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B Extended Related Work2

Data-driven Motion Forecasting. Deep learning motion forecasting approaches use different3

observation inputs. [1] uses birds-eye-view images, which have a high memory demand and can4

lead to discretization errors. [2] propose to use a vectorized environment representation instead, and5

[3] uses raw-sensor data. Many approaches utilize an encoder-decoder structure with convolutional6

neural networks [4], transformers [5], or graph neural networks [6] to model multi-agent interactions.7

In addition to deterministic models [5], various generative models, such as Generative Adversarial8

Networks (GANs) [7] and Conditional Variational Autoencoder formulations [8], as well as Diffusion9

Models [9], are used to produce multi-modal predictions. Predicting goals in hierarchical approaches10

like [10], can further increase the predictive performance using domain knowledge of the map11

information. Motion forecasting models can also be conditioned on the control [11] or future12

trajectory [8] of one agent. However, these conditional forecasts might lead to overly confident13

anticipation of how that agent may influence the predicted agents [12]. To include domain knowledge14

such as system dynamics into the learning process, it is also common practice [13, 1, 8] to first15

forecast the future control values of all agents and then to unroll a dynamics model to produce the16

future states.17

Differentiable Optimization for Motion Planning. Differentiable optimization has also been applied18

in motion planning for SDVs. [14] and [15] imposes safety-constraints using differentiable control19

barrier functions or gradient-based optimization techniques in static environments. [16] and [17]20

couple a differentiable single-agent motion planning module with learning-based motion forecasting21

modules. In contrast, our work performs multi-agent joint optimizations in parallel, derived from22

a game-theoretic potential game formulation. Game-theoretic formulations can overcome overly23

conservative behavior when used for closed-loop control [18].24

C Theorems25

This section provides the full theorem of [19]:26

Theorem C.1. For a differential game ΓT
x0

:=
(
T, {ui}Ni=1 , {Ci}Ni=1 , f

)
, if for each agent i,

the running and terminal costs have the following structure Li(x(t),u(t), t) = p(x(t),u(t), t) +
ci (x−i(t),u−i(t), t) and

Si(x(T )) = s̄(x(T )) + si (x−i(T )) ,

then, the open-loop control input u∗ = (u∗
1, · · · ,u∗

N ) that minimizes the following

min
u(·)

∫ T

0

p(x(t),u(t), t)dt+ s̄(x(T ))

s.t. ẋi(t) = fi (xi(t),ui(t), t) ,

is an OLNE of the differential game ΓT
x0

, i.e., ΓT
x0

is a potential differential game.27

Proof: See [19], with original proof provided by [20].28

Here besides the potential functions p and s̄, si and ci are terms that are required to not depend on29

the state or control of agent i.30

D Datasets31

D.1 RPI32

The RPI dataset is a synthetic dataset of simulated mobile robot pedestrian interactions. Multi-modal33

demonstrations are generated by approximately solving a two-player differential game (N = 2)34

with the iterative linear-quadratic game implementation of [21, 22] based on different start and goal35

configurations. Fig. 1 provides an illustration for the dataset construction. The robot’s initial positions36
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Multimodal Strategies of Main Game Multimodal Strategies of Subgame  Start and Goal Locations

Figure 1: Dataset construction for RPI dataset. Left: First initial and goal states and game parameters
are sampled. Middle: A main game is solved multiple times based on the sampled game configuration
with subsequent result clustering. That leads to multimodal strategies (red and yellow). The agent
moves according to the multimodal strategies of the main game. After a time step ∆t, a sub game is
solved. The results are multimodal strategies (blue and green) of the subgame. The histories (dotted
red) and multi-modal strategies of the sub game build a demonstration for training and evaluation.

Figure 2: An exemplary highly-interactive scenario from the exiD dataset.

(white circle) and goal locations (white star) are the same in all solved games. In contrast, the initial37

state (dark grey circle) and goal location (dark grey stars) of the pedestrian move on a circle, as38

illustrated on the left graphic in Fig. 1. The agents are tasked to reach a goal location given an39

initial start state while avoiding collisions and minimizing control efforts. As solving the game once40

leads to a uni-modal local strategy, this work follows the implementation of Peters et al. [22]. It41

solves the game for a given initial configuration multiple times based on different sampled strategy42

initializations. Afterward the resulting strategies are clustered. The clustered strategies represent43

multi-modal strategies of the main game, and they are visualized in red and yellow in Fig. 1. The44

agents then execute the open-loop controls of the main game’s initial strategies. After every time45

interval ∆t = 0.1, the procedure of game-solving and clustering the results is repeated as long as the46

agents pass each other. The resulting strategies of the so-called subgames are visualized in green and47

blue on the right of Fig. 1. Based on the history (dotted red line) and the strategies of the subgame48

(blue and green), we then build a multi-modal demonstration for the dataset. Note that the main49

game and the corresponding subgames use the same cost function parametrizations, but the agents’50

preferences for collision avoidance differ between main games.51

The resulting dataset is based on 20 main games and their corresponding subgame solutions. Here52

we draw collision cost parameters from a uniform distribution to enhance demonstration diversity.53

The resulting dataset contains 60338 samples, whereas we use 47822 (∼80%) for training, 6228 for54

validation (∼10%), and 6228 (∼10%) for testing. The test set is constructed based on an unseen main55

game configurations. The goal is to predict M = 2 joint futures of T = 4 s based on a history of56

H = 1.8 s with a time interval of ∆t = 0.1.57

D.2 exiD58

The exiD [23] dataset contains 19 h of real-world highly interactive highway data. Interactions59

between different types of vehicle classes are rich because the data was recorded by drones flying60

over seven locations of German highway entries and exits. Highway entries and exits, designed with61

acceleration and deceleration lanes and high-speed limits, promote interactive lane changes due to62

high relative speeds between on-ramping and remaining road users. In addition, the most common63
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Figure 3: The CARLA left-turning scenario with planned joint trajectories.

cloverleaf interchange in Germany requires simultaneous observation of several other road users and64

gaps between them for safe entry or exit in a short time frame [23].65

To further increase the interactivity, this work extracts scenarios with N = 4 agents in which at66

least one agent performs a lane change. The recordings are then sampled with a frequency of ∆t =67

0.2 s. The different networks are tasked to predict M = 5 joint futures of length T = 4 s based on68

a history of H = 1.8 s. The resulting dataset contains 290735 samples, whereas we use 20659269

(∼72%) for training, 48745 for validation (∼16%), and 35398 (∼12%) for testing. To investigate70

the generalization capabilities of the different models, the test set contains unseen scenarios from a71

different map (map 0) than the training and validation scenarios. An exemplary scenario is visualized72

in Fig. 2.73

D.3 CARLA74

The experiment in the CARLA simulator (Version 9.11) use the implementation of [24] to construct75

interactive scenarios, whereas the SDV is tasked to perform an unprotected-left turn with another76

vehicle approaching the intersection (N = 2) as visualized in Fig. 3. To generate multi-modal77

demonstrations for training, the agents follow hand-crafted policies, to generate different outcomes.78

The SDV first decides whether to enter the intersection. The other vehicle decides to yield or allow79

the SDV to pass. Subsequently, the SDV re-evaluates the initial maneuver. This results in different80

interaction outcomes leading to multi-modal demonstrations.81

This work uses four different intersections in Town 04. The approach is tasked to predict M = 282

joint futures of length T = 6 s based on a history of H = 1.8 s. We only use five episodes of83

different interaction outcomes for training. In contrast to the exiD and RPI experiments, we use an84

agent-centric coordinate system with the SDV as the origin. To increase the training dataset size85

we perform the following data augmentations: 1) We add additional samples based on the original86

samples where all observations (history and map) are randomly rotated with an rotation angle drawn87

from a uniform distribution U [−π/8, π/8]. In these samples we 2) add Gaussian noise N (0, 0.02)88

to the 2-D positions in the histories. Note that this augmentations are only performed for samples89

of the training dataset. The resulting dataset contains 2959 samples, whereas we use 1836 (∼62%)90

for training, 361 (∼12%) for validation and 762 (∼26%) for testing. The training (intersection 1),91

validation (intersection 2) and test set (intersection 3 and 4) all differ in terms of the used intersection.92

During closed-loop control we evaluate on intersection 3.93

In the closed-loop control experiment, the SDV follows the procedure described in Section 4.3 of94

the main paper to predict the SDV strategy um∗

i=0 and the corresponding state trajectory xm∗

i=0. Two95

PID-controller are used for trajectory tracking. They compute a steering angle, braking or throttle96

signals to control the SDV in the simulator.97
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E Implementation Details98

This section provides additional information for the used observation encoding backbones and the99

game parameter decoders. We further provide details for the used dynamics and energy features.100

E.1 Network Architectures (Backbones and Baselines)101

Lane Encoder. In all experiments, the lane encoders ϕlane of all backbones use a PointNet [25] like102

architecture as [2] with three layers and a width of 64. The polylines are constructed based on vectors103

that contain a 2-D start and 2-D goal position in a fixed-global coordinate system. Agent polylines104

also include time step information and are processed with different encoders depending on the used105

backbone.106

Agent History Encoder. The V-LSTM (Vector-LSTM) [26] and VIBES (Vectorized Interaction-107

based Scene Prediction) backbones use an LSTM [27] for agent history encoding with depth three and108

width 64. Our modified HiVT-M (Hierarchical Vector Transformer Modified) [28] implementation109

uses a transformer [29] for the encoding of each agent individually. Note that this contrasts with the110

original implementation, where the encoding transformer already models local agent-to-agent and111

agent-to-lane interactions. We account for that in a modified global interaction graph as listed below.112

The transformer has a depth of three and a width of 64.113

Global Interaction. The V-LSTM backbones update the polyline features in the global interaction114

graph with a single layer of attention [29] as described by [2]. The HiVT-M and VIBES models use115

a two-stage attention mechanism. First, one layer of attention between the map and agent polyline116

features, and afterwards a layer of attention between all updated agents features are applied. The117

global interaction graph has a width of 128.118

Game Parameter and Initial Strategy Decoder. The agent weight, goal, and initial strategy decoders119

are implemented by a 3-layer MLP with a width of 64.120

Goal Decoder. The goal decoder follows [10]. It takes as input the concatenation of an agent121

feature zi and G = 60 possible goal points, denoted by zgoal. The goal points are extracted from122

the centerlines of the current and neighboring lanes. If there exists no neighboring lane, we take the123

lane boundaries. The decoder ϕgoal then predicts the logits of a categorical distribution per agent124

lgoal
i = ϕgoal(zgoal). During training and evaluation, the method takes the M most-likely goals Gi for125

all modes of a agent i. Probabilities for the goals per agent are computed by PRgoal
i = softmax(lgoal

i ).126

The prediction of goals is made in parallel for all agents.127

Scene Probability Decoder. The scene probability decoder also uses a 2-layer MLP with width128

16 × M and predicts logits lprob for the M scene modes. The scene probabilities are derived by129

applying the softmax operations PR = softmax(lprob).130

The goal, agent weight and scene probability decoder use batch normalization. The interaction weight131

decoder, initial strategy decoder, and transformer agent encoder use layer normalization.132

In the CARLA experiment we scaled the width of all networks by half to mitigate overfitting. We133

also experimented with downscaling the network with by a factor of four, but saw no increase in134

performance for the baselines and our method.135

E.2 Dynamics136

The discrete-time dynamically-extended unicycle dynamics [30, Chapter 13] are given by:137

xk+1 = xk + vk cos (θt)∆t

yk+1 = yk + vk sin (θt)∆t

vk+1 = vk + ak∆t

θk+1 = θk + ωk∆t

(1)138
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xk and yk denote a 2-D position and θk the heading. In exiD and RPI the origin of the system is fixed.139

In CARLA the origin is the SDV, whereas the x axis is aligned with the SDV. vk is the velocity, ak140

the acceleration, ωk the turnrate, and ∆t a time interval. Hence, nx = 4×N and nu = 2×N .141

E.3 Energy Features and Optimization142

Energy Features. The energy function in the RPI experiment uses the following agent-dependent143

features: c(·) = [cgoal, cvel, cacc, cvelb, caccb, cturnr, caccb, cturnrb]. In the RPI experiments, the goal is144

given and not predicted. The agent-dependent energy features in the exiD experiments are given145

by c(·) = [cgoal, clane, cvref, cvel, cacc, cjerk, csteer, cturnr, cturnacc]. The agent-dependent energy features146

in the CARLA experiments are given by c(·) = [clane, cvref, cvel, cacc, cjerk, csteer, cturnr, cturnacc]. cgoal147

is a terminal cost penalizing the position difference of the last state to the predicted goal. clane148

minimizes the distance of the state trajectory to the reference lane to which the predicted goal point149

belongs. Note that different goal points can be predicted for the modes and as a result different lanes150

can be selected to better model multi-modality. cvref is the difference between the predicted and151

and map-specific velocity limit. The other terms are running cost, evaluated for all timesteps and152

penalize high velocities (cvel), accelerations (cacc), jerks (cjerk), as well as turn rates (cturnr) and turn153

accelerations (cturnacc). An index b marks a soft constraint implemented as a quadratic penalty, active154

when the bound is violated. Hence an inequality constraint g(z) ≤ 0 with optimization variable z is155

implemented by a feature max(0, g(z)). The interaction feature d(·) is also implemented as such a156

quadratic penalty. We evaluate the collision avoidance features at every discrete time step in the RPI157

experiments. In all experiments, agent geometries are approximated by circles of radius ri, which is158

accurate for the mobile robot and pedestrian but an over-approximation for vehicles (CARLA, exiD)159

and especially for trucks in the highway exiD environment, where we use ri = L/2. L is the length160

of a vehicle. Hence, we evaluate collision avoidance every fifth timestep in the exiD experiments.161

Future work could also use more accurate vehicle approximations (e.g., multiple circles [31]) to162

further evaluate collision avoidance at every time step to increase the predictive performance at a163

higher runtime and memory cost. In the RPI experiments, we set ri = 0.25m.164

Optimization. As the approach already predicts accurate initial strategies Uinit, our experiments165

only required a few optimization steps. Concretely, the results of Tab. 2 and 3 in the main paper166

are obtained with s = 2 optimization steps, rendering our approach real-time capable (see Fig. 9).167

Note while the approach also works, with a higher number of optimization steps (see Fig. 8), our168

experiments showed that fewer optimization steps lead to similiar results, with decreased runtime169

and memory requirements due to the predicted initialization. Both experiments use a stepsize of170

α = 0.3. The experiments use a damping factor of dp = 10 in the Levenberg-Marquardt solver [32].171

In the CARLA experiment we use s = 20. Especially in the low sample regime, a higher number172

of optimization steps is beneficial due to inductive bias from the game-theoretic optimization as the173

initialization performance is decreased, as also later shown in Tab. 1.174

E.4 Training Details175

Loss Functions. The imitation loss in our experiments is the minSADE [6, 33] given by:176

Limit =
M
min
m=1

1

N

N∑
i=1

∥xm
i − xGT∥2 (2)

It first calculates the average over all distances between agent trajectories xm
i from agent i and mode177

m and the ground truth xGT. Then the minimum operator is applied to afterwards backpropagate178

the difference of the joint scene, which is closest to the ground truth. The second loss term Lgoal179

computes the cross entropy (CE) for the goal locations averaged over all agents180

Lgoal =
1

N

N∑
i=1

CE
(
PRgoal

i ,g∗
i

)
, (3)
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V-LSTM+SC Ours

Figure 4: Qualitative comparison of the multi-modal (M = 2) joint predictions in the RPI environ-
ment. The start and end point of the pink agent are located on a circles with a radius of 3m . The start
and endpoint of the black agent are visualized with a grey circle and star. The different modes are
visualized in red and blue color.

whereas g∗
i is the target closest to the ground truth goal location. Lastly, Lprob computes the cross181

entropy for the joint futures182

Lprob = CE (PR,x∗) , (4)

whereas x∗ is the joint prediction target closest to the ground truth joint future, estimated with the183

minSADE. We empirically set λ1 = 1, λ2 = 0.1, λ3 = 0.1 in the multi-task loss described in the184

main paper.185

In the RPI and exiD experiments, all approaches are trained with batch size 32, using the Adam186

optimizer [34]. Our models in the RPI and exiD environments use a learning rate of 0.00005 across187

all backbones. Note that the evaluation favors the baselines, as we performed grid searches for their188

learning rates, whereas our approach uses the same learning rate across all backbones (exiD). In189

CARLA we empirically set the batch size to 16 and the learning rate to 0.0005 for our method.190

F Additional Experiments191

F.1 Qualitative Results192

This section provides extended qualitative results.193

RPI. Fig. 4 visualizes an exemplary qualitative result of the RPI experiments. Both modes collapsed194

when using the V-LSTM+SC baseline (explicit strategy). In contrast, this work’s implicit approach195

better models the multi-modality present in the demonstration. Since the dataset contains solutions196

of games solved with different collision-weight configurations, it can be seen that our proposed197

method accurately differentiates between different weightings of collisions. This finding aligns with198

these of [35], which discovered that implicit models could better represent the multi-modality of199

demonstrations.200

exiD. Fig. 5 visualizes multi-modal predictions in a highly interactive scenario, where one car (green)201

and one truck (yellow) merge onto the highway. The green car performs a double-lane change.202

Note how our model in mode three accurately predicts the future scene evolution and also outputs203

reasonable alternative futures. For example, in mode one, the green car performs a single lane change,204

whereas the blue and red cars are also predicted to change lanes. Another multi-modal prediction is205

visualized in Fig. 6. Observe again how the ground truth is accurately predicted in this interactive206

scenario (mode 5), whereas, for example, also other plausible futures are generated. For instance, the207

yellow vehicle stays longer on the acceleration lane in mode one, whereas in mode three, the green208

vehicle performs a lane change.209

CARLA. Fig 7 visualizes another qualitative joint prediction results in the CARLA environment.210

Observe how our method again predicts two reasonable joint futures, whereas the correct one (mode211

1) has higher probability. In mode 1 the SDV (blue) goes first. That behavior is also observed when212

inspecting the feature weights. For example the weight wvref of the SDV (blue) is higher in mode213

1 than in mode 2, inducing a acceleration in mode 1. The same holds for the red agent in mode 2.214
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Mode 1  

Mode 2  

Mode 3 

Mode 4 

Mode 5 

Figure 5: Multi-modal predictions in an interactive scenario, where the green and yellow perform
on-ramp merges. The agent trajectories are visualized in different colors, whereas the color saturation
increases the number of predicted steps. The ground truth (history and future) is shown with colors
from dark grey to black and the map in light grey.

Mode 1  

Mode 2  

Mode 3 

Mode 4 

Mode 5 

Figure 6: Multi-modal predictions in a interactive scenario, where the yellow and red agents perform
lane changes. The agent trajectories are visualized in different colors, whereas the color saturation
increases the number of predicted steps. The ground truth (history and future) is shown with colors
from dark grey to black and the map in light grey.
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Remember from the main paper, the weights are normalized with respect to the maximum weight of215

the individual feature in the sequence. Hence, weights of the same feature are comparable between216

the two modes, but weights from different features are not comparable.217

F.2 Discussion of Interpretability218

Following the definition of [36], interpretability in the context of SDV is achieved, among other things,219

by the input, output, and intermediate representations. While the input (historical trajectories and220

map information) and the output (future trajectories) are already human-interpretable, our approach221

can also output interpretable intermediate representations in the form of feature weights. For instance,222

visualization of these features can provide a consumer in the car another instance of insights about223

what the SDV will do in the future. For example, assume a feature that minimizes the distance to a224

stopping line. A high weight could indicate that the vehicle will stop at the line. Moreover, engineers225

could use these weights during debugging and algorithmic design. For instance, if a weight converges226

to always zero during training, it could indicates that the feature is unimportant, and hence, the227

engineer could discard the feature to reduce algorithmic complexity. Lastly, the feature weights could228

be used to design safety layers. For example, consider the scenario again in Fig 7 and assume another229

module indicating if a scenario is safety-critical. If this new module now classifies that the scenario230

is safety-critical, while our approach plans that the SDV should accelerate (e.g., indicated by a high231

weight wvref), a third module could detect this conflict and overwrite the decision of our approach, to232

perform a braking maneuver instead.233

Mode 1 PR= 0.74Mode 1 PR= 0.74 Mode 2 PR= 0.26Mode 2 PR= 0.26

w

w
wvref

wv

wacc

wjerk
wlane

Mode 1

w

w
wvref

wv

wacc

wjerk
wlane

Mode 2

Figure 7: Qualitative joint predictions and feature weights for M = 2 modes. The self-dependent
weights Wown

i normalized w.r.t. the maximum weight in the sequence. The ground truth is visualized
with colors from dark grey to black and the map in light grey.

F.3 Demo Video234

Please refer to the accompanying video for extensive visualization.235

F.4 Quantitative Results236

CARLA. Tab. 1 illustrates the predictive performance on the CARLA testset. We observed that237

the strongest baseline, which also uses the scene-consistent loss formulation with control prediction238

does not produce reasonable predictions, despite performing grid searches for different hyperparame-239

ters. Our method outperforms the baseline by a large margin. Nevertheless, although our method240

demonstrates practicality in this small-sample regime, the significance of the results is comparatively241

limited, as previously stated in the work of [37]. Especially in automated driving applications one has242

access to large datasets. However, in other robotics applications such as human-robot manipulator243

collaborations [38] datasets are fairly limited and we hypothesize that the approach could be beneficial244

here. We leave this studies for future work.245

Runtime. Training and evaluation was performed using an AMD Ryzen 9 5900X and a Nvidia246

RTX 3090 GPU. Fig. 9 shows the runtime dependency by varying the number of optimization steps247

S, the modes M and the number of agents N . We observe, that our approach scales well with the248

number modes as all optimizations are parallelized on the GPU. The runtime increases with higher249

numbers of steps and more agents as commonly reported in the game-theoretic literature. Note that250
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Figure 8: Predictive performance of the initial (red) and optimized strategy (blue) as a function of the
number of optimization steps on the RPI validation dataset.

our multi-modal implementation scales better than common game-theoretic uni-modal solvers from251

the literature [39, Figure 4] for a higher number of agents.252

Table 1: Predictive performance of different methods on the Carla test dataset. The metrics and
formatting are the same as in Tab. 2 in the main paper, but M = 2.

Marginal ↓ Joint ↓
Method ADE FDE SADE SFDE

V-LSTM + SC 6.11 12.37 6.21 13.34
V-LSTM + Ours 1.741.741.74 3.283.283.28 1.831.831.83 3.433.433.43

2 4 8 12

1
2

4
8

12

0.08 0.09 0.11 0.12
0.10 0.12 0.14 0.14
0.16 0.17 0.21 0.26
0.25 0.27 0.31 0.32
0.35 0.36 0.45 0.46

Agents N

St
ep

s
S

0

0.2

0.4

1 2 4 8 12
0.169 0.170 0.172 0.174 0.175

Modes M

Figure 9: Runtime in [s] for different numbers of agents and optimization steps averaged over 100
exiD samples with M = 4f4. The experiments for the number of modes use S = 4 and N = 4.

F.5 Ablation Studies253

Ablating the Number of Optimization Steps The experiments revealed that another influential254

hyperparameter is the number of steps S during optimization. Fig 8 visualizes the impact on the255

minSADE. Observe how the approach gets reasonable small metrics with all configurations and256

hence could be used with different numbers of steps. However, while the distance between the closest257

optimized joint future and the GT gets smaller with increasing optimization steps, the initialization258

gets slightly pushed away from the GT. Hence, with more steps, the approach gets less dependent on259

the initialization. [17] observes an similar effect for their differentiable single-agent optimization260

approach.261

G Additional Limitations262

In this section we name additional limitations. Our CARLA experiment are limited by the dataset263

size (see discussion in Sec. F.4) and can be regarded as a proof-of-concept for closed-loop control.264

Moreover, we observed that in many scenarios, besides the interacting vehicles, other vehicles in265

the exiD dataset performed a nearly constant velocity movement, which is also verified by the good266

results of the constant velocity baselines in Tab. 2 of the main paper. Here, future work should267
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evaluate on larger urban datasets and simulators (e.g., [26]). Further, our approach assumes a object-268

based environment representation, with handcrafted input features (e.g., 2-D position information in269

agent histories) and low measurement uncertainties. However, raw-sensor data includes important270

information (e.g., the head movement of a pedestrian), which is relevant for downstream tasks such271

as motion forecasting and control. As our approach is fully differentiable, future work should explore272

joint perception and game-theoretic planning approaches. Doing so, would allow to propagate273

uncertainties trough the whole system architecture, which has proven to be effective in prior work274

such as [40].275
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