN SPD MLRS UNDER POWER BWMS

In the case of MLRs induced by 2θ-BWM, computing square roots like (BA)
1
2 and (AB)

1
2 with

B,A ∈ Sn
++ poses a challenge. Eigendecomposition cannot be directly applied, since BA and AB

are no longer symmetric, let alone positive definitity. Instead, we use the following formulas to
compute these square roots (Minh, 2022):

(BA)
1
2 = B

1
2 (B

1
2AB

1
2 )

1
2B− 1

2 and (AB)
1
2 = [(BA)

1
2 ]⊤, (37)

where the involved square roots can be computed using eigendecomposition or singular value de-
composition (SVD).

E.2 NUMERICAL STABILITY OF SPD MLRS UNDER POWER BWMS

Let us first explain why we abandon parallel transportation on the SPD MLR derived from 2θ-BWM.
Then, we propose our numerically stable methods for computing the SPD MLR based on 2θ-BWM.

E.2.1 INSTABILITY OF PARALLEL TRANSPORTATION UNDER POWER BWMS

As discussed in Thm. 3.4, there are two ways to generate Ã in SPD MLR: parallel transportation
and Lie group translation. However, parallel transportation under 2θ-BWM could cause numerical
problems. W.l.o.g., we focus on the standard BWM as 2θ-BWM is isometric to the BWM.

Although the general solution of parallel transportation under BWM is the solution of an ODE, for
the case of parallel transportation starting from the identity matrix, we have a closed-form expression
(Thanwerdas & Pennec, 2023):

ΓI→P (V ) = U

[√
σi + σj

2

[
U⊤V U

]
ij

]
U⊤, (38)

where P = UΣU⊤ is the eigendecomposition of P ∈ Sn
++. There would be no problem in the

forward computation of Eq. (38). However, during backpropagation (BP), Eq. (38) would require
the BP of eigendecomposition, involving the calculation of 1/(σi−σj) (Ionescu et al., 2015, Prop. 2).
When σi is close to σj , the BP of eigendecomposition could be problematic.

E.2.2 NUMERICALLY STABLE METHODS FOR SPD MLRS BASED ON POWER BWMS

To bypass the instability of parallel transportation under BWM, we use Lie group left translation to
generate Ã in MLRs induced from 2θ-BWM. However, there is another problem that could cause
instability. The computation of the Riemannian metric of 2θ-BWM requires solving the Lyapunov
operator, i.e.,LP [V ]P + PLP [V ] = V . Under the case of symmetric matrices, the Lyapunov
operator can be obtained by eigendecomposition:

LP [V ] = U

[
V ′
ij

σi + σj

]
i,j

U⊤, (39)

where V ∈ Sn, UV ′U⊤ = V , and P = UΣU⊤ is the eigendecomposition of P ∈ Sn
++. Similar

with Eq. (38), the BP of Eq. (39) requires 1/(σi−σj), undermining the numerical stability.

To remedy this problem, we proposed the following formula to stably compute the BP of Eq. (39).
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Proposition E.1. For all P ∈ Sn
++ and all V ∈ Sn, we denote the Lyapunov equation as

XP + PX = V, (40)

where X = LP [V ]. Given the gradient ∂L
∂X of loss L w.r.t. X , then the BP of the Lyapunov operator

can be computed by:

∂L

∂V
= LP [

∂L

∂X
], (41)

∂L

∂P
= −XLP [

∂L

∂X
]− LP [

∂L

∂X
]X, (42)

where LP [·] can be computed by Eq. (39).

Proof. Differentiating both sides of Eq. (40), we obtain

dXP +X dP + dPX + P dX = dV, (43)
=⇒ dXP + P dX = dV −X dP − dPX, (44)
=⇒ dX = LP [dV −X dP − dPX]. (45)

Besides, easy computations show that

LP [V ] :W = V : LP [W ],∀W,V ∈ Sn, (46)

where · : · denotes the standard Frobenius inner product.

Then we have the following:

∂L

∂X
: dX =

∂L

∂X
: LP [dV −X dP − dPX], (47)

=⇒ ∂L

∂X
: dX = LP [

∂L

∂X
] : dV +

(
−XLP [

∂L

∂X
]− LP [

∂L

∂X
]X

)
: dP. (48)

Remark E.2. Eq. (39) needs to be computed in the Lyapunov operator’s forward and backward
process. Therefore, in the forward process, we can save the intermediate matrices U and K with
Ki,j =

[
1

σi+σj

]
i,j

, and then use them to compute the backward process efficiently.

E.3 DETAILS ON FIVE FAMILIES OF DEFORMED SPD MLRS (TAB. 2)
In this subsection, we will apply Lem. 4.3 to derive the expressions of our SPD MLRs presented in
Tab. 2. For our cases of SPD MLRs, we set Q = I . W.l.o.g., we will omit the subscript k for Pk and
Ak In the following proof, we will first derive the expressions of SPD MLRs under (θ, α, β)-LEM,
(θ, α, β)-AIM, (θ, α, β)-EM, and θ-LCM, as they are sourced from Eq. (19). Then we will proceed
to present the expression of MLR under 2θ-BWM, which is sourced from Eq. (21).

Proof. For simplicity, we abbreviate ϕθ as ϕ during the proof. Note that for 2θ-BWM, ϕ should be
understood as ϕ2θ. We first show ϕ(I) and differential map ϕ∗,I , which will be frequently required
in the following proof:

ϕ(I) =
1

|θ|
I, (49)

ϕ∗,I(A) = sgn(θ)(A),∀A ∈ TISn
++. (50)

Then we can showcase Eq. (19) on SPD manifolds with Q = I . Denoting ϕ : {Sn
++, g̃} →

{Sn
++, g}, then the SPD MLR under g̃ by parallel transportation is

p(y = k | S ∈ M) = exp
[
gϕ(P )(Logϕ(P ) ϕ(S),Γ 1

|θ| I→ϕ(P ) sgn(θ)(A))
]
, (51)

Next, we begin to prove the five SPD MLRs one by one.
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(θ, α, β)-LEM: Obviously, (θ, α, β)-LEM is the pullback metric from the Euclidean space
{Sn, g(α,β)}:

{Sn
++, g

(θ,α,β)-LEM} ϕ−→ {Sn
++, g

(α,β)-LEM} log−→ {Sn, g(α,β)} (52)

Denote ψ = log ◦ϕ. For the differential of ψ, we have

ψ∗,I(A) = θA,∀A ∈ TISn
++, (53)

Putting Eq. (53) and g(α,β) into Eq. (19), we have

p(y = k | S ∈ M) ∝ exp
[
⟨ψ(S)− ψ(P ), θA⟩(α,β)

]
, (54)

= exp
[
⟨log(Sθ)− log(P θ), θA⟩(α,β)

]
, (55)

= exp
[
θ2⟨log(S)− log(P ), A⟩(α,β)

]
, (56)

We showcase this process for MLRs under (θ, α, β)-LEM.

(θ, α, β)-AIM: Putting g(α,β)-AIM into Eq. (51), we have

p(y = k | S ∈ M) ∝ exp

[
g
(α,β)-AIM
ϕ(P ) (

1

|θ|
P

θ
2 log(P− θ

2SθP− θ
2 )P

θ
2 , P

θ
2 sgn(θ)AP

θ
2 )

]
, (57)

= exp
[
⟨log(P− θ

2SθP− θ
2 ), θA⟩(α,β)

]
. (58)

(θ, α, β)-EM: Putting g(α,β)-EM into Eq. (51), we have

p(y = k | S ∈ M) ∝ exp
[
g
(α,β)-EM
ϕ(P ) (ϕ(S)− ϕ(P ), sgn(θ)A)

]
, (59)

= exp

[
1

θ
⟨Sθ − P θ, A⟩(α,β)

]
. (60)

θ-LCM: Simple computation shows that θ-LCM is the pullback metric of standard Euclidean metric
in Sn:

{Sn
++, g

θ-LCM} ϕ−→ {Sn
++, g

LCM} Chol−→ {Ln
+, g

CM} Dlog−→ {Sn, gE}, (61)

where gE is the standard Frobenius inner product, and gCM is the Cholesky metric on the Cholesky
space Ln

+ (Lin, 2019). We denote ζ = Dlog ◦Chol ◦ϕ, then we have

ζ∗,I(A) = sgn(θ)(
√

|θ|⌊A⌋+ |θ|
2
D(A)), (62)

ζ(I) = − log(
√
|θ|)I. (63)

Similar with the case of (θ, α, β)-LEM, we have

p(y = k | S ∈ M) (64)
∝ exp [⟨ζ(S)− ζ(P ), ζ∗,IA⟩] , (65)

= exp

[
sgn(θ)⟨⌊K̃⌋ − ⌊L̃⌋+

√
|θ|

[
Dlog(D(K̃))−Dlog(D(L̃))

]
, ⌊A⌋+

√
|θ|
2

D(A)⟩

]
, (66)

where K̃ = Chol(Sθ), L̃ = Chol(P θ), D(K̃) is a diagonal matrix with diagonal elements from K̃,
and ⌊K̃⌋ is a strictly lower triangular matrix from K̃.

2θ-BWM: We first simplify Eq. (21) under the cases of SPD manifolds and then proceed to focus
on the case of g = gBWM. Denote ϕ : {Sn

++, g̃, ⊙̃} → {Sn
++, g,⊙}, where the Lie group operation

⊙ (Thanwerdas & Pennec, 2022b) is defined as

S1 ⊙ S2 = L1S2L
T
1 ,∀S1, S2 ∈ Sn

++, with L1 = Chol(S1). (67)
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Note that I is the identity element of {Sn
++,⊙}, and for any S ∈ Sn

++, the differential map of the
left translation LS under ⊙ is

LS∗,Q(V ) = LV L⊤,∀Q ∈ Sn
++,∀V ∈ TQSn

++, where L = Chol(S). (68)

For the induced Lie group {Sn
++, ⊙̃}, the left translation L̃P ⊙̃I−1

⊙̃
under ⊙̃ is

L̃P ⊙̃I−1

⊙̃
= ϕ−1 ◦ Lϕ(P )⊙ϕ(I)−1

⊙
◦ ϕ, (69)

= ϕ−1 ◦ LP 2θ ◦ ϕ. (ϕ(P )⊙ ϕ(I)−1
⊙ = P 2θ) (70)

The associated differential at I is

L̃P ⊙̃I−1

⊙̃
∗,I(A) = ϕ−1

∗,ϕ(P ) ◦ LP 2θ∗,ϕ(I) ◦ ϕ∗,I(A), (71)

= sgn(θ)ϕ−1
∗,ϕ(P )(L̄AL̄

⊤), (72)

where L̄ = Chol(P 2θ). Then the SPD MLRs under g̃ and ⊙̃ by left translation is

p(y = k | S ∈ M) = exp
[
sgn(θ)gϕ(P )

(
Logϕ(P ) ϕ(S), L̄AL̄

⊤
)]
, (73)

Setting g = gBWM, we obtain the SPD MLR under 2θ-BWM:

p(y = k | S ∈ M) = exp
[
sgn(θ)gBWM

ϕ(P )

(
LogBWM

ϕ(P ) ϕ(S), L̄AL̄
⊤
)]
, (74)

= exp

[
sgn(θ)

2
⟨(P 2θS2θ)

1
2 + (S2θP 2θ)

1
2 − 2P 2θ,LP 2θ (L̄AL̄⊤)⟩

]
. (75)

F EXPERIMENTAL DETAILS

F.1 HYPER-PARAMETERS

For the deformation factor θ, we roughly select its value around its deformation boundary,
i.e.,[0.25,1.5] for (θ, α, β)-AIM and (θ, α, β)-LEM (Recalling Tab. 2, for (θ, α, β)-LEM, w.l.o.g., θ
is positive), [0.5,1.5] for θ-LCM, [0.25,1.5] and (θ, α, β)-EM, [-0.75,0.75] for 2θ-BWM. We equally
select several candidate values in each deformation interval. The details values are listed in Tab. 9.

Table 9: Candidate values for hyper-parameters in SPD MLRs
Metric (θ, α, β)-AIM (θ, α, β)-LEM (θ, α, β)-EM θ-LCM 2θ-BWM

Candidate Values { 0.25,0.5,0.75,1,1.25,1.5 } {0.25,0.5,0.75,1,1.25,1.5} {0.5,1,1.5 } {0.5,1,1.5 } {±0.75,±0.5,±0.25 }

F.2 PREPROCESSING OF THE HINSS2021 DATASET

We follow the Python implementation6 (Kobler et al., 2022) to carry out preprocessing. In detail,
the python package MOABB (Jayaram & Barachant, 2018) and MNE (Gramfort, 2013) are used
to preprocess the datasets. The applied steps include resampling the EEG signals to 250/256 Hz,
applying temporal filters to extract oscillatory EEG activity in the 4 to 36 Hz range, extracting
short segments ( ≤ 3s) associated with a class label, and finally obtaining 40 × 40 SPD covariance
matrices.

F.3 MODEL EFFICIENCY

We adopt the deepest architectures, namely [20, 16, 14, 12, 10, 8] for the Radar dataset, [93, 70,
50, 30] for the HDM05 dataset, and [40, 20] for the Hinss2021 dataset. For simplicity, we focus on
the SPD MLRs induced by standard metrics, i.e.,AIM, EM, LEM, BWM, and LCM. The average
training time (in seconds) per epoch is reported in Tab. 10. Generally, when the number of classes
is small (e.g.,3 in the Radar and Hinss2021 datasets), our SPD MLRs only bring minor additional

6https://github.com/rkobler/TSMNet
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Table 10: Training efficiency.

Methods Radar HDM05
Hinss2021

Inter-session Inter-subject

Baseline 1.36 1.95 0.18 8.31
AIM-MLR 1.75 31.64 0.38 13.3
EM-MLR 1.34 3.91 0.19 8.23

LEM-MLR 1.5 4.7 0.24 10.13
BWM-MLR 1.75 33.14 0.38 13.84
LCM-MLR 1.35 3.29 0.18 8.35

training time compared to the baseline LogEig MLR. However, when dealing with a larger number
of classes (e.g.,117 classes in the HDM05 dataset), there could be some inefficiency caused by
our SPD MLRs. This is because each class requires an SPD parameter, and each parameter might
require matrix decomposition in the forward or backward processes during training. Nonetheless,
the SPD MLRs induced by EM or LCM generally achieve comparable efficiency with the vanilla
LogEig MLR. This is due to the fast computation of their Riemannian operators, making them
efficient choices for tasks with a larger number of classes. This result highlights the flexibility of
our framework and its applicability to various scenarios.

F.4 VISUALIZATION

This subsection visualizes the 10-fold average results of SPDNet with different classifiers on the
Radar and HDM05 datasets. We focus on the deepest architectures, i.e.,. [20,16,14,12,10,8] for the
Radar dataset, and [93,70,50,30] for the HDM05 dataset. Note that we only report the SPD MLR
with the best hyper-parameters (θ, α, β). The figures are presented in Fig. 3. All the results are
sourced from Tabs. 3 and 4.
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Figure 3: Visualization of 10-fold average accuracy of SPDNet with different SPD MLRs on the
Radar and HDM05 datasets. The error bar denotes the standard deviation.

G DIFFERENCE OF OUR SPD MLRS WITH THE EXISTING SPD MLRS

The main paper showcases our RMLR on SPD manifolds under five families of deformed metrics.
Our SPD MLRs incorporate the MLRs presented in Chen et al. (2023a); Nguyen & Yang (2023).
Besides, none of them develop SPD MLRs under BWM or Euclidean Metric (EM). In contrast, we
systematically discuss five deformed families of SPD MLRs. We briefly summarize the difference
in Tab. 11.
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Table 11: Difference between our SPD MLRs and the previous SPD MLRs.
SPD MLR Metrics Involved Theoretical Foundations Geometric Requirement

Gyro SPD MLRs in (Nguyen & Yang, 2023) The standard AIM,
LEM, and LCM

Gyro-structures induced by
the standard AIM, LEM, and LCM

Gyro-structures,
geodesic completeness

Flat SPD MLRs in (Chen et al., 2023a) (α, β)-LEM Pullback metric from
the Euclidean space

Pullback metric from
the Euclidean space

Ours (θ, α, β)-AIM, (θ, α, β)-LEM,
(θ, α, β)-EM, θ-LCM, 2θ-BWM Riemannian geometry Riemannian logarithm

H PROOFS OF THE LEMMAS AND THEORIES IN THE MAIN PAPER

Proof of Thm. 3.3. Let us first solve Q∗ in Eq. (11), which is the solution to the following con-
strained optimization problem:

max
Q

(
⟨LogP Q,LogP S⟩P

∥LogP Q∥P , ∥LogP S∥P

)
s.t.⟨LogP S, Ã⟩P = 0 (76)

Note that Eq. (76) is well-defined due to the existence of logarithm. Although, Eq. (76) is normally
non-convex, Eq. (76) and Eq. (11) can be reduced to a Euclidean problem:

max
Q̃

⟨Q̃, S̃⟩P
∥Q̃∥P ∥S̃∥P

s.t.⟨Q̃, Ã⟩P = 0, (77)

d(S, H̃Ã,P ) = sin(∠SPQ∗)∥S̃∥P , (78)

where Q̃ = LogP Q and S̃ = LogP S.

Let us first discuss Eq. (77). Denote the solution of Eq. (77) as Q̃∗. Note that Q̃∗ is not necessarily
unique. Note that ExpP is only well-defined locally. More precisely, ExpP is well-defined in an
open ball Bϵ(0) centered at 0 ∈ TPM. Therefore, Q̃∗ might not be in Bϵ(0). In this case, we can
scale Q̃∗ into Bϵ(0), and the scaled Q̃∗ is still the maximizer of Eq. (77). Therefore, w.l.o.g., we
assume Q̃∗ ∈ Bϵ(0).

Putting Q̃∗ into Eq. (78), Eq. (78) is reduced to the distance to the hyperplane ⟨Q̃, Ã⟩P = 0 in the
Euclidean space {TPM, ⟨·, ·⟩P }, which has a closed-form solution:

d(S, H̃Ã,P ) =
|⟨S̃, Ã⟩P |
∥Ã∥P

, (79)

=
|⟨LogP S, Ã⟩P |

∥Ã∥P
. (80)

Proof for Thm. 3.4. Putting the margin distance (Eq. (13)) into Eq. (6), RMLR can be obtained.

Proof for Thm. 4.2. Please refer to App. D.2.

Proof for Lem. 4.3. Before starting, we should point out that since ϕ is a diffeomorphism, ⊙̃ and g̃
are indeed well defined, and {M, g̃} forms a Riemannian manifold and {M, ⊙̃} forms a Lie group
(Chen et al., 2023b, Lemma 3.2). We denote ϕ−1

∗ as the differential of ϕ−1. We first focus on the
Riemannian MLR by parallel transportation:

p(y = k | S ∈ M) (81)

∝ exp(g̃Pk (
˜LogPk

S, Γ̃Q→PkAk)), (82)

= exp
[
gϕ(Pk)

(
ϕ∗,Pk ◦ ϕ−1

∗,ϕ(Pk)
Logϕ(Pk)

ϕ(S), ϕ∗,Pk ◦ ϕ−1
∗,ϕ(Pk)

Γϕ(Q)→ϕ(Pk)ϕ∗,Q(Ak)
)]

, (83)

= exp
[
gϕ(Pk)(Logϕ(Pk)

ϕ(S),Γϕ(Q)→ϕ(Pk)ϕ∗,Q(Ak))
]
. (84)
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In the case of the Riemannian MLR by left translation, we first note that:

L̃R̃k
= ϕ−1 ◦ L

ϕ(Pk)⊙ϕ(Q)−1
⊙

◦ ϕ. (85)

Therefore, the associated differential is:

L̃R̃k∗ = ϕ−1
∗ ◦ L

ϕ(Pk)⊙ϕ(Q)−1
⊙ ∗ ◦ ϕ∗. (86)

Putting Eq. (86) in Eq. (20), we can obtain the results.
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