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ABSTRACT

Topological deep learning (TDL) is a rapidly growing field that seeks to leverage
topological structure in data and facilitate learning from data supported on topo-
logical objects, ranging from molecules to 3D shapes. Most TDL architectures
can be unified under the framework of higher-order message-passing (HOMP),
which generalizes graph message-passing to higher-order domains. In the first
part of the paper, we explore HOMP’s expressive power from a topological
perspective, demonstrating the framework’s inability to capture fundamental
topological and metric invariants such as diameter, orientability, planarity, and
homology. In addition, we demonstrate HOMP’s limitations in fully leveraging
lifting and pooling methods on graphs. To the best of our knowledge, this is
the first work to study the expressivity of TDL from a topological perspective.
In the second part of the paper, we develop two new classes of architectures –
multi-cellular networks (MCN) and scalable MCN (SMCN) – which draw inspi-
ration from expressive GNNs. MCN can reach full expressivity, but scaling it to
large data objects can be computationally expansive. Designed as a more scalable
alternative, SMCN still mitigates many of HOMP’s expressivity limitations.
Finally, we create new benchmarks for evaluating models based on their ability
to learn topological properties of complexes. We then evaluate SMCN on these
benchmarks and on real-world graph datasets, demonstrating improvements over
both HOMP baselines and expressive graph methods, highlighting the value of
expressively leveraging topological information. Code and data are available at
https://github.com/yoavgelberg/SMCN.

1 INTRODUCTION

Topological Deep Learning (TDL) is an emerging field focused on learning from data supported
on topological objects. Higher-order message-passing (HOMP) (Hajij et al., 2022a;b) has emerged
as a key framework in TDL, unifying architectures designed for various topological data types.
Originally introduced for simplicial complexes (Bodnar et al., 2021b), HOMP has been successively
adapted for cellular complexes (Bodnar et al., 2021a; Hajij et al., 2020), and more recently, for
combinatorial complexes (Hajij et al., 2022a;b). Each adaptation is a direct generalization of its
predecessor. The HOMP framework extends traditional message-passing neural networks (MPNNs)
(Gilmer et al., 2017), widely used in graph learning, to higher-order topological domains.

Despite their widespread adoption in various graph learning applications, MPNNs are known to
struggle with expressivity limitations, often failing to distinguish even simple non-isomorphic
graphs (Morris et al., 2019; Xu et al., 2018). This realization has led to a substantial body of work
dedicated to developing more expressive graph architectures (Morris et al., 2023; Maron et al., 2019;
Morris et al., 2019; Bevilacqua et al., 2021; Abboud et al., 2020; Bouritsas et al., 2022). Given
the similarity between HOMP and MPNNs, a natural question arises: What are the limitations of
higher-order message-passing architectures in distinguishing topological objects? This question,
highlighted in a recent position paper (Papamarkou et al., 2024), is the main focus of this paper.

*Equal contribution.
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(a) Diameter (b) Orientability/planarity (c) Homology

Figure 1: Pairs of HOMP-indistinguishable complexes differing in fundamental metric/topological
properties that. In Figure 1(a), tori with different diameters (top 20, bottom 22); in Figure 1(b), a
Möbius strip and a cylinder differing in both orientability and planarity; in Figure 1(c), a torus and
a pair of disconnected tori which have different homology groups.

We address this question from a topological perspective. First, we introduce a topological criterion
designed to identify cases in which a pair of complexes is indistinguishable by HOMP. We then
use this criterion to prove HOMP’s inability to differentiate between complexes based on several
fundamental topological and metric invariants, including diameter, orientability, planarity, and
homology groups. These limitations are particularly noteworthy, as TDL’s main goal is to leverage
topological structure in data. In fact, several methods directly inject information closely related to
some of the above properties into pre-existing framewroks (Horn et al., 2021; Chen et al., 2021;
Rieck, 2023; Zhang et al., 2023c). Additionally, since many topological data objects are constructed
by lifting graph data, we examine HOMP’s limitations in expressively leveraging lifting and pooling
methods to distinguish graphs.

In the second part of the paper, we introduce a new class of TDL architectures called multi-cellular
networks (MCN) designed to address HOMP’s expressivity limitations. MCN draws inspiration
from higher-order graph architectures (Maron et al., 2019; Morris et al., 2019; Keriven & Peyré,
2019; Azizian & Lelarge, 2020), which successfully resolve expressivity limitations in MPNNs.
MCN utilizes the equivariant linear layers introduced in Maron et al. (2018) and integrates them
into the HOMP pipeline, resulting in architectures reminiscent of Invariant Graph Networks (IGNs)
introduced in the same paper. We prove that MCN can reach full expressivity in distinguishing
non-isomorphic complexes. Recognizing the scalability challenges of both IGNs and MCN, we
propose an alternative called scalable MCN (SMCN). SMCN models apply expressive graph layers
– often used as practical alternatives to IGNs – on graph structures defined over the cells of the
complex. We prove that SMCN still mitigates many of HOMP’s expressivity limitations.

We empirically evaluate SMCN on several real-world (lifted) graph benchmarks and find perfor-
mance gains over both standard HOMP baselines and expressive GNNs, highlighting the value of
expressively leveraging topological information. Additionally, we design three benchmarks to assess
TDL architectures’ ability to capture topological and metric information. The first, called the Torus
Dataset, is a BREC-like (Wang & Zhang, 2024) dataset consisting of pairs of cellular complexes com-
prising one or more disjoint tori. Models are tasked with separating each pair in a statistically signif-
icant way. The two other benchmarks evaluate models based on their ability to predict topological
properties of complexes obtained by lifting molecular graphs from ZINC (Sterling & Irwin, 2015).

Our contributions. Summarizing, the key contributions of this paper are as follows: (1) We provide
a comprehensive analysis of HOMP’s expressive power, evaluating its ability to capture topologi-
cal and metric invariant and leverage lifting and pooling methods. (2) We introduce multi-cellular
networks (MCN), a novel class of TDL models, inspired by IGNs, which can provably reach full
expressivity. (3) We develop SMCN, a scalable version of MCN that addresses HOMP’s expressiv-
ity limitations while maintaining computational efficiency. (4) We construct three benchmarks for
assessing the topological expressivity of TDL architectures. (5) We empirically evaluate the per-
formance of SMCN, demonstrating improvements over both standard TDL methods and expressive
graph models, highlighting the benefits of expressively leveraging topological information.

2 PREVIOUS WORK

Topological Deep Learning. TDL architectures enable learning from data supported on topological
objects, traditionally focusing on four domains: hypergraphs, simplicial complexes, cellular com-
plexes, and combinatorial complexes. The prominent framework for the latter three is higher-order
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message-passing (HOMP). Originally introduced for simplicial complexes (Bodnar et al., 2021b)
and later extended to cellular (Bodnar et al., 2021a; Hajij et al., 2020) and combinatorial complexes
(Hajij et al., 2022a;b), HOMP architectures achieve strong experimental results and have been shown
to enhance the expressive power of MPNNs. Another approach in TDL research incorporates pre-
computed topological information into existing models like MPNNs (Horn et al., 2021; Chen et al.,
2021; Rieck, 2023) and HOMP (Verma et al., 2024; Buffelli et al., 2024). These methods enhance
the expressive power of the base models and show strong experimental results, highlighting the
value of integrating topological features. Most prior work is focused on the expressivity of TDL
models with respect to graphs, the ability of HOMP to capture topological and metric invariants of
complexes without relying on pre-computation remains unexplored.

Expressive power of GNNs. The expressivity of GNNs is typically evaluated in terms of their sep-
aration power, i.e. their ability to assign distinct values to non-isomorphic graphs. Seminal works by
Morris et al. (2019) and Xu et al. (2018) demonstrate that the expressive power of MPNNs is equiv-
alent to that of the 1-WL test (Weisfeiler & Leman, 1968). These findings inspired the development
of more expressive GNNs, with expressive power surpassing that of the 1-WL test, albeit often
requiring greater computational resources. Morris et al. (2019) and Maron et al. (2018) propose
architectures that are as expressive as the k-WL test with O(nk) runtime and memory complex-
ity. Various other expressive GNNs have been introduced in the literature, utilizing techniques such
as random features (Abboud et al., 2020), substructure counts (Bouritsas et al., 2022), equivariant
polynomials (Maron et al., 2019; Puny et al., 2023), processing sets of subgraphs (Bevilacqua et al.,
2021; Frasca et al., 2022; Zhang et al., 2023b; Zhang & Li, 2021; Cotta et al., 2021) and more. We
use these frameworks, specifically the architectures proposed in Maron et al. (2019) and Zhang et al.
(2023b); Bar-Shalom et al. (2024) to construct efficient and expressive models for combinatorial
complexes. Bamberger (2022) offers a perspective on MPNN expressivity through the lens of graph
coverings. We extend their work to combinatorial complexes and use it to analyze the topological
expressivity of HOMP. For a comprehensive review of expressive graph architectures, refer to the
following surveys: Jegelka (2022), Morris et al. (2023); Zhang et al. (2023a).

3 PRELIMINARIES

Notation. We denote [n] = {1, . . . , n}. The size of a set S is denoted by |S|.
⊕

and
⊗

denote
aggregation functions, where

⊕
is permutation invariant. Bold lowercase letters denote tuples of

integers e.g. k = (k0, . . . , kℓ). ei denotes the tuple with one at the i-th position and zeros elsewhere.

Combinatorial complexes. Combinatorial complexes (CCs) are a class of higher-order objects that
can flexibly represent many types of hierarchical data. Most topological data domains, including
simplicial complexes, cellular complexes, and hypergraphs, can be considered subclasses of combi-
natorial complexes. Therefore, throughout the paper, all data objects are represented as CCs.

Definition 3.1 (Combinatorial complex). A combinatorial complex (CC) is a 3-tuple (S,X , rk)
comprising a node set S, a cell set X ⊆ P(S) \ ∅, and a rank function rk : X → Z≥0 such that
∀s ∈ S, {s} ∈ X , rk({s}) = 0, and ∀x, y ∈ X x ⊆ y ⇒ rk(x) ≤ rk(y).

The set of r-rank cells (r-cells) is called the r-skeleton and is denoted by Xr = rk−1(r), its size
is denoted by nr := |Xr|; the dimension of a CC is ℓ = maxx∈X rk(x). We often simplify the
notation and use X to denote the entire CC. For definitions of simplicial and cellular complexes, we
refer the reader to Bodnar et al. (2021a) and Bodnar et al. (2021b).

Neighborhood functions. Neighborhood functions are a key component in HOMP, facilitating
dynamic aggregation of information across cells. Formally, a neighborhood function can be any
function N : X → P(X ), but the most common neighborhood functions are

(1) The (r1, r2)-adjacency and co-adjacency, defined by

Ar1,r2(x) = {y ∈ Xr1 | ∃z ∈ Xr2 s.t. x, y ⊆ z},
coAr1,r2(x) = {y ∈ Xr1 | ∃z ∈ Xr2 s.t. z ⊆ x, y}, (1)

for x ∈ Xr1 , and Ar1,r2(x) = coAr1,r2(x) = ∅ for x /∈ Xr1 .

(2) The (r1, r2)-upper and lower incidence, defined by

Br1,r2(x) = {y ∈ Xr2 | x ⊆ y}, B⊤
r1,r2(x) = {y ∈ Xr2 | y ⊆ x}, (2)
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for x ∈ Xr1 , and Br1,r2(x) = B⊤
r1,r2(x) = ∅ for x /∈ Xr1 .

We call the neighborhood functions defined above natural neighborhood functions, a collection
we denote by N nat. See Appendix A.2 for an illustration. Given an enumeration of the cells, a
neighborhood function can be represented in matrix form. For example, given a graph G = (V, E)
viewed as a one dimensional CC through S = V , X0 = {{v} | v ∈ V} and X1 = E , the matrix
forms of the neighborhood functions A0,1 and B0,1 are the graph adjacency and incidence matrices
respectively.

Cochain spaces. Data defined over an ℓ-dimensional CC can be viewed as a collection of functions
{hr : Xr → Rdr}ℓr=0

1. Each of these functions is called a cochain or a cell feature map. The vector
space of all cochains over cells of rank r is denoted by Cr(X ,Rdr ) or Cr. The feature associated
with a cell x ∈ Xr is denoted by hr(x), (hr)x, or simply hx.

C0 C2

A0,1

B0,2 B⊤
2,0

(co)A2,0

out

Figure 2: HOMP
Tensor diagram.

Higher-order message-passing. Higher-order message passing (HOMP)
(Hajij et al., 2022b) is a general computational framework for processing in-
formation supported on higher-order domains by exchanging messages across
cells. Let N = {N1, . . . ,Nk} be a collection of neighborhood functions;
given an initial cochain h(0) = h, HOMP is recursively defined via the fol-
lowing update rule

h(t+1)
x = β

 k⊗
i=1

⊕
y∈Ni(x)

MLP
(t)
i,rk(x)

(
h(t)
x ,h(t)

y

) , (3)

where h(t)
x is the feature associated with cell x ∈ X at layer t, and β is a non-

linear activation. In the rest of the paper, we assume N ⊆ N nat. Similarly
to MPNNs, the HOMP framework encompasses many TDL architectures, including architectures
for simplicial complexes Bodnar et al. (2021b), cellular complexes Hajij et al. (2020); Bodnar et al.
(2021a); Giusti et al. (2023), and combinatorial complexes Hajij et al. (2022a;b).

Tensor diagrams. Hajij et al. (2022a) introduce tensor diagrams, a DAG notation scheme for nav-
igating the rich space of possible HOMP architectures. Tensor diagrams allow for selective aggre-
gation over different neighborhood functions for different cochain spaces in different layers of the
network. The nodes of a tensor diagram represent cochain spaces, and the edges represent neigh-
borhood functions. The signal flows from each level of the diagram to the next via the update rule
specified in Equation 3, where aggregation is performed only over neighborhood functions associ-
ated with the incoming edges2. See Figure 2 for an illustration of a tensor diagram and Hajij et al.
(2022b) for an in-depth overview.

4 EXPRESSIVITY LIMITATIONS OF HIGHER-ORDER MESSAGE-PASSING

The expressivity of graph models is often evaluated in terms of their ability to assign different values
to non-isomorphic graphs. Similarly, we study HOMP’s ability to distinguish non-isomorphic CCs3.

4.1 A TOPOLOGICAL CRITERION FOR HOMP-INDISTINGUISHABILITY

The main tool we use throughout this section is a topological HOMP-indistinguishability criterion
based of the notion of covering spaces, extending the main result of Bamberger (2022) from graph
coverings to combinatorial complex coverings.

Definition 4.1 (CC covering). X̃ is said to cover X if there exists a surjective rank-preserving map
ρ : X̃ → X which is a local isomorphism with respect to natural neighborhood functions (i.e. ρ
bijectively maps the set N (x′) to N (ρ(x′)) for all x′ ∈ X̃ and N ∈ N nat).

Examples of CC coverings are depicted in Figures 3, 10, and 11. Explicit constructions of covering
CCs can be found in Appendix B. The following theorem shows that complexes sharing a cover

1Generally, dr1 ̸= dr2 , e.g. atoms (0-cells) and bonds (1-cells) might have a different number of features.
2This is equivalent to setting MLP

(t)
i,r ≡ 0 for neighborhood functions Ni that are not associated with an

incoming edge. Equation 3 in its full generality corresponds to a fully-connected tensor diagram.
3X and X ′ are isomorphic if there exists a bijective mapping ϕ : X → X ′ which is both rank-preserving

and inclusion-preserving, see Appendix E for a formal definition.
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are indistinguishable by HOMP models. See Appendix B for a proof of Theorem 4.2 and further
discussion.

Theorem 4.2 (HOMP-indistinguishability criterion). Let X and X ′ be CCs such that |X0| = |X ′
0|.

If there exists a CC X̃ that covers each of the connected components of both X and X ′, then for
every HOMP model M, M(X ) = M(X ′).

4.2 TOPOLOGICAL AND METRIC LIMITATIONS

Figure 3: Cylh,2p covers
both Cylh,p and Möbh,p.

Although CCs are combinatorial objects, they give rise to various met-
ric and topological spaces. The shortest path distance with respect to
any neighborhood function defines a metric on the cells of the CC. In
addition, if the complex is cellular or simplicial, it can be canonically
associated with a topological space. The topological/metric properties
of these spaces are invariants of the underlying CC. We prove HOMP’s
inability to distinguish between complexes based on the following com-
mon invariants: (1) the diameter, which measures how “spread out” the
complex is; (2) orientability, which captures whether a consistent “side”
or direction can be defined across the entire space; (3) planarity, which
captures whether the complex can be embedded in R2; (4) the homology
groups, which encode the structure of “d-dimensional holes” 4.

Theorem 4.3 (Topological blindspots). For any invariant I ∈ {diameter, orientability, planarity,
homology} there exists a pair of HOMP-indistinguishable CCs that differ in I .

Figure 4: Cylinders are planar.

Figure 1 depicts pairs of HOMP-indistinguishable CCs which
differ in each of the above invariants. In addition, Appendix
B provides a detailed discussion regarding each invariant, as
well as a complete proof of Theorem 4.3. To demonstrate the
techniques used in the proof, we include a short proof sketch
for the case of orientability and planarity.

Proof sketch. Let Cylh,p and Möbh,p be a Cylinder and a Möbius strip with height h and cycle
length p. The cylinder is orientable and planar, while the Möbius strip is neither (see Figure 4 for an
illustration). As illustrated in Figure 3, Cylh,2p covers both Cylh,p and Möbh,p. Intuitively, Cylh,2p
covers Cylh,p by “wrapping” around it twice, and Möbh,p by “wrapping” and “twisting” around it
(formal construction of both covering maps appears in Appendix B). Since both CCs are connected
and have the same number of 0-cells, Theorem 4.2 shows they are HOMP-indistinguishable.

4.3 LIFTING AND POOLING

One benefit of combinatorial complexes is their flexibility in incorporating lifting and pooling5 meth-
ods to construct CCs from graphs. Common graph lifting methods, such as the ones in Bodnar et al.
(2021a;b), add meaningful substructures (that standard message-passing cannot detect) as higher-
order cells. This results in models that are strictly more expressive than MPNNs. Graph pooling
methods, like spectral pooling Ma et al. (2019), Mapper Singh et al. (2007); Hajij et al. (2018); Dey
et al. (2016), and DiffPool Ying et al. (2018), coarsen input graphs to enable more efficient learning.

A common feature of many lifting and pooling methods is their ability to generate CCs with a small
number of high-order cells that differ in fundamental topological and metric invariants. The sparsity
of these cells allows for efficient computation of these invariants, resulting in an efficient way to
distinguish the original graphs. However, the following proposition, formally stated and proved in
Appendix B.3, suggests that HOMP may still struggle to differentiate between the resulting CCs.

Proposition 4.4. There exist pairs of CCs – generated by standard lifting and pooling methods on
graphs (See Figures 10,11 in Appendix B.3) – that HOMP fails to distinguish, even though they
differ in basic topological/metric properties. These properties can be efficiently computed due to the
sparsity of higher-order cells.

4E.g. a circle has a single 1-dimensional hole, a sphere has a single 2-dimensional hole, etc.
5In its broadest sense, the term “lifting” includes both substructure lifting and pooling methods. However,

as these concepts are often discussed separately in the literature, we distinguish between them, referring to
substructure lifting as “lifting” and pooling-based lifting as “pooling”.
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A0,1

B0,2 B⊤
2,0

coA2,0

out

HOMP

A0,1

B0,2 B⊤
2,0

coA2,0 equiv equiv equiv equiv

equiv equiv

equiv equiv

equiv

out

MCN

A0,1

B0,2 B⊤
2,0

coA2,0

equiv SCL

equiv equiv

SCL

equiv

out

SMCN

Node labels Edge labels
HOMP SMCN MCN HOMP SMCN MCN

Ar1,r1 / coAr1,r2

/ Br1,r2 / B⊤
r1,r2

“SCL” label “equiv” label

Ce0 Ce2 Ce0+e1 C2e0 C2e0+e1 C3e0

Neighborhood
function induced

update
SCL layer Equivariant linear

layer

Figure 5: Example tensor diagrams for HOMP, MCN, and SMCN. HOMP only uses nodes labeled
with standard cochain spaces. MCN adds nodes labeled with multi-cellular cochain spaces and
edges labeled with “equiv” updates. SMCN introduces edges labeled with “SCL”. Note that the
highest order nodes (green and orange) which can only appear in the MCN diagram are replaced in
the SMCN diagram through “SCL” updates of lower order nodes (pink and light blue).

5 MULTI-CELLULAR NETWORKS

In graph learning, expressivity limitations similar to those shown in Section 4 have been mitigated by
architectures that process features defined over tuples of nodes, and in particular by IGNs (Maron
et al., 2018; 2019; Keriven & Peyré, 2019; Azizian & Lelarge, 2020). These models are built by
stacking equivariant linear layers between high-order tensor spaces defined over the nodes of the
graph, interleaved with pointwise non-linearities. We use a similar approach, introducing multi-
cellular cochain spaces (as an analogue to IGN tensor spaces) and incorporating their induced equiv-
ariant linear updates into the HOMP framework. For an overview of IGNs, see Appendix A.1.

Multi-cellular cochain spaces. Given an ℓ-dimensional CC X and an (ℓ + 1)-tuple k ∈ Nℓ+1,
a k-order multi-cellular cochain is a function hk : X k0

0 × · · · × X kℓ

ℓ → Rd. The vector space
of multi-cellular cochains, denoted by Ck(X ,Rd) or Ck, is called a multi-cellular cochain space.
Multi-cellular cochain spaces are a natural generalization of standard cochain spaces, providing
a way to represent other types of CC data. E.g. (1) Cei ∼= Ci; (2) Br1,r2 can be represented as a
multi-cellular cochain ∈ Cer1+er2 ; (3) (co)Ar1,r2 can be represented as a multi-cellular cochain
∈ C2er1 (see appendix C for details). Moreover, multi-cellular cochain spaces recover many linear
spaces studied in several previous works. For example, Cker matches the features space of a k-IGN
layer operating on r-cells, and Cer1

+er2 corresponds to the input space of the exchangeable matrix
layers introduced in Hartford et al. (2018).

Symmetry group. Given enumerations of the sets X0 = {x0
1, . . . , x

0
n0
}, . . . ,Xℓ = {xℓ

1, . . . , x
ℓ
nℓ
},

a multi-cellular cochain h ∈ Ck(X ,Rd) can be identified with a tensor Ah defined by

(Ah)i0,...,iℓ,: = h
(
x0
(i0)1

, . . . , x0
(i0)k0

, . . . , xℓ
(iℓ)1

, . . . , xℓ
(iℓ)kℓ

)
(4)

for multi-indices i1 ∈ {1, . . . , n0}k0 , . . . , iℓ ∈ {1, . . . , nℓ}kℓ . Therefore, Ck can be identified with
the tensor space Rn

k0
0 ×···×n

kℓ
ℓ ×d. The group G = Sn0 × · · · × Snℓ

acts on h ∈ Ck by

(σ · h)(x0, . . . ,xℓ) = ((σ0, . . . , σℓ) · h)(x0, . . . ,xℓ) = h(σ0 · x0, . . . , σℓ · xℓ), (5)

where if xr = (xr
j1
, . . . , xr

jkr
) ∈ X kr

r is a tuple of cells, σr · xr = (xr
σ−1
r (j1)

, . . . , xr
σ−1
r (jkr )

). In
simple terms, the group G acts on h by reordering the cells of each rank independently. Therefore,
to ensure independence of cell ordering, we aim to construct G-invariant architectures.
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Equivariant updates. Since the space Ck can be identified with Rn
k0
0 ×···×n

kℓ
ℓ ×d, we utilize the

basis of equivariant linear layers Rn
k0
0 ×···×n

kℓ
ℓ ×d → Rn

k′
0

0 ×···×n
k′
ℓ

ℓ ×d′
, constructed in Maron et al.

(2018), to describe the space of equivariant linear maps Ck → Ck′
. Using this basis, denoted

{Lγ}γ∈Γ(k,k′,d,d′) (Here Γ(k,k′, d, d′) is an index set defined in Appendix C), we follow the con-
struction of well-known permutation-invariant architectures (Maron et al., 2018; Zaheer et al., 2017;
Hartford et al., 2018; Bronstein et al., 2021), and define learnable equivariant layers

F (h) = β

( ∑
γ∈Γ(k,k′,d,d′)

wγLγ(Ah)

)
, (6)

where {wγ}γ∈Γ(k,k′,d,d′) are learnable parameters and β is a non-linearity.

MCN. We incorporate equivariant layers to the HOMP framework by adding new node and edge
labels to the tensor diagram scheme (as depicted in Figure 5), defining a new class of TDL architec-
tures we call multi-cellular networks (MCNs). At each layer of an MCN tensor diagram, if v is a
node labeled by Ck, we compute a multi-cellular cochain h(v) ∈ Ck by h

(v)
x =

⊗
u∈pred(v) mu,v(x),

where pred(v) denotes the set of predecessor nodes in the diagram, and messages mu,v ∈ Ck are
computed based on the label of the edge (u, v). If the edge is labeled with “equiv”, the message is
computed as described in Equation 6. For edges labeled by neighborhood functions, the message
follows the standard tensor diagram update rule. A formal definition of the MCN framework can be
found in Appendix C. Using nodes labeled by higher-order multi-cellular cochain spaces and equiv-
ariant updates improves expressivity. In fact, by using multi-cellular cochain spaces of high order,
MCN can reach full expressivity, as proved in Appendix E.

Proposition 5.1 (MCN is fully expressive). If X and X ′ are non-isomorphic CCs, there exists an
MCN model M such that M(X ) ̸= M(X ′).

6 SCALABLE MULTI-CELLULAR NETWORKS

X HcoA2,1(X )

coA2,1

Figure 6: HcoA2,1
.

Despite its strong expressive power, implementing MCN in full gener-
ality is impractical as the computational complexity and the size of the
basis |Γ(k,k′, d, d′)| grow exponentially with k and k′. In this section,
we design scalable MCN (SMCN), a more efficient version of MCN that
still mitigates many of HOMP’s expressivity limitations. Below is an
overview and motivation for the SMCN architecture. A formal construc-
tion and computational runtime analysis can be found in Appendix D; an
implementation guide and empirical runtime evaluation are provided in
Appendix G.

First, we restrict SMCN to multi-cellular cochain spaces Ck with∑ℓ
i=0 ki ≤ 3. Of these, the spaces whose updates incur the heaviest

computational overhead are C3er and C2er1+er2 . We replace the up-
dates induced by these spaces with new updates inspired by expressive
GNNs, providing a middle ground between expressive power and scal-
ability. These GNNs are applied to graph structures, called augmented
Hasse graphs, that capture relational information between cells.

Definition 6.1 (Augmented Hasse graph). The augmented Hasse graph of X w.r.t. (co)Ar1,r2
6, is

defined by H(co)Ar1,r2
= (V, E), where V = Xr1 and E = {(x, y) | y ∈ (co)Ar1,r2(x)}.

See Figure 6 for an illustration of an augmented Hasse graph.

Replacing C2er1
+er2 with Cer1

+er2 . Recall that C2er1
+er2 can be identified with Rn2

r1
×nr2

×d.
Under the action of Snr1

× Snr2
, a tensor H ∈ Rn2

r1
×nr2×d can be viewed as a bag of tensors

{Hk ∈ Rnr1
×nr1

×d}k∈[nr2
], each of which is considered up-to Snr1

permutations. These are the
exact objects processed by Subgraph GNNs (Bevilacqua et al., 2021; Frasca et al., 2022; Zhang et al.,
2023b), which operate on a set of adjacency matrices corresponding to different subgraphs defined

6(co)Ar1,r2 represents either an adjacency or a co adjacency neighborhood function.
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Subgraph GNN

,

,

,

,

{X x}x∈X2
{Hx

A0,1
}x∈X2

∈ Ce0+e2(X )

Figure 7: Illustration of an SCL update on Ce0+e2 . We construct a bag of copies of X with marked
2-cells. This bag is processed by applying a subgraph GNN to the bag of the corresponding marked
A0,1 augmented Hasse graphs. Here, X x represents the complex X with a distinct “marking” feature
added to the cell features of cell x. Similarly, Hx

A0,1
denotes the Augmented Hasse graph HA0,1

with
a marking added to the nodes corresponding to the elements of cell x .

over a fixed set of nodes. Subgraph GNNs are strictly more expressive than MPNNs, demonstrate
strong experimental performance, and have quadratic runtime complexity as opposed to O(n2

r1 ·nr2)

for C2er1
+er2 → C2er1

+er2 equivariant updates.

Following the above discussion, we define the subcomplex layer (SCL) updates. Let (u, v) be tensor
diagram edge labeled by “SCL”, connecting layers t and t+1 (in which case v and u are both labeled
by Cer1

+er2 ). The message mu,v ∈ Cer1
+er2 is computed by

mu,v(x, y) =

ℓ⊗
r=0,r′=0

MLPr,r′
(
h(t)
x,y,h

(t)
(co)Ar1,r(x),y

,h
(t)
x,(co)Ar2,r′ (y)

,hx,Br1,r2 (x)
,hB⊤

r2,r1
(y),y

)
,

where hQ1,y :=
∑

x′∈Q1
hx′,y and hx,Q2 :=

∑
y′∈Q2

hx,y′ . This update can be viewed as applying
a subgraph update to bags of augmented Hasse graphs, as shown in Figure 7. Additional details are
provided in Appendix D. For a review of subgraph networks, see Appendix A.1.

Replacing C3er with C2er . Since C3er can be identified with Rn3
r×d, equivariant linear layers

of the form L : C3er → C3er can be identified with 3-IGN layers acting on augmented Hasse
graphs of the form H(co)Ar,r′

. The GNN literature offers several candidates for efficient 3-IGN
substitutes. The first option we considered is PPGN (Maron et al., 2019), which matches 3-IGN’s
3-WL expressive power with a runtime of O(|V|2.s). Another option is using subgraph networks
with node marking, which results in the SCL update rule above with r1 = r2 = r. These networks
have a runtime of O(|V| · |E|) and are strictly more expressive than MPNNs (> 2-WL), but are
less powerful than 3-IGNs (Frasca et al., 2022). We experimented with both versions and found
no significant performance improvement using PPGN. Therefore, we continue with the subgraph
version, but note that – since PPGN can implement subgraph networks – all theoretical results hold
for the PPGN case as well.

6.1 EXPRESSIVE POWER OF SCALABLE MULTI-CELLULAR NETWORKS

Topological and metric properties. In Section 4.2, we proved that HOMP models cannot distin-
guish CCs based on diameter, orientability, planarity or homology. We now examine SMCN with
respect to each of these limitations. First, SMCN fully mitigates HOMP’s inability to compute
diameters.

Proposition 6.2. Any pair of CCs with different diameters can be distinguished by an SMCN model.

Next, SMCN can distinguish between a cylinder and a Möbius strip, implying that it is strictly better
than HOMP at detecting planarity and orientability.

Proposition 6.3. There exists an SMCN model that separates the Möbius strip and the cylinder.

Finally, we offer two results demonstrating SMCN’s ability to distinguish CCs based on their ho-
mology groups. The first result examines the 0-th homology group.

8
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Proposition 6.4. Any pair of CCs with distinct 0-th homology groups can be distinguished by SMCN.

The second result generalizes to homology groups of any order in the case of two-dimensional
surfaces embedded in R3.

Proposition 6.5. Let X ,X ′ be a pair of CCs whose underlying topology corresponds to a 2-
dimensional surface (with or without boundary) embeddable in R3. If X and X ′ differ in any
homology group, there exists an SMCN model that distinguishes them.

A full exploration of SMCN’s ability to capture homology groups of any order, orientability and
planarity is left for future work. Collectively, Propositions 6.2 – 6.5 suggest that SMCN is strictly
better than HOMP at leveraging topological properties of CCs. Rigorous formulations and proofs
of these propositions appear in Appendix F. The following is a proof sketch for Proposition 6.3.

∂

∂

Figure 8: Boundary 1-cells.

Proof sketch of Proposition 6.3. The key to distinguishing
Cylh,p and Möbh,p is their boundary 1-cells. In our case, these
are the 1-cells that are incident to exactly one 2-cell, i.e. their
B1,2-degree is 1, so they can easily be detected by an SMCN
model. As illustrated in Figure 8, the boundary of Cylh,p forms
two cycles of length p while the boundary of Möbh,p forms
a single cycle of length 2p. This is a standard example of a
pair of graphs that are indistinguishable by MPNNs but are
distinguishable by expressive graph models such as subgraph
networks. We can use an SCL update to simulate a subgraph
network on the boundaries, separating the two CCs.

Lifting and Pooling. In Section 4.3, we discuss HOMP’s inability to expressively leverage the
sparse higher-order cells generated by common lifting and pooling methods. The next proposition,
proved in Appendix F.2, suggests that SMCN is able to leverage this information to a greater extent.

Proposition 6.6. There exist CCs, generated from graphs by standard lifting and pooling methods,
that HOMP cannot distinguish but SMCN can. The SMCN model can be constructed to have runtime
O(mdeg · n0 · n2), where mdeg is the maximal degree w.r.t. any natural neighborhood function.

7 EXPERIMENTS

The lack of CC benchmarks has been recognized as a challenge in TDL (Papamarkou et al., 2024).
To address this, we introduce three novel CC benchmarks designed to assess the ability of TDL
models to capture topological/metric properties, and evaluate both SMCN and other HOMP archi-
tectures on them. In addition, we adopt the setup of Bodnar et al. (2021a), applying cyclic lifting on
real-world graph benchmarks. For an in-depth discussion of experimental details, see Appendix G.
A comparison of the expressive power of SMCN and all baselines is available in Appendix F.3.

Torus dataset. The torus dataset consists of pairs of CCs, each comprising one or more disjoint
tori (see Definition B.4). These pairs are chosen to be HOMP-indistinguishable, despite differing in
basic metric/topological properties: they either have distinct homology groups, or they differ in the
diameters of some of the components. Models are evaluated by counting the number of pairs they
can to separate in a statistically significant way, following the protocols outlined in (Wang & Zhang,
2024). In our experiments, HOMP was unable to distinguish any of the pairs, while SMCN was able
to distinguish all pairs.

Predicting topological and metric properties. We construct two additional benchmarks in which
models are tasked with predicting topological and metric properties of CCs lifted from ZINC
(Sterling & Irwin, 2015) molecular graphs. The predicted properties are the (0, 1, 2)-cross-diameter
(Equation 24), and the second-order Betti number (rank of the second homology group). In Ap-
pendix B we show that HOMP is incapable of fully capturing either property. Table 2 presents both
the MSE7 and the accuracy of predicting the target values (18 possible values for cross-diameter
and 6 for Betti numbers) across three TDL models: SMCN, CIN, and a custom HOMP architecture
tailored for this prediction task.

7The targets are normalized to have a standard deviation of 1.
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Table 1: SMCN outperforms MPNNs , HOMP and expressive GNNs on graph regression and
classification tasks. SMCN results are reported over 5 runs with seed 1-5.

Model Reference ZINC MOLHIV MOLESOL
MAE (↓) ROC-AUC (↑) RMSE (↓)

GCN Kipf & Welling (2016) 0.321± 0.009 76.06± 0.97 1.114± 0.036
GIN Xu et al. (2018) 0.163± 0.004 75.58± 1.40 1.173± 0.057
CIN Bodnar et al. (2021a) 0.079± 0.006 80.94± 0.57 1.288± 0.026
CIN++ Giusti et al. (2023) 0.077± 0.004 80.63± 0.94 −
CIN + CycleNet Yan et al. (2024) 0.068 − −
Cellular Transformer Ballester et al. (2024) 0.080 79.46 −
PPGN Maron et al. (2019) 0.079± 0.005 − −
PPGN++ (6) Puny et al. (2023) 0.071± 0.001 − −
DS-GNN Bevilacqua et al. (2023) 0.087± 0.003 76.54± 1.37 0.847± 0.015
DSS-GNN Bevilacqua et al. (2021) 0.102± 0.003 76.78± 1.66 −
SUN Frasca et al. (2022) 0.083± 0.003 80.03± 0.55 −
GNN-SSWL Zhang et al. (2023b) 0.082± 0.003 − −
GNN-SSWL+ Zhang et al. (2023b) 0.070± 0.005 79.58± 0.35 0.837± 0.019
Subgraphormer Bar-Shalom et al. (2023) 0.067± 0.007 80.38± 1.92 0.832± 0.043
Subgraphormer + PE Bar-Shalom et al. (2023) 0.063± 0.001 79.48± 1.28 0.826± 0.010
SMCN (ours) This paper 0.060± 0.004 81.16± 0.90 0.809± 0.037

The benchmarks detailed above empirically verify SMCN’s superior ability to capture topologi-
cal/metric properties of CCs. This is demonstrated for both synthetically generated data as well
lifted molecular graphs, complementing theoretical results from Sections 4 and 6.1, demonstrating
that the expressivity gains of SMCN lead to improved learning of topological/metric invariants.

Real-world graph benchmarks. We evaluate SMCN on ZINC-12K (Sterling & Irwin, 2015), MOL-
HIV, and MOLESOL (Hu et al., 2020). We compare SMCN to several HOMP baselines as well as
a range of expressive graph architectures. As seen in Table 1, SMCN outperforms both HOMP
architectures and expressive graph methods across all three benchmarks, underscoring the value of
expressively leveraging higher-order topological information on graphs.

8 CONCLUSION

Table 2: Accuracy and normalized MSE scores of predicting the cross-
diameter and the second Betti number of lifted ZINC graphs.

Model Cross-diameter 2nd Betti number
Accuracy (↑) / MSE (↓) Accuracy (↑) / MSE (↓)

CIN 34.78± 3.00%/0.3421± 0.0691 42.15± 25.22%/0.3405± 0.3799
Custom HOMP 67.87± 12.26%/0.0684± 0.0323 81.76± 10.06%/0.0391± 0.0208
SMCN 92.76± 0.53%/0.011± 0.0008 99.61± 0.12%/0.0024± 0.0005

In the first part of the paper,
we analyzed the expressiv-
ity limitations of HOMP
from a topological perspec-
tive, proving its inability to
capture the diameter, ori-
entability, planarity, and
homology of input CCs.
Additionally, we showed that there exist CCs generated through common graph lifting methods
which are HOMP-indistinguishable despite differing in easy-to-compute topological invariants. In
the second part of the paper, we introduced MCN, inspired by k-IGNs, and its more scalable version,
SMCN. We proved that, analogously to IGNs, MCN can reach full expressivity for CCs. We addi-
tionally showed that SMCN tractably addresses many of HOMP’s expressivity limitations. Finally,
we presented three novel benchmarks designed to evaluate TDL architectures’ ability to capture
topological/metric information. We evaluated SMCN on both benchmarks as well as real-world
graph benchmarks. SMCN outperformed HOMP architectures on expressivity benchmarks, em-
pirically supporting our theoretical findings. On the real-world graph benchmarks, SMCN outper-
formed both HOMP architectures and expressive graph architectures, demonstrating the value of
expressively leveraging higher-order topological information.

Limitations and future work. The components that make SMCN more expressive have runtime
that scales super-linearly in the number of cells, making SMCN intractable for larger CCs. Future
research may aim to design more scalable alternatives to SMCN. Additionally, although we have
shown that SMCN is strictly better than HOMP in distinguishing CCs based on orientability and
homology, it remains unclear if it is able to fully capture these properties. Future work can explore
SMCN limitations in expressing topological and metric invariants. Finally, future research can aim
to develop more complex benchmarks that include a broader range of topological properties.
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The Appendix is organized as follows:

• In Appendix A.1 we give an overview of expressive GNN architectures relevant to this
paper.

• In Appendix A.2 we give an illustrative example of CC neighbourhood funcitons.

• In Appendix B we prove results from Section 4 regarding the expressivity of HOMP archi-
tectures. In B.1 we prove Theorem 4.2 (topological HOMP-indistinguishability criterion),
in B.2 we prove Theorem 4.3 (topological blindspots) and in B.3 we address lifting and
pooling.

• In Appendix C we give an in-depth description of the MCN framework, introduced in
Section 5

• In Appendix D we give an in-depth description of the SMCN framework, introduced in
Section 6.

• In Appendix E we give a formal definition of CC isomorphism and prove Proposition 5.1
(MCN can distinguish any pair of non-isomorphic CCs).

• In Appendix F we analyze the expressive power of SMCN, proving all results from Section
6.1.

• In Appendix G we give further details regarding the results presented in Section 7 as well
as the experimental setup.

A BACKGROUND

A.1 OVERVIEW OF EXPRESSIVE GNN ARCHITECTURES USED IN THE PAPER

The expressivity of GNNs is typically evaluated in terms of their separation power, i.e. their ability
to assign distinct values to non-isomorphic graphs. Seminal works by Morris et al. (2019) and Xu
et al. (2018) demonstrate that the expressive power of MPNNs is equivalent to that of the 1-WL test
(Weisfeiler & Leman, 1968). These findings inspired the development of more expressive GNNs,
with expressive power surpassing that of the 1-WL test, albeit often requiring greater computational
resources. In this paper we focus on two such architecturres: invariant graph networks (IGNs)
(Maron et al., 2018; 2019) and subgraph neural networks Bevilacqua et al. (2021); Frasca et al.
(2022); Zhang et al. (2023b).

Invariant graph networks. Maron et al. (2018) proposed a principled approach to design expres-
sive GNN architectures by leveraging the inherent symmetries of graphs.

More specifically, given a graph G with adjacency matrix A ∈ Rn×n and node feature matrix
X ∈ Rn×d, an IGN first encodes this graph as a tensor T ∈ Rn2×(d+1) where T:,:,1 holds the
adjacency matrix A and the last d channels hold the node features on their diagonal, i.e. Ti,i,j = Xi,j

and Ti1,i2,j = 0 for i1 ̸= i2. The symmetry group Sn acts naturally on Rn2×(d+1) by:

σ · Ti,j,k = Tσ−1(i),σ−1(j),k σ ∈ Sn. (7)

Notice that for any graph tensor T and permutation σ ∈ Sn, the tensors T and σ · T represent the
same graph. This action can be easily generalied to the tensor space Rnk×c by:

σTi1,...,ikmj = Tσ−1(i1),...,σ−1(ik),j . (8)

For any integers k, k′, c, c′ Maron et al. (2018) finds a basis to the space of all linear maps L :

Rnk×c → Rnk′
×c′ which satisfy

L(σ · T) = σ · L(T). (9)
These are called equivariant linear maps. a k-IGN stacks lyaers is of the form

U(T ) = β(
∑
γ∈Γ

wγLγ(T)) (10)

where {Lγ}γ∈Γ is a basis of the space of equivariant layers from Rnk1×c1 to Rnk2×c2 for some
k11, k2 ≤ k and c1, c2 ∈ N, {wγ}γ∈Γ are learnable parameters and β is a non-linear activation
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function. The k-IGN architecture was proven in Maron et al. (2019) to be as expressive as the k-WL
test, extending the capabilities of MPNNs, which were shown to possess expressivity equivalent to
the 1-WL test. Despite this l-IGNs have a runtime complexity of O(nk) making them inpractical
to use. To address this, other expressive GNNs have been proposed, offering a balance between
the computational complexity and expressive power of 3-IGNs and MPNNs. One such family of
architectures is subgraph neural networks.

Subgraph neural networks. Subgraph neural networks, (You et al., 2021; ?; Cotta et al., 2021;
Bevilacqua et al., 2021), rely on a predefined policy that transforms an input graph into a set of
graphs, with each graph in the set representing an augmented version of the original. Some policies
include node deletion, where each graph in the set is created by removing a single node from the
original graph; k-ego policies, where each graph is generated by extracting the k-neighborhood of a
specific node; and node marking, where each graph is obtained by assigning a unique node feature
to a single node in the original graph. Subgraph GNNs then process sets of graphs by independently
applying MPNN updates to each graph in the set, while also incorporating cross-graph updates to
exchange information between the graphs. Bevilacqua et al. (2021) has shown that subgraph GNNs
are strictly more expressive then MPNNs, while Frasca et al. (2022) has shown they are strictly
less expressive then 3-IGNS. With a runtime complexity of O(d · n2) where d is the maximum
degree of the input graph, subgraph GNNs offer a compelling trade-off: they are more expressive
than MPNNs while remaining more scalable than 3-IGNs. Subgraph GNNs have demonstrated
strong empirical performance in studies such as Bevilacqua et al. (2021), Frasca et al. (2022), and
Zhang et al. (2023b), among others, establishing them as a robust and effective choice for GNN
architectures. For an in depth discussion on subgraph neural networks see Bronstein (2021).

A.2 NEIGHBORHOOD FUNCTION ILLUSTRATION

The following is an example of the standard neighborhood functions introduced in Section 3. For
the CC in Figure 9 the following relations hold:

• {A} ∈ A0,1({B}).

• {A} /∈ A0,1({D}).

• {A} ∈ A0,2({D}).

• {C,D} ∈ coA1,0({A,C}).

• {C,D} /∈ coA1,0({A,B}).

• {C,D} ∈ A1,2({A,B}).

• {C,D,E} ∈ coA2,0({E,F,H}).

• {C,D,E} /∈ coA2,1({E,F,H}).

• {A,B,C,D} ∈ coA2,1({C,D,E}).

• {B,D} ∈ B0,1({D}).

• {F,G,H} ∈ B0,2({G}).

• {B} ∈ B⊤
1,0({B,D}).

• {B} /∈ B⊤
1,0({C,D}).

• {B} ∈ B⊤
2,0({A,B,C,D}).

• {B} /∈ B⊤
2,0({C,D,E}).

HOMP can be viewed as performing parallel message passing on the connectivity structures defined
by these neighborhood functions.

B EXPRESSIVITY LIMITATIONS OF HIGHER-ORDER MESSAGE-PASSING

B.1 A TOPOLOGICAL CRITERION FOR HOMP INDISTINGUISHABILITY

In this section we formally restate and prove Theorem 4.2.
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A B

C D

E

F H

G

Figure 9: CC example for neighborhood function illustration. Nodes are labeled A, . . . , G, cells are
comprised of subsets of nodes, 1-cells are represented by orange edges, and 2-cells are represented
as blue faces. E.g. {E,F,H} is a 2-cell, {A,C} is a 1-cell.

Theorem B.1 (HOMP-indistinguishability criterion, restatement of Theorem 4.2). Let X and X ′ be
CCs of dimension ℓ with no cell features such that |X0| = |X ′

0|. If X and X ′ admit decompositions
into connected components

X =
⊔

Z∈C(X )

Z, X ′ =
⊔

Z′∈C(X ′)

Z ′, (11)

such that ∃X̃ that is covers each of the connected components Z ∈ C(X ),Z ′ ∈ C(X ′), then for
every HOMP model M, M(X ) = M(X ′).

A combinatorial complex X is said to be connected if its Hasse graph, defined by G = (V, E) with
V = X and E = {(x, y) | x ⊆ y, rk(x) = rk(y)− 1}, is connected. To prove Theorem B.1, we first
state and prove two lemmas.

Lemma B.2. Let ρ : X̃ → X be a covering map. In addition, let M be a HOMP model with T

layers, and let h(t)
x and h̃

(t)
x′ denote the cell feature maps of X and X̃ at layer t evaluated on cells

x ∈ X and x′ ∈ X̃ respectively. Under these conditions, h̃(t)
x′ = h

(t)
ρ(x′), for t = 0, . . . , T , x′ ∈ X̃ .

Proof. We use induction on t. For t = 0, as both CCs have no initial cellular feature maps, HOMP
initializes h(0)

x , h̃
(0)
x′ by assigning a constant feature to all cells and the claim holds trivially. Assume

the claim holds for some t ∈ {0, . . . , T}. The HOMP update rule reads:

h(t+1)
x = β

 ⊗
N∈Nnat

⊕
y∈N (x)

MLP
(t)
N ,rk(x)(h

(t)
x ,h(t)

y )

 ,

h̃
(t+1)
x′ = β

 ⊗
N∈Nnat

⊕
y′∈N (x′)

MLP
(t)
N ,rk(x′)(h̃

(t)
x′ , h̃

(t)
y′ )

 .

(12)

Since ρ is a covering map, N (x′) is bjectively mapped to N (ρ(x′)) for every x′ ∈ X̃ and every
neighborhood function N ∈ N nat. Additionally, rk(ρ(x′)) = rk(x′). This, along with the fact that⊕

is permutation invariant, and the induction hypothesis implies that:⊕
y′∈N (x′)

MLP
(t)
N ,rk(x′)(h̃

(t)
x′ , h̃

(t)
y′ ) =

⊕
y∈N (ρ(x′))

MLP
(t)
N ,rk(ρ(x′))(h

(t)
ρ(x′),h

(t)
y ). (13)
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Thus, combining Equation 12 and Equation 13, we get h̃(t+1)
x′ = h

(t+1)
ρ(x′) .

Lemma B.3. If X is connected and ρ : X̃ → X is a covering map, ∀x ∈ X , |ρ−1(x)| = |X̃0|
|X0| .

Proof. Since ρ is surjective and rank-preserving, the above is equivalent to ∀x, y ∈ X , |ρ−1(y)| =
|ρ−1(x)|. Since X is connected, it suffices to show that this equality holds for any x, y ∈ X such that
y ∈ N (x) for some function N ∈ N nat. We first show that for any natural neighborhood function
N ∈ N nat and cell x ∈ X the sets {N (x′) | x′ ∈ ρ−1(x)} are pairwise disjoint. To see this,
assume by contradiction that for a pair of cells x′

1, x
′
2 ∈ ρ−1(x) we have N (x′

1) ∩ N (x′
2) ̸= ∅. If

z′ ∈ N (x′
1)∩N (x′

2), then there is a neighborhood function N ∗ ∈ N nat such that x′
1, x

′
2 ∈ N ∗(z′).

Given that ρ(x′
1) = ρ(x′

2), this would imply that ρ is not injective on N ∗(z′), contradicting the
definition of a covering map. Now, since y ∈ N (x), for any x′ ∈ ρ−1(x) there exists a y′ ∈ N (x′)
such that ρ(y′) = y. Since the set {N (x′) | x′ ∈ ρ−1(x)} is pairwise disjoint this implies that
|ρ−1(y)| ≥ |ρ−1(x)|. Since y ∈ N (x), there exists a neighborhood function N ∗ ∈ N nat such
that x ∈ N ∗(y), implying by the same reasoning above that |ρ−1(y)| ≤ |ρ−1(x)|. We thus have
|ρ−1(y)| = |ρ−1(x)| which concludes the proof.

We are now ready to prove Theorem B.1.

Proof. Let X̃ be a combinatorial complex that covers all connected components Z ∈ C(X ) and
Z ′ ∈ C(X ′) via maps the maps {ρZ}Z∈C(X ) and {ρZ′}Z′∈C(X ′) respectively. Let M be a HOMP
model with T layers and let h(t), h′(t), and h̃(t) denote the cell feature maps of X , X ′, and X̃
respectively at layer t. Lemma B.2 implies that for every Z ∈ C(X ), Z ′ ∈ C(X ′) and every z ∈ Z ,
z′ ∈ Z ′ we have

h(T )
z = h̃(T )

y ∀y ∈ ρ−1
Z (z),

h
′(T )
z′ = h̃(T )

y ∀y ∈ ρ−1
Z′ (z

′).
(14)

This implies that the sets of unique values corresponding to the multisets {{h(T )
x | x ∈ X}}, {{h′(T )

x′ |
x′ ∈ X ′}} and {{h̃(T )

y | y ∈ X̃}} are the same. Let ny, n
′
y, ñy be the number of times the value h̃

(T )
y

appear in the multisets {{h(T )
x | x ∈ X}}, {{h′(T )

x′ | x′ ∈ X ′}} and {{h̃(T )
y | y ∈ X̃}} respectively.

Since each Z,Z ′ are connected, we can use Lemma B.3 to get that ∀z ∈ Z , ∀z′ ∈ Z ′, |ρ−1
Z (z)| =

|X̃0|
|Z0| and |ρ−1

Z′ (z′)| = |X̃0|
|Z′

0|
. This implies that ∀y ∈ X̃

ny = ñy ·

 ∑
Z∈C(X )

|Z0|
|X̃0|

 , n′
y = ñy ·

 ∑
Z′∈C(X ′)

|Z ′
0|

|X̃0|

 . (15)

Since
∑

Z∈C(X ) |Z0| = |X0| = |X ′
0| =

∑
Z′∈C(X ′) |Z ′

0|, this implies that ∀y ∈ X̃ , ny = n′
y . We

have shown the set of unique values corresponding to multisets {{h(T )
x | x ∈ X}} and {{h′(T )

x | x′ ∈
X ′}} is the same, and that the number of times each value appears in the multisets is the same, thus
the two multisets are equal. Since the readout of a HOMP model can is a function this multiset, X
and X ′ are indistinguishable by HOMP.

B.2 TOPOLOGICAL AND METRIC LIMITATIONS

In this section, we rigorously state and prove all results regarding HOMP’s inability to express
topological/metric properties, presented in Section B. We begin by defining the ℓ-dimensional torus
CCs. As we will later see, this class provides us with examples of indistinguishable CCs that differ
in both the diameter and all homology groups.

ℓ-dimensional torus CCs. An ℓ dimensional torus is a Cartesian product of ℓ cycles. More for-
mally:

Definition B.4 (ℓ-dimensional torus CCs). For a sequence of integers p1, . . . , pℓ, the torus Tp1,...,pℓ

is a combinatorial complex (S,X , rk) defined by:

S = [p1]× · · · × [pℓ], (16)
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Xr = {sk | s ∈ S,k ∈ {0, 1}ℓ, k1 + · · ·+ kℓ = r}, (17)
where sk is defined by:

sk = {s+ k′ | k′ ∈ {0, 1}ℓ,k′ ≤ k}. (18)
The sum s + k′ is coordinate-wise, where at coordinate j result is taken modulo pj , and k′ ≤ k if
k′j ≤ kj ,∀j ∈ {1, . . . , ℓ}.

By slight abuse of notation, we sometimes refer to the set of cells of the torus by Tp1,...,pℓ
as well.

We note that the torus Tp1,...,pℓ
as defined above is only one possible realization of the ℓ-dimensional

torus as a combinatorial complex. An example of a two-dimensional torus can be seen in Figure 1(a).
As the next lemma shows, all ℓ dimensional tori are locally isometric.

Lemma B.5. Let Tp1,...,pℓ
and Tp′

1,...,p
′
ℓ

be two ℓ-dimensional tori such that ∀j ∈ {1, . . . , ℓ},
pj , p

′
j ≥ 3. The torus Tp1·p′

1,...,pℓ·p′
ℓ

covers both Tp1,...,pℓ
and Tp′

1,...,p
′
ℓ
.

Proof. Denote p = (p1, . . . , pℓ), p′ = (p′1, . . . , p
′
ℓ), p̃ = (p̃1, . . . , p̃ℓ) = (p1 · p′1, . . . , pℓ · p′ℓ).

Additionally, denote by S, S′, S̃, and X , X ′, X̃ the nodes and cell sets of Tp, Tp′ and Tp̃ respectively.
Define ρ : S̃ → S, ρ′ : S̃ → S′ by:

ρ(s̃) = s̃ mod p,

ρ′(s̃) = s̃ mod p′,
(19)

where s̃ mod p := (s̃1 mod p1, . . . , s̃ℓ mod pℓ). We extend ρ and ρ′ to X̃ by ρ(x) = {ρ(s) |
s ∈ x}. We now prove that ρ is a covering map. We start by showing that ∀r ∈ {0, . . . ℓ},
ρ(X̃r) = Xr (i.e. ρ is rank-preserving). Recall that all elements of X̃r are of the form s̃k for some
s̃ ∈ S̃ and k ∈ {0, 1}ℓ such that k1 + · · ·+ kℓ = r. Since p < p̃, for every k′ ≤ k:

(s̃+ k′ mod p̃) mod p = (s̃ mod p) + (k′ mod p) = ρ(s̃) + k′ mod p. (20)

Therefore,
ρ(s̃k) = ρ(s̃)k ∈ Xr (21)

and ρ is rank-preserving. To show that ρ is a covering map, all that remains is to show that it
preserves natural neighborhood functions and that it is surjective. For the former, notice that since ρ
is defined on the node set S̃, for every x, y, z ∈ X̃ we have:

• x ⊆ y ⇒ ρ(x) ⊆ ρ(y).

• x, y ⊆ z ⇒ ρ(x), ρ(y) ⊆ ρ(z).

• z ⊆ x, y ⇒ ρ(z) ⊆ ρ(x), ρ(y).

Thus, ρ preserves all natural neighborhood functions. Finally, since p1, . . . , pℓ ≥ 3 it is easy to
check that for any x, y ∈ X̃ and N ∈ N nat:

y ∈ N (x) ⇒ ρ(x) ̸= ρ(y). (22)

This implies that ρ is a covering map. An equivalent argument shows that ρ′ is also a covering map,
completing the proof.

Lemma B.5 gives rise to the following useful corollary.

Corollary B.6. If Tp1,...,pℓ
and Tp′

1,...,p
′
ℓ

are ℓ-dimensional tori such that p1 · · · pℓ = p′1 · · · p′ℓ (i.e.
Tp1,...,pℓ

and Tp′
1,...,p

′
ℓ

have the same number of 0-cells) and ∀j ∈ {1, . . . , ℓ}, pj , p′j ≥ 3, then for
every HOMP model M, M(Tp1,...,pℓ

) = M(Tp′
1,...,p

′
ℓ
).

Proof. Both Tp1,...,pℓ
and Tp′

1,...,p
′
ℓ

are connected, have the same number of 0-cells ((Tp1,...,pℓ
)0 =

p1 · · · pℓ = p′1 · · · p′ℓ = (Tp′
1,...,p

′
ℓ
)0), and are covered by Tp1·p′

i,...,pℓ·p′
ℓ
. Therefore, Theorem B.1

implies that Tp1,...,pℓ
and Tp′

1,...,p
′
ℓ

are indistinguishable by HOMP.

Note, that tori with the same number of nodes can still differ on a number of topological and met-
ric properties. In the following we use the family of ℓ dimensional tori to produce examples of
topologically/metrically distinct CCs that are indistinguishable by HOMP.
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Diameter. For a given adjacency neighborhood function (co)Ar1,r2 , the (r1, r2)-diameter of a
combinatorial complex X is defined by:

diam(co)Ar1,r2
(X ) = max

x,x′∈Xr1

d(co)Ar1,r2
(x, x′), (23)

where d(co)Ar1,r2
is the shortest path distance with respect to neighborhood function (co)Ar1,r2 .

Additionally, for k ∈ {1, . . . , ℓ}, the (r1, r2, k) cross diameter is defined by:

diamk
(co)Ar1,r2

(X ) = max
x∈Xr1
y∈Xk

min
x′⊆y

d(co)Ar1,r2
(x, x′). (24)

In this section we show that HOMP is unable to compute diameters of CCs, using ℓ-dimensional
tori as a counter example. Corollary B.6 implies that any pair of ℓ-dimensional tori with the same
number of nodes (0-cells) is indistinguishable by HOMP, therefore it is enough to construct such
tori with different diameters. E.g. the tori T4,4,32 and T8,8,8 have the same number of 0-cells but
different diameters and cross-diameters for any (co)adjacency function and k = 1, 2, 3. This can
be extended to tori of any dimensions. More formally we have the following proposition for the
(0, 1)-diameter.

Proposition B.7. If Tp1,...,pℓ
and Tp′

1,...,p
′
ℓ

are ℓ-dimensional tori satisfying

1. p1 · · · pℓ = p′1 · · · p′ℓ,
2. ∀j ∈ {1, . . . , ℓ}, pj , p′j ≥ 3, and

3.
∑ℓ

j=1⌊
pj

2 ⌋ ≠
∑ℓ

j=1⌊
p′
j

2 ⌋,

then
diamA0,1

(Tp1,...,pℓ
) ̸= diamA0,1

(Tp′
1,...,p

′
ℓ
) (25)

but for any HOMP model M,
M(Tp1,...,pℓ

) = M(Tp′
1,...,p

′
ℓ
). (26)

Proof. Conditions 1 and 2 imply that Tp1,...,pℓ
and Tp′

1,...,p
′
ℓ

are indistinguishable by HOMP. To see
that they have different diameters, observe that the graph induced on the nodes of Tp1,...,pℓ

by the
adjacency neighborhood A0,1 is the Cartesian product of the cyclic graphs Cyc(p1), . . . ,Cyc(pℓ).
Consequently, since the diameter of a Cartesian product is equal to the sum of diameters over the
factors of the product, we have:

diamA0,1
(Tp1,...,pℓ

) =

ℓ∑
j=1

diam(Cyc(pj)) =
ℓ∑

j=1

⌊pj
2

⌋
̸=

ℓ∑
j=1

⌊
p′j
2

⌋

=

ℓ∑
j=1

diam(Cyc(p′j))

= diamA0,1(Tp′
1,...,p

′
ℓ
).

(27)

Homology and Betti numbers. The r-th homology group of a cellular complex 8 encodes the
structure of “r-dimensional holes” in the space (e.g. a circle has a single 1-dimensional hole, a
sphere has a single 2-dimensional hole, etc). We denote the r-th homology of a CC X by Hr(X ).
The rank of the r-th homology group (i.e. the size of the minimal generating set) is called the r-th
Betti number, denoted by br(X ).

Proposition B.8 (HOMP cannot distinguish complexes based on homology). Let T = Tp1,...,pℓ

be an ℓ-dimensional torus and T ′ = Tp1
1,...,p

1
ℓ
⊔ Tp2

1,...,p
2
ℓ

be a disjoint union of two disconnected
tori. If p1 · · · pℓ = p11 · · · p1ℓ + p21 · · · p2ℓ and ∀j ∈ {1, . . . , ℓ}, pj , p1j , p

2
j ≥ 3, then T and T ′

are HOMP-indistinguishable but have different homology groups and Betti number of all orders:
∀r ∈ {0, . . . , ℓ}, Hr(T ) ̸= Hr(T

′), br(T ) ̸= br(T
′).

8Homology is not defined for general combinatorial complexes, only for simplicial / cellular complexes.
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Proof. First, Lemma B.5 implies that the T, T1, and T2 have a common cover. Thus, since T
and T ′ have the same number of cells, Theorem B.1 implies they are HOMP-indistinguishable.
Additionally, for every Hr(T ) = Z(

ℓ
r) (see e.g. Hatcher (2002)) and since, T ′ is a disjoint union

of T1 and T2, Hr(T
′) = Hr(T1) ×Hr(T2) = Z(

ℓ
r) × Z(

ℓ
r) = Z2(ℓr). Therefore, ∀r ∈ {0, . . . , ℓ},

Hr(T ) ̸= Hr(T
′) and br(T ) =

(
ℓ
r

)
̸= 2
(
ℓ
r

)
= br(T

′).

Orientability. We now turn our attention to HOMP’s capability to to detect another common topo-
logical property: orientability. Loosely speaking, a surface is orientable if one can distinguish be-
tween an “inner” and an “outer” side of the surface. A common example of two locally isomorphic
surfaces where one is orientable and the other is not is the Möbius strip and a cylinder. For an in-
depth discussion about orientability and the Möbius strip see Hatcher (2002). We now realize both
of these surfaces as cellular complexes. A visualization of the construction can be seen in Figure
1(b). We begin by defining two auxiliary functions.

Definition B.9. For h, p ∈ N define ρh,pcyl , ρ
h,p
möb : Z2 → Z2 by

ρh,pcyl (s) = (s1, s2 mod p) (28)

ρh,pmöb(s) =

{
s1, s2 mod r s2 mod 2p ≤ p

(h+ 1− s1, s2 mod r) s2 mod 2p > p.
(29)

Using ρh,pcyl and ρh,pmöb we can costurct the cylinder and the Möbius strip.

Definition B.10 (Cylinder as CC). Given two integers h, p, the cylinder Cylh,p is a 2-dimensional
combinatorial complex (S,X , rk) defined by:

S = [h]× [p], (30)

Xr = {sk | s ∈ S,k ∈ {0, 1}2, k1 + k2 = r, ρh,pcyl (s+ k) ∈ S}, (31)

X = X0 ∪ X1 ∪ X2, (32)

where sk is defined by:

sk = {ρh,pcyl (s+ k′) | k′ ∈ {0, 1}2,k′ ≤ k}. (33)

Definition B.11 (Möbius strip as a CC). Given two integers h, p, the Möbius strip Möbh,p is a
2-dimensional combinatorial complex (S,X , rk) defined by:

S = [h]× [p], (34)

Xr = {sk | s ∈ S,k ∈ {0, 1}2, k1 + k2 = r, ρh,pmöb(s+ k) ∈ S}, (35)
X = X0 ∪ X1 ∪ X2, (36)

where sk is defined by:

sk = {ρh,pmöb(s+ k) | k′ ∈ {0, 1}2,k′ ≤ k}. (37)

We now show HOMP is unable to distinguish between CCs based on orientability:

Proposition B.12 (HOMP cannot detect orientability). For any two integers h, p ∈ N such that
h, p ≥ 3, and for every HOMP model M , Cylh,p and Möbh,p are HOMP-indistinguishable, but
Cylh,p is orientable as a topological space while Möbh,r is not.

Proof. First, the fact that the cylinder is orientable, whereas the Möbius strip is not is well known
(see e.g. Hatcher (2002) for proof). As for HOMP-indistinguishably, consider the wide cylinder
Cylh,2p with height h and perimeter 2p. We show that Cylh,2p covers both Cylh,p and Möbh,p.
Since the two CCs are connected and have the same number of nodes, Theorem B.1 implies that
they are HOMP-indistinguishable. Denote by S̃, Scyl, Smöb and X̃ , X cyl, Xmöb the sets of nodes
and cells of Cylh,2p, Cylh,p and Möbh,p respectively. Define ρ : S̃ → Scyl and ρ′ : S̃ → Smöb by

ρ = ρh,pcyl

∣∣∣
S̃

and ρ′ = ρh,pmöb

∣∣∣
S̃

. It’s easy to verify that ρ(S̃) = Scyl and ρ′(S̃) = Smöb, thus ρ and
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ρ′ are well defined and surjective. ρ, ρ′ induce maps P(S̃) → P(Scyl) and P(S̃) → P(Smöb); by
abuse of notation we refer to these maps by ρ, ρ′ as well. To show that ρ and ρ′ are covering maps,
we first show that they are rank-preserving (i.e. that ρ(X̃r) = X cyl

r and ρ′(X̃r) = Xmöb
r ), and then

show that they are local isomorphisms. Recall that all elements of X̃r are of the form s̃k for some
s̃ ∈ S̃ and k ∈ {0, 1}2 such that k1 + k2 = r. For every k′ ≤ k

ρ(ρcylh,2p(s̃+ k′)) = ρcylh,p(ρ(s̃) + k′), (38)

so ρ(s̃k) = ρ(s̃)k. Additionally,

ρ′(ρh,2pcyl (s̃+ k′)) =

{
ρh,pmöb(ρ

′(s̃) + k′) s̃1 ≤ p

ρh,pmöb(ρ
′(s̃) + (−k′1, k

′
2)) s̃1 > p.

(39)

so

ρ′(s̃k) =

{
ρ′(s̃)k s̃1 ≤ p

(ρ′(s̃) + (−1, 0))k s̃1 > p.
(40)

By the definitions X̃r, X cyl and Xmöb we now have ρ(X̃r) = X cyl
r and ρ′(X̃r) = Xmöb

r as needed.
Since ρ and ρ′ are extended to P(S̃) from S̃, for every x, y, z ∈ X̃

• x ⊆ y ⇒ ρ(x) ⊆ ρ(y) and ρ′(x) ⊆ ρ′(y).

• x, y ⊆ z ⇒ ρ(x), ρ(y) ⊆ ρ(z) and ρ′(x), ρ′(y) ⊆ ρ′(z)

• z ⊆ x, y ⇒ ρ(z) ⊆ ρ(x), ρ(y) and ρ′(z) ⊆ ρ′(x), ρ′(y).

Therefore, ρ and ρ′ preserve all natural neighborhood functions. Finally, since h, p ≥ 3, for x, y ∈ X̃
and N ∈ N nat, y ∈ N (x) ⇒ ρ(x) ̸= ρ(y) and ρ′(x) ̸= ρ′(y). This implies that ρ and ρ′ are local
isomorphisms, completing the proof.

Planarity. A topological space is considered planar if it can be continuously embedded in R2.
Proposition B.12 provides us with the following corollary.

Corollary B.13 (HOMP cannot detect planarity). There exist pairs of cellular complexes X ,X ′

such that the induced topology of X is planar while the induced topology of X ′ is not, but X and X ′

are HOMP-indistinguishable.

Proof. The CCs Cylh,p and Möbh,p for p, h ≥ are HOMP-indistinguishable according to Proposi-
tion B.12. The Möbius strip is not planar (see e.g., Hatcher (2002)), whereas the cylinder is.

B.3 LIFTING AND POOLING

In this section, we rigorously state and prove Proposition 4.4. We begin by focusing on lifting
operations, proving Proposition 4.4 for triangular lifting, as used in Bodnar et al. (2021b) and Bodnar
et al. (2021a). Next, we address pooling operations, proving the proposition for MOG pooling (Hajij
et al., 2018), which was used to in conjunction with HOMP in Hajij et al. (2022b). While we only
provide proofs for these triangular lifting and MOG, we note that this phenomenon generalizes to
other lifting and pooling methods as well.

Lifting. We first define triangular lifting on graphs, denoted by 3-CL.

Definition B.14 (Triangular lifting). The triangular lift of a graph G = (V, E) is a combinatorial
complex denoted by 3−CL(G), with S = V , X0 = {{ v} | v ∈ V}, X1 = E , and X2 = {{x, y, z} |
x ∼ y, x ∼ z, y ∼ z}.

We now formally state Proposition 4.4 for triangular lifting

Proposition B.15. There exist pairs of graphs G and G′ such that the combinatorial complexes
X = 3−CL(G) and 3X ′ = 3−CL(G′) are indistinguishable by HOMP. This occurs despite the fact
that the cross diameter diam2

A0,1
(X ) is finite while diam2

A0,1
(X ′) is infinite.
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Proof. Given n, k ∈ N where k > 3, the star graph Starn,k is constructed as follows. We begin
with a cyclic graph of length n ·k with nodes a1, . . . , an·k where ai ∼ aj ⇔ i−j = ±1 mod n ·k.
Secondly, we add k additional nodes, denoted as b1, . . . , bk, and connect them to the existing graph
via bi ∼ an·i and bi ∼ an·i+1, with all index computations carried out modulo n · k. We consider
a pair of graphs G and G′ defined by G = Starn,2k and G′ = Starn,k ⊔ Starn,k where ⊔ represents
disjoint union. See Figure 10 for an illustration of the case k = 3, n = 2.

X
X ′

Figure 10: A pair of indistinguishable CCs produced by triangular lifting. The left-hand CC covers
each connected component of the right-hand CC.

Since n · k > 3, the only triangles in G and G′ are of the form {bi, ai·n, ai·n+1}. Denote the
combinatorial complexes constructed from G and G′ by applying triangular lifting as X and X ′,
respectively. Additionally, denote 3−CL(Starn,k) by X ∗. Since X ′ consists of two disconnected
copies of X ∗, and the complexes X ′ and X are of equal size, Theorem B.1 implies that in order
to show HOMP cannot distinguish between X and X ′, it suffices to show that X is a cover of
X ∗. Letting S ad S∗ be the node sets corresponding to CCs X ,X ∗, we construct a covering map
ρ : S → S∗ defined by:

ρ(ai) = a′i mod n·k

ρ(bi) = b′i mod k.
(41)

Note that ρ induces a map from P(S) to P(S∗) where P(·) denotes the power set. We abuse notation
and refer to this function by ρ as well. We notice that ρ is surjective, and that for any pair of nodes
u, v in graph G we have:

u ∼G v ⇒ ρ(u) ∼G∗ ρ(v). (42)

This implies that ρ preserves triangles as well. In addition, since n · k > 3 ρ is locally injective.
Thus, ρ is a covering map, and X and X ′ are indistinguisable by HOMP. Finally, it is evident
that diam2

A0,1
(X ′) = ∞ since it consists of two disjoint connected components, each containing a

non-empty set of nodes (0-cells) and triangles (2-cells). Conversely, diam2
A0,1

(X ) < ∞ because it
consists of a single connected component.

Pooling. For the pooling example we focus on the Mapper algorithm Singh et al. (2007); Hajij
et al. (2018); Dey et al. (2016), a topology preserving pooling algorithm which was previously used
in combination with HOMP in Hajij et al. (2022b). We now define mapper on graphs (MOG), a
pooling procedure that takes a general graph as input and produces a 2-dimensional combinatorial
complex.

Definition B.16 (Mapper on graphs). Let G = (V, E) be a graph, g : V → R be a node function,
and U = {Uα}α∈I an open covering of R. The MOG pooling of the graph, MOG(G) = (S,X , rk)
is given by the following consturction.

1. Compute the pull-back cover g∗(U) = {g−1(Uα)}α∈I .

2. Construct VMOG to be the set connected components of the sub-graphs induced by g∗(U).

3. Construct the pooled CC to be (S,X , rk) with nodes S = V , cells X = V ∪E ∪VMOG, and
rank

rk(x) =

 0 x ∈ V
1 x ∈ E
2 x ∈ VMOG.
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In the context of shape detection, a natural choice for g is the average shortest-path distance
g(v) = 1

|V|
∑

u∈V d(u, v), as it only depends on the graph structure and is thus invariant to geo-
metric transformations of the features. As for the covering U , a natural choice is {(η · i, η · i+ϵ)}i∈N
for hyper-parameters η, ϵ ∈ R. We now formally state Proposition 4.4 for MOG pooling.

Proposition B.17. There exist pairs of graphs G and G′ such that the combinatorial complexes
X = MOG(G) and X ′ = MOG(G′) are indistinguishable by HOMP. This occurs despite the fact
that the (0, 1, 2) cross diameters of the two CCs are different.

Figure 11: Two combinatorial complexes constructed by MOG pooling and their common cover.
The two cells constructed by the MOG algorithm are marked in blue and the covering map is defined
based on the node labels.

Proof. We begin with a base example. Let G and G′ be the two graphs depicted at the bot-
tom of Figure 11 before applying the MOG lifting procedure, and denote their node sets by
S = {s1, . . . , s6} and S′ = {s′1, . . . , s′6} , with the order as shown in the Figure. Note that the
sets P1 = {s1, s2, s5, s6} P2 = {s3, s4} form a partition of S, and nodes within the same parti-
tion set are automorphic (i.e., there exists a graph automorphism mapping one node to the other).
The same holds for P ′

1 = {s′1, s′2, s′5, s′6} P ′
2 = {s′3, s′4}. Thus, the function g, defined as the av-

erage shortest path distance (SPD) of each node, is constant on each of these sets. This implies
that by choosing a sufficiently fine covering (i.e. selecting a small enough η), the 2-cells defined
by the MOG algorithm for graphs G and G′ will be x1 = {s1, s2}, x2 = {s3, s4}, x3 = {s5, s6}
and x′

1 = {s′1, s′2}, x′
2 = {s′3, s′4}, x′

3 = {s′5, s′6} respectively (We split sets P1 and P ′
1 to their

connected components). Defining X = MOG(G) and X ′ = MOG(G′), we now aim to show that
HOMP cannot distinguish between these two CCs. Figure 11 depicts X ,X ′ and an additional com-
binatorial complex X̃ which covers both of these complexes. Since X and X ′ are connected and
of the same size, Theorem B.1 shows that these complexes are indistinguishable by HOMP. An-
other quick calculation shows that diam2

A0,1
(X ) = 3 while diam2

A0,1
(X ′) = 2 concluding the base

example.

To demonstrate that this phenomenon occurs in larger graphs where the MOG procedure produces
a small number of 2-cells, we expand upon the aforementioned example. For each integer n ≥ 3 ,
let Cyc(n) denote the cyclic graph of length n with the node set Vn = {v1, . . . , vn}, where vi ∼ vj
if and only if i − j = ±1 mod n. Define Gn = G × Cyc(n), G′

n = G′ × Cyc(n), , where ×
denotes the Cartesian graph product. We now demonstrate that the proof above remains valid for Gn

and G′
n for any n ≥ 3 . First, defining P1,n = P1 × Vn, P2,n = P2 × Vn where here × denotes

set cartesian product, we notice that since all nodes in Pi are G isomorphic, and all nodes in Vn
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are Cyc(n) isomorphic, all nodes in Pi,n are Gn isomorphic. The same holds for P ′
1,n = P ′

1 × Vn,
P ′
2,n = P ′

2 × Vn. Thus, again, the function g , defined as the average shortest path distance of each
node, is constant on each of these sets. This implies that by choosing a sufficiently fine covering,
the 2-cells defined by the MOG algorithm for graphs Gn and G′

n will be xi,n = xi × Vn and
x′
i,n = x′

i × Vn respectively for all i ∈ [3]. Defining Xn = MOG(Gn), X ′
n = MOG(G′

n) we now
aim to show that HOMP cannot distinguish between these two CCs.

We define G̃ to be the 1-skeleton of X̃ , G̃n = G̃ × Cyc(n) and X̃n to be the CC whose 1-skeleton
is G̃n and whose 2-cells are: {x × Vn | x ∈ X̃2}. Let ρ : S̃ → S, ρ′ : S̃ → S′ be the covering
maps from X̃ to X and X ′ respectively, as depicted in Figure 11. Define ρn : S̃ ×Vn → S ×Vn by
ρn(s, v) = (ρ(s), v) and ρ′n : S̃ × Vn → S′ × Vn by ρ′n(s, v) = (ρ′(s), v). By the definitions of
Xn,X ′

n and X̃n, these two maps are covering maps from X̃n to Xn,X ′
n respectively. Since Xn,X ′

n
are connected and are of the same size Theorem B.1 implies they are indistinguishable by HOMP.
Secondly Since Gn is a graph cartesian product, for every (s, v), (s′, v′) ∈ S ×′ gVn we have:

dGn ((s, v), (s′, v′)) = dG(s, s
′) + dCyc(n)(v, v

′). (43)

Thus, it is easy to check that: diam2
A0,1

(Xn) = diam2
A0,1

(X ) = 3. The same reasoning shows that
diam2

A0,1
(X ′

n) = diam2
A0,1

(X ′) = 2 concluding the proof.

C MULTI-CELLULAR NETWORKS

In this section we motivate and formally define MCN, expanding the discussion in Section 5. We
rigorously define both the equivariant linear updates and the general tensor diagram forward pass.

Multi-cellular cochain spaces As discussed in Section 5, given an ℓ-dimensional CC X and an
(ℓ+ 1)-tuple k ∈ Nℓ+1, the space of k-multi-cellular cochains is defied by:

Ck(X ,Rd) = {hk | hk : X k0
0 × · · · × X kℓ

ℓ → Rd}. (44)

Multi-cellular cochain spaces are a natural generalization of standard cochain spaces, providing a
way to represent diverse types of CC data. For example, when k = ei, we get that Cei(X ,Rd) is the
space of function hei

: Xi → Rd, i.e. Ck(X ,Rd) is the space of all possible i-rank cell features (i.e.
Cei ∼= Ci ). In addition, for any pair of integers r1, r2, the incidence neighborhood function Br1,r2

can be encoded as the map h : Xr1 ×Xr2 → Rd defined by:

h(x, y) =

{
1 y ∈ Br1,r2(x)

0 otherwise.
(45)

Thus Br1,r2 can be regarded as an element of the space Cer1+er2 . Finally, neighborhood functions
of the type (co)Ar1,r2 can be similarly encoded as the map h : X 2

r1 → Rd defined by:

h(x, y) =

{
1 y ∈ (co)Ar1,r2(x)

0 otherwise.
(46)

Thus (co)Ar1,r2 can be regarded as an element of the space C2·er1 .

Multi-cellular cochain spaces recover many linear spaces studied in several previous works. For
example, Cker matches the features space of a k-IGN layer operating on r-cells, and Cer1

+er2

corresponds to the input space of the exchangeable matrix layers introduced in Hartford et al. (2018).

Equivariant linear maps between multi-cellular cochain spaces. Let X be a combinatorial
complex. We define nr = |Xr|, representing the size of Xr. For a tuple k = (k0, . . . , kℓ), we
define the product space X k = X k0

0 × · · · × X kℓ

ℓ . The group Sn0
× · · · × Snℓ

is denoted by G. We
aim to find a basis for the space of equivariant linear layers L : Ck(X ,Rd) → Ck′

(X ,Rd′
) for each

pair of tuples k,k′. Since the space Ck can be identified with Rn
k0
0 ×···×n

kℓ
ℓ ×d, the space of linear

maps between the two can be considered as the space of matrices:

Ck ⊗ Ck′
= Rn

k0
0 ×···×n

kℓ
ℓ ×d×k′

0
0 ×···×n

k′
ℓ

ℓ ×d′
. (47)

25



Published as a conference paper at ICLR 2025

where we use ⊗ to denote the tensor product of vector spaces. The index set corresponding to this
space of matrices is X k × [d]×X k′ × [d′].

Notice that the group G acts naturally on X k × X k′
. For each G-orbit γ and integers j1 ∈ [d1],

j2 ∈ [d2], we define a matrix Bγ,j1,j2 ∈ Rn
k0
0 ×···×n

kℓ
ℓ ×d×k′

0
0 ×···×n

k′
ℓ

ℓ ×d′
:

Bγ,j1,j2
a,i1,b,i2

=

{
1 (a, b) ∈ γ, i1 = j1, i2 = j2
0 otherwise.

(48)

Here a ∈ [n0]
k0 × · · · × [nl]

kl , b ∈ [n0]
k′
0 × · · · × [nl]

k′
l i1 ∈ [d], i2 ∈ [d′].

If h ∈ Ck and h′ = Bγ,j1,j2h we have:

h′(b)j =

{∑
(a,b)∈γ h(a)j1 j = j2

0 otherwhise.
(49)

where here by abuse of notation a, b were used interchangeably to describe multi-indices and multi-
cells. These maps were established as a basis for the space of all equivariant linear functions L :

Rn
k0
0 ×···×n

kℓ
ℓ ×d → Rn

k′
0

0 ×···×n
k′
ℓ

ℓ ×d in Maron et al. (2018) and thus can be used to characterize the
space of equivariant linear layers L : Ck → Ck′

. This framework encompasses many layers from
previously studied models. For example, by setting k = k′ = k · er, the space of equivariant linear
layers corresponds to the space of k-IGN layers, which take as input graphs defined on the k-rank
cells of the input complexes (i.e. graphs whose node sets are Xr). Similarly, with k = k′ = er+er′
for r ̸= r′ ∈ N, this space aligns with the space of linear maps used to construct the exchangeable
matrix layer as described in Hartford et al. (2018).

We can now use this basis to construct learnable equivariant linear layers by taking a parametric
linear combination of the basis functions:

F (h) = β

 ∑
γ,j1,j2

wγ,j1,j2Bγ,j1,j2h

 . (50)

To construct MCN, We augment HOMP architectures with these equivariant layers. This is embod-
ied by incorporating equivariant linear layers into the tensor diagram scheme. Figure 5 depicts a
MCN tensor diagram. We now describe the components of the MCN scheme.

Diagram. Similar to HOMP tensor diagrams, MCN tensor diagrams are layered directed graphs
with labeled nodes and edges. Each node is labeled by a multi-cellular cochain space, extending the
class of node labels used in HOMP tensor diagrams. Directed edges with source and target nodes
labeled by Cer can be labeled by any neighborhood function, while edges between nodes labeled by
other types of multi-cellular cochain spaces are labeled with the new label “equiv”.

Input. The input to the MCN model is determined by the 0-th layer of the tensor diagram, whose
nodes can be labeled by the following types of multi-cellular cochain spaces: (1) nodes labeled
by Cer which take the r-rank cell features as input; (2) Nodes labeled by Cer1

+er2 which take the
matrix form of the incidence neighborhood Br1,r2 as input; (3) Nodes labeled by C2er which take
the matrix form of the (co)adjacency matrices (co)Ar,r′ .

Update. At each layer of an MCN tensor diagram, if v is a node labeled by Ck we compute a
multi-cellular cochain h(v) ∈ Ck by

h(v)
x =

⊗
u∈pred(v)

mu,v(x) (51)

where x ∈ Ck and pred(v) denotes the set of predecessor nodes in the diagram. Here messages
mu,v ∈ Ck are computed based on the label of the edge (u, v). If the edge is labeled by a neigh-
borhood function N , (in which case v and u are labeled by standard cochain spaces), the message
mu,v is computed by ⊕

y∈N (x)

MLPu,v(h
(u)
x ,h(u)

y ). (52)
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Note that this is the exact message used in HOMP tensor diagrams. If the label is “equiv”, the
message is computed as described in Equation 50. By slight abuse of notation, we often denote the
collection of multi-cellular cochains associated with the nodes in layer t by h(t). For all other labels,
the message follows the standard tensor diagram update process. The last layer of the tensor diagram
contains a single node representing a final readout layer (See Appendix G.1 for implementation
details of both the update computation and the possible readout layers used in this paper).

D SCALABLE MULTI-CELLULAR NETWORKS

In this section, we provide an in-depth description of the SMCN model presented in Section 6.
To construct SMCN, We augment MCN diagrams, reducing the number of possible node labels
and adding a new “SCL” update. Figure 5 depicts a SMCN tensor diagram. We now describe the
components of the MCN scheme. For the rest of this section, we borrow the notation scheme of
Appendix C

Diagram. Similar to HOMP and SMCN tensor diagrams, like MCN, are layered directed graphs
with labeled nodes and edges. Each node is labeled by a multi-cellular cochain space Ck, but unlike
MCN we restrict k such that

∑
kr ≤ 2, Thus reducing memory complexity. Like before, directed

edges with source and target nodes labeled by Cer can be labeled by any neighborhood function,
while edges between nodes labeled by other types of multi-cellular cochain spaces can be labeled
with the new label “equiv”. Additionally, directed edges with source and target nodes labeled by
Cer+er′ can be labeled by ‘SCL”.

Input. The input to the SMCN model is identical to the input to the MCN model. As we will now
show, the matrix form of neighborhood functions Br1,r2 play a similar role to that of node marking
policies in subgraph networks Bevilacqua et al. (2021); Frasca et al. (2022); Zhang et al. (2023b).
Subgraph networks process feature maps of the form h : V × V → Rd where V is a set of nodes.
Node marking policies employ an initial feature map of:

h(0)(v, u) =

{
1 u = v

0 otherwise.
(53)

Similarly, SCL updates process cochains of the form h : Xr1 × Xr2 → Rd, and the matrix form of
Br1,r2 satisfies:

B(x, y) =

{
1 x ⊆ y

0 otherwise.
(54)

Update. The SMCN update is computed in the same way as the MCN update is computed (see
Appendix C), where the message of a directed edge (u, v) labeled by “SCL” is computed by

mu,v(x, y) =

ℓ⊗
r=0,r′=0

MLPr,r′
(
h(t)
x,y,h

(t)
(co)Ar1,r(x),y

,h
(t)
x,(co)Ar2,r′ (y)

,hx,Br1,r2 (x)
,hB⊤

r2,r1
(y),y

)
,

(55)
where if Q1 ⊆ Xr1 and Q2 ⊆ Xr2 are sets of cells, hQ1,y :=

∑
x′∈Q1

hx′,y and hx,Q2 :=∑
y′∈Q2

hx,y′ . The SCL update can be considered an aggregation of subgraph updates on the aug-
mented Hasse graphs induced by the input CC. For each choice of r, r′ the compotation inside the
aggregation function in Equation 55 is identical to a CS-GNN (Bar-Shalom et al., 2024) update on
the augmented Hasse graph (see Definition 6.1) H(co)Ar1,r where the set of “super-nodes”9 is Xr2
and the connectivity of the super nodes is given according to the Hasse graph H(co)Ar2,r′ . More
specifially, for r1 = r2 = 0, r, r′ = 1 we recreate the GNN-SSWL+ (Zhang et al., 2023b) update.

Computational complexity. The computational complexity of SMCN depends on the choice of
multi-cellular cochains spaces in the tensor diagram. For Cer1

+er2 → Cer1
+er2 updates the worst-

case computational complexity for the most general model is O
(
ℓ2 · d · nr1 · nr2

)
, where d is the

maximal degree w.r.t any neighborhood function. In our experiments, we use tensor diagrams con-
taining a single type of multi-cellular cochains spaces resulting in models with a runtime complexity

9CS-GNN is a subgraph model which uses subsets of nodes to construct the bag of subgraphs. These sets
of nodes are termed “super-nodes”.
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of O(d · n0 · n1) and O(d · n0 · n2). As we demonstrate in Proposition 6.6, SMCN architectures
with runtime O(d · n0 · n2) are still strictly more expressive than HOMP. This is useful, since in
most natural cases n2 ≪ n0. This allows for flexibility in trading off computational complexity and
expressive power.

E MCN EXPRESSIVE POWER

In this section, we analyze the expressive power of MCN defined in Section 6. We begin by formally
defining CC isomorphism, as described in Hajij et al. (2022b).

Definition E.1 (CC isomorphism). A pair of CCs (S,X , rk), (S′,X ′, rk′) are isomorphic if there
exists a bijective map ρ : X → X ′ such that:

1. rk(x) = rk′(ρ(x)) ∀x ∈ X ,

2. x ⊆ y ⇒ ρ(x) ⊆ ρ(y) ∀x, y ∈ X .

Is there exists an isomorphism ρ : X → X ′ we say that X and X ′ are isomorphic; if such an
isomorphism does not exist, we say that X and X ′ are non-isomorphic.

Proposition E.2 (MCN expressive power). If X and X ′ are non-isomorphic there exists an MCN
model M such that

M(X ) ̸= M(X ′). (56)

Proof. First, let H = (V, E) and H′ = (V ′, E ′) be the Hasse graphs of X and X ∗ respectively,
defined by

V = X , (57)

V ′ = X ′, (58)
E = {(x, y) ∈ X × X | x ⊆ y, rk(x) = rk(y)− 1}, (59)

E ′ = {(x′, y′) ∈ X ′ ×X ′ | x′ ⊆ y′, rk′(x′) = rk′(y′)− 1}. (60)

It was shown in Hajij et al. (2022b) that a pair of CCs is isomorphic if and only if their corresponding
Hasse graphs are isomorphic. Therefore, in our case, H and H′ are non-isomorphic graphs. Since
any pair of non-isomorphic graphs of size n are n-WL distinguishable, and k-IGN networks can
distinguish between any pair of k-WL indistinguishable graphs (see Maron et al. (2019)), it is enough
to prove that there exists a MCN model which is able to simulate any k-IGN network on the Hasse
graphs. Let A be the adjacency matrix of H and define n = |X |, nr = |Xr| for all r ∈ {0, . . . , ℓ}.
A can be decomposed into block matrices Ar1,r2 for r1, r2 ∈ {0, . . . , ℓ} defined by:

Ar1,r2 =

{
0ni×nj

r1 ̸= r2 + 1

Br1,r2 r1 = r2 + 1,
(61)

where Br1,r2 is the matrix form of neighborhood function Br1,r2 . matrices Ar1,r2 can be view as
a multi-cellular cochains hr1,r2 ∈ Cer1+er2 (X ,R) so A can be realized as an element of Q :=

×ℓ

r1=0,r2=0
Cer1+er2 (X ,R). Recall that all neighborhood matrices Br1,r2 are given as input to the

MCN model and so we can recover A. To show that MCN can simulate any k-IGN update on A, we
need to show that it can compute L(A) for any Sn-equivariant linear function L : Q⊗k → Q⊗k′

,
where Q⊗k represents taking the tensor product of Q with itself k times. Let G < Sn be the
subgroup of permutations preserving the subsets {1, . . . , n0}, {n0 + 1, . . . , n0 + n1}, . . . , {n0 +
· · ·+nℓ−1+1, . . . , n0+ · · ·+nℓ}; G ∼= Sn0

×· · ·×Snℓ
⊆ [n]. Since G is a subgroup of Sn, all Sn

equivariant linear maps are also G-equivariant. Thus it is enough to show that we are can compute
L(h) for all G-equivariant linear maps L : Q⊗k → Q⊗k′

.

The space Q =×ℓ

r1=0,r2=0
Cer1

+er2 (X ,R) can be embedded into the multi-cellular cochain space

C1ℓ+1(X ,R(ℓ+1)2) via the following map:

T (h)(x0, . . . xℓ) =
ℓ∥∥

r1=0,r2=0

hr1,r2(xr1 , xr2), (62)

where ∥ stands for concatenation, 1ℓ+1 = (1, . . . , 1) ∈ Rℓ+1 is the all ones vector, xr ∈ Xr is a cell
of rank r and h ∈ Q composed of the multi-cellular cochains hr1,r2 ∈ Cer1

+er2 (X ,R). MCN can
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use any linear function L : Ck·1ℓ+1(X ,R(ℓ+1)2) → Ck′·1ℓ+1(X ,R(ℓ+1)2) which is G-equivariant,
and so it can compute L(h) for all linear maps as defined above, concluding the proof.

F SMCN EXPRESSIVE POWER

F.1 TOPOLOGICAL AND METRIC PROPERTIES

In this section, we formally demonstrate the SMCN’s ability to mitigate many of the expressive
limitations demonstrated in Appendix B. We begin by providing a useful lemma that allows us to
leverage several expressivity results from the subgraph GNN literature in our setting. We then pro-
vide an in-depth discussion on the ability of SMCN to express each one of the four aforementioned
metric/topological properties: diameter, orientability, planarity, and homology.

Lemma F.1. For any CS-GNN (Bar-Shalom et al., 2024) model M operating on the Hasse graph
H(co)Ar1,r2

using cells of rank r ≥ r1 as super-nodes, there exits an SMCN model M′, such that for
any CC X of dimension ≥ r1, r2, r, M(H(co)Ar1,r2

) = M′(X ).

Proof. First, note that the incidence matrix Br1,r ∈ Cer1
+er is equivalent to the “simple node

marking” defined in Bar-Shalom et al. (2024), so SMCN can recover the input to the CS-GNN
architecture. Second, by taking

MLPr,r′(x, y) =

{
MLP(x, y) if r = r2 and r′ = r1,

0 otherwise
(63)

for some fixed MLP, Equation 55 becomes identical to the CS-GNN update.

Remark F.2. For the case where r = r1 (i.e. super-nodes are regular Hasse graph nodes) the CS-
GNN architecture becomes equivalent to GNN-SSWL+ (Zhang et al., 2023b).

Diameter. We first show SMCN is capable of fully leveraging the information provided by the
(cross) diameters of an input CC. see Appendix B for a definition.

Proposition F.3 (SMCN can compute diameters). If X ,X ′ are CCs such that

diamr
Ar1,r2

(X ) ̸= diamr
Ar1,r2

(X ′), (64)

for r1, r2, r ∈ N with r1 ≤ r, then there exists an SMCN model M such that M(X ) ̸= M(X ′)

Proof. In Zhang et al. (2023b), it was shown that GNN-SSWL+, with standard node marking applied
to a graph G = (V, E), can compute a final feature representation:

h(T )
u,v = dG(u, v) for u, v ∈ V. (65)

By taking the maximum over h(T )
u,v , GNN-SSWL+ can distinguish between graphs with different

diameters. Similarly, It was shown in Bar-Shalom et al. (2024) that CS-GNN with standard node
marking applied to a graph G = (V, E) and super-node set V∗ can compute a final feature represen-
tation

h
(T )
S,v = dG(S, v) for v ∈ V and S ∈ V∗. (66)

By taking the maximum over h(T )
S,v , CS-GNN with standard node marking can distinguish between

graphs with different cross diameters. Thus, applying Lemma F.1 and Remark F.2 on the Hasse
graph HAr1,r2

with Xr as ”super-nodes” we get that SMCN can distinguish between CCs with
different (cross) diameters.

Orientability and planarity. We now show SMCN is able to separate the cylinder and the Möbius
strip. This implies that SMCN is strictly better than HOMP at detecting planarity and orientability.
Understanding SMCN’s ability to fully detect orientability or planarity is still and open question and
is left for future work.

Proposition F.4 (SMCN can separate a cylinder and a Möbius strip). For any two integers h, p ∈ N
such that h, p ≥ 3, there exists an SMCN model M, such that:

M(Cylh,p) ̸= M(Möbh,p). (67)
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Proof. First, using the terms “edge” and “1-cell” interchangeably, we define two types of edges on
Cylh,p and Möbh,p. An edge x ∈ X1 is called an interior edge if |B1,2(x)| > 1, otherwise it’s
called a boundary edge. We denote the boundary edge graph (node set are the nodes contained in
the boundary edges and edge set is the boundary edges themselves) of a CC X by ∂X . We construct
the model M by first using a B1,2 aggregation to get the cochain h(1) ∈ Ce1(X ,R)

h(1)(x) = degB1,2
(x). (68)

Next, we use an equivariant linear update to construct the multi-cellular cochain h(2) ∈ C2e1(X ,R2)
defined by:

h(2)
x1,x2

= degB1,2
(x1) ∥ degB1,2

(x2), (69)

where, ∥ denotes concatenation. Recall that the matrix form of coA1,0 defines a cochain hcoA1,0
∈

C2e1 which can be used as input to SMCN. Using hcoA1,0 can now construct

h(3)
x1,x2

= (hcoA1,0)x1,x2 ∥ degB1,2
(x1) ∥ degB1,2

(x2). (70)

Finally, using a stack of equivariant linear layers, we can construct a fourth cochain h
(4)
x1,x2 =

MLP(h
(3)
x1,x2). We use the Memorization Theorem (Yun et al., 2019), and choose MLP that sat-

isfies

MLP(a, b, c) =

{
1 a = b = c = 1

0 otherwise.
(71)

h(4) represents the adjacency matrix of ∂X . ∂Cylh,p is composed of two disconnected cycles of
length p; ∂Möbh,p is composed of a single cycle of length 2p. These two graphs are distinguishable
by subgraph architectures like GNN-SSWL+. Thus, using Lemma F.1 and Remark F.2 we can
continue the construction of M so that it will be able to differentiate between Cylh,p and Möbh,p.

Homology. We first show that SMCN is able to count the number of connected components i.e.
the 0-th homology.

Proposition F.5 (SMCN can count connected components). Let X ,X ′ be CCs. If the number of
connected components of the augmented Hasse graphs HAr1,r2

and H′
Ar1,r2

is different for some
r1, r2 ∈ N then there exists an SMCN model M such that M(X ) ̸= M(X ′).

Proof. For a graph G, C(G) represents the set of connected components of G, and Gv denotes
the connected component of a node v ∈ V . Using Lemma F.1 and Remark F.2, it suffices
to show that GNN-SSWL+ can distinguish graphs with different numbers of connected compo-
nents. It was shown in Zhang et al. (2023b) that adding an additional aggregation of the form
hu,v 7→

∑
v′∈V hu,v′ to GNN-SSWL+ does not affect its capacity to separate graphs. Therefore,

for the remainder of this proof, we include this aggregation in GNN-SSWL+. As previously demon-
strated, GNN-SSWL+ can compute a feature vector of the form:

h(t)
u,v = dG(u, v) for u, v ∈ V. (72)

If u and v are in different connected components, their distance is encoded as −1. Let g1 :
[−1, |V|] → R be a continuous function such that:

g1(x) =

{
0 if x = −1,

1 if x ≥ − 1
2 .

(73)

We can approximate g1 using an MLP and apply it to h
(t)
u,v to obtain:

h(t+1)
u,v =

{
0 if v /∈ Gu,

1 if v ∈ Gu.
(74)

We now take h
(t+2)
u,v =

∑
v′∈V h

(t+1)
u,v′ , to get

h(t+2)
u,v = |Gu|. (75)
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Define g2[1, |V|] → R to be

g2(x) =
1

x
. (76)

We can approximate g2 using an MLP and apply it to h
(t+2)
u,v to obtain

h(t+3)
u,v =

1

|Gu|
. (77)

It was shown in Zhang et al. (2023b) that the final output of a GNN-SSWL+ model can be computed
based on the final feature vector h(T )

u,v by

hout =
∑

u,v∈V
h(T )
u,v . (78)

Applying this to h
(t+3)
u,v , we get

hout =
∑

u,v∈V

1

|Gu|
=

∑
G∗∈C(G)

∑
u∈G∗

|V|
|G∗|

=
∑

G∗∈C(G)

|V| = |V||C(G)|. (79)

Now let G,G′ be a pair of graphs with a different number of connected components. If these two
graphs have a different number of nodes, they can be easily distinguished by GNN-SSWL+. On
the other hand, if they have the same number of nodes they can be distinguished by GNN-SSWL+
based on Equation 79. Thus, we have shown that an augmented GNN-SSWL+ model can distinguish
between HAr1,r2

and H′
Ar1,r2

, and therefore, there exists an SMCN model M that can separate X
and X ′.

Since the 0-th homology satisfies H0(X ) = Z|C(X )| we additionally get the following corollary.

Corollary F.6 (SMCN can compute the 0-th homology). If X ,X ′ are CCs such that the 0-th ho-
mology group of their induced topological spaces are different, then there exists an SMCN model M
such that M(X ) ̸= M(X ∗).

Exploring SMCN’s capacity to differentiate between CCs based on their higher-order homology
groups is left for future work. As a first step, we show that SMCN can successfully separate a
natural family of CCs — two-dimensional surfaces embeddable in R3 — based on any homology
group/Betti number.

Proposition F.7 (SMCN can compute homology groups of surfaces). Let X ,X ′ be two cellular
complexes that are realizations of 2-dimensional manifolds (with or without boundary) M,M′

which are embeddable in R3. If ∃r ∈ N such that Hr(M) ̸= Hr(M′) then there is an SMCN model
M such that M(X ) ̸= M(X ′).

Proof. First, since M is 2-dimensional, the only non-trivial homology groups it may have are of
order 0 ≤ r ≤ 2. The 0-th homology group of M, is of the form H0(M) = Zk0 where k0 is
the number of M’s connected components. Furthermore, as each connected component of M is a
connected 2-dimensional manifold with a boundary that can be embedded in R3, it must either be
orientable or have a non-empty boundary. If such a component is orientable, then by the Poincaré
duality, its second homology group is Z. On the other hand, if it has a boundary, it is homotopic to a
1-dimensional cellular complex, and thus its second homology group is trivial. Therefor, H2(M) =
Zk2 , where k2 is the number of connected components of M with no boundary. Finally, since M
is embeddable in R3, its 1-st homology groups is H1(M) = Zk1 for some integer k1. The Euler
characteristic of the manifold M defined by k0 − k1 + k2 can be computed using the number of
cells of X using the following formula:

χ(M) = k2 − k1 + k0 = |X2| − |X1|+ |X0|. (80)

Thus in order to separate X from X ′ we need to be able to construct a SMCN model that is able to
separate CCs that are different in either one of the following three quantities:

1. The Euler characteristic.

2. The number of connected components.
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3. The number of connected components with no boundary.

Computing the Euler characteristic is be computed by standard HOMP updates, as it is a function
of the sizes of X0,X1, and X2. For the second quantity, we have seen SMCN models can separate
CCs with a different number of connected components in Proposition F.5. As for the third quantity,
a connected component of X has a boundary if and only if it contains 1-cells whose degree with
respect to the neighborhood function B1,2 is exactly 1. We can use a stack of standard HOMP layers
to compute the 1-cells features

hx =

{
1 x is in the same connected component as a boundary edge
0 otherwise.

(81)

Using h, we can adjust the proof of Proposition F.5 by summing in Equation 79 only over 1-cells
for which hx = 0, resulting in the number of connected components of X with no boundary. This
shows that SMCN can distinguish CCs based on either one of the aforementioned three properties,
concluding the proof.

F.2 LIFTING AND POOLING

In this section, we rigorously state and prove Proposition 6.6 which appears in Section 6.1 for graph
triangular lifting and for the MOG (graph Mapper) pooling algorithm. Corresponding results for
the HOMP case can be found in Appendix B.3. We start with triangular lifting (Definition B.14).

Proposition F.8. There exist pairs of graphs G and G′ such that the combinatorial complexes X =
3-CL(G) and X ′ = 3-CL(G′) are indistinguishable by HOMP, but can be distinguished by an SMCN
model with asymptotic runtime O(mdeg ·n0 ·n2 ·T ) where n0 is the number of nodes in the original
graph, n2 is the number of 2-rank cells constructed by triangular lifting ,mdeg is the maximal degree
and T is the number of layers.

Proof. In Proposition B.15, we find a family of graph pairs whose triangular lifts are indistinguish-
able by HOMP despite having different diameters of type diam2

A0,1
. In Proposition F.3 we saw that

using only SCL updates, SMCN can compute this type of diameter and is thus able to distinguish
between the aforementioned pairs of CCs. Recall the SCL update rule:

mu,v(x, y) =

ℓ⊗
r=0,r′=0

MLPr,r′
(
h(t)
x,y,h

(t)
(co)Ar1,r(x),y

,h
(t)
x,(co)Ar2,r′ (y)

,hx,Br1,r2
(x),hB⊤

r2,r1
(y),y

)
,

where if Q1 ⊆ Xr1 and Q2 ⊆ Xr2 are sets of cells, hQ1,y :=
∑

x′∈Q1
hx′,y and hx,Q2

:=∑
y′∈Q2

hx,y′ . Observing the proof of Proposition F.3, we note that in order to be able to com-
pute diam2

A0,1
. It is enough to use only values corresponding to r = r′ = 1, r1 = 0, r2 = 2. the

asymptotic runtime of this type of SCL layer is O(mdeg · n0 · n2). Thus the overall runtime of our
SMCN model is O(mdeg · n0 · n2 · T ), completing the proof.

We now move on to MOG pooling.

Proposition F.9. There exist pairs of graphs G and G′ such that the combinatorial complexes X =
MOG(G) and X ′ = MOG(G′) are indistinguishable by HOMP, but can be distinguished by an
SMCN model with asymptotic runtime O(d · n0 · n2 · T ) where n0 is the number of nodes in the
original graph, n2 is the number 2-rank cells constructed by mapper ,d is the maximal degree and
T is the number of layers.

Proof. In Proposition B.17, we saw a family of graph pairs for which the CCs obtained by MOG
pooling are indistinguishable by HOMP despite having different (0, 1, 2) cross diameters. In Propo-
sition F.3 we saw that using only SCL updates, SMCN can compute this type of diameter and is thus
able to distinguish between the aforementioned pairs of CCs. As seen in the proof above, by choos-
ing an appropriate aggregation function

⊗
the runtime of each SCL layer becomes O(d · n0 · n2)

(note that by stacking layers that use this aggregation we are still able to compute diam2
A0,1

). Thus
the overall runtime of our SMCN model is O(d · n0 · n2 · T ), completing the proof.
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F.3 COMPARING THE EXPRESSIVE POWER OF SMCN WITH BASELINES

Section 7 compares the empirical performance of SMCN with several relevant baselines. In this sec-
tion, we briefly discuss the expressive power of SMCN in comparison to each one of these baselines.

GNNs. In Section 7, we evaluate SMCN against various MPNNs (e.g., GIN, GCN), subgraph net-
works (e.g., DS-GNN (Bevilacqua et al., 2021), SUN (Frasca et al., 2022), GNN-SSWL+ (Zhang
et al., 2023b)), and other expressive GNNs (e.g., PPGN (Maron et al., 2019), PPGN+ (Puny et al.,
2023)). It is important to note that since GNNs are designed to process graphs, a meaningful compar-
ison of expressivity with SMCN is only valid when SMCN is applied to lifted graphs (see discussion
in Section 4.3. Among all MPNNs and subgraph networks, GNN-SSWL+ is the most expressive.
Since SMCN can implement GNN-SSWL+ using the A0,1 neighborhood function (which corre-
sponds to the original graph), it follows that SMCN is at least as expressive as all the MPNNs and
subgraph networks, regardless of the chosen lifting procedure. Furthermore, SMCN can implement
edge deletion subgraph policies, which, as demonstrated in Bevilacqua et al. (2021), are capable
of distinguishing certain instances of graphs that are indistinguishable by the 3-WL test. Since the
expressivity of GNN-SSWL+ has been shown in Zhang et al. (2023b) to be bounded by the 3-WL
test, it follows that SMCN is strictly more expressive than all the aforementioned MPNNs and sub-
graph networks. Finally, the expressive power of PPGN and PPGN+ has also been shown to be
bounded by the 3-WL test (Maron et al., 2019; Puny et al., 2023), indicating that there are instances
of graphs distinguishable by SMCN but not by PPGN or PPGN+. A comprehensive comparison of
the expressive power of PPGN and SMCN is deferred to future work.

Topological neural networks. We compare SMCN with four topological neural networks: CIN
(Bodnar et al., 2021a), CIN++ (Giusti et al., 2023), CIN + CycleNet (Yan et al., 2024) and Cellular
Transformer (Ballester et al., 2024). SMCN can directly implement CIN and CIN++ through the
use of suitable tensor diagrams, establishing it as at least as expressive as these architectures. Fur-
thermore, CIN and CIN++ are HOMP-based architectures. As demonstrate in Section 6.1, SMCN
can distinguish between CCs that HOMP architectures cannot, making it strictly more expressive.

Additionally, CycleNet processes graphs by applying BasisNet + spectral embedding (Lim et al.,
2022) to the 1-Hodge Laplacian of the input graph. The resulting output is then used as edge features,
which are subsequently processed by a final CIN applied to the graph lifted to a cellular complex
by cyclic lift. In cases where the input graphs are simple and undirected, the 1-Hodge Laplacian is
exactly equal to the coadjacency matrix coA0,1 (plus a diagonal term of 2I which can be ignored).
SMCN can apply subgraph GNNs to the coA0,1 Hasse graph, and use the resulting features as
inputs for a CIN model. This reduces our proof to demonstrating that subgraph GNNs are more
expressive than BasisNet. As recently shown in Zhang et al. (2024), BasisNet + spectral embedding
is strictly less expressive than PSWL, a subclass of subgraph GNNs that is itself less expressive than
the base subgraph GNN used in SMCN. This shows that SMCN is strictly more expressive that CIN
+ CycleNet.

Finally, the Cellular Transformer breaks equivariance with respect to G = Sn1
× · · · × Snℓ

using
Laplacian positional encoding, allowing it to gain expressivity. Architectures that break equivariance
are often fully expressive, but they can also incorrectly differentiate between instances of isomor-
phic CCs. Consequently, the Cellular Transformer is not a fair comparison to SMCN in terms of
expressivity.

G EXPERIMENTAL DETAILS

Setup. All models are implemented in PyTorch (Paszke et al., 2019) using the PyTorch Geometric
framework (Fey & Lenssen, 2019). We used TopoNetX (Hajij et al., 2024) and NetworkX (Hagberg
et al., 2008) to perform lifting operations. Hyperparameter tuning is carried out using Weights and
Biases (Biewald, 2020). All experiments were conducted on a single NVIDIA A100-SXM4-40GB
GPU. For each experiment, we report the mean and standard deviation over 5 runs with random
seeds from 1 to 5. Reported test scores are computed at the epoch achieving the best score.

G.1 MODEL IMPLEMENTATION

The SMCN framework is highly flexible, allowing for a wide range of model construction ap-
proaches. To narrow down the search space, we focus on two types of tensor diagrams, sequen-
tial and parallel, each composed of smaller blocks and updates formally defined below. As in the
main body, we sometimes omit the subscript in hr when the rank is clear from context. We also
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use the notation hQ =
∑

x∈Q hx. Additionally, we use the augmented concatenation operator
Cat(x ∥y) := MLP1(MLP2(x) ∥MLP3(y)). All MLPs have a single hidden layer.

C0 C1 C2

A0,1 B0,1 A1,2 B1,2 Id

Figure 12: CIN Block.

Initialization. In the case X is lifted from a graph with node and
edge features, these features are used as the 0 and 1 cochains respec-
tively. Otherwise, the 0, and 1 cochains are initialized with zeros.
In case the initial features are categorical we apply an embedding
layer. Similarly to Bodnar et al. (2021a), we initialize the 2-cell
cochain by

(h
(0)
2 )x = (h

(0)
0 )B⊤

2,0(x)
=

∑
x′∈B⊤

2,0(x)

(h
(0)
0 )x′ . (82)

CIN block. The first HOMP block we consider is the CIN block from Bodnar et al. (2021a), whose
tensor diagram is illustrated in Figure 12. A CIN block updates the cochains h(t)

0 , h(t)
1 and h

(t)
2 via

the following update rules. For x ∈ X0,

h(t+1)
x = MLP

(t)
0,1

(1 + ϵ0)h
(t)
x +

∑
x′∈A0,1(x)

MLP
(t)
0,2

(
h
(t)
x′

∥∥h(t)
E(x,x′)

) , (83)

for x ∈ X1,

h(t+1)
x = Cat

(1 + ϵ11)h
(t)
x + h

(t)

B⊤
1,0(x)

∥∥∥∥(1 + ϵ21)h
(t)
x +

∑
x′∈A1,2(x)

MLP
(t)
0,2

(
h
(t)
x′

∥∥h(t)
E(x,x′)

)
(84)

and for x ∈ X2,
h(t+1)
x = MLP

(t)
2

(
(1 + ϵ2)h

(t)
x + h

(t)1

B⊤
2,1(x)

)
, (85)

where if x, x′ ∈ Xr, E(x, x′) = {y ∈ Xr+1 | x, x′ ⊆ y} and ϵ0, ϵ
1
1, ϵ

2
1, ϵ2 are non-learnable

hyperparameters.

C0 C1 C2

A0,1

B0,2 B⊤
2,0Id

Id

Figure 13: Custom HOMP.

Custom HOMP block. In addition to CIN blocks, we also use
“custom HOMP” blocks that are designed to minimize the influ-
ence of 1-cells in the block update, thereby reducing dependence
on the edge structure of graphs. Empirical results, as shown in
Table 2, demonstrate that this approach improves performance on
certain topological property prediction tasks. The exact update for
this block is defined via the following rule. For x ∈ X0,

h(t+1)
x = Cat

(
(1 + ϵ10)h

(t)
x + h

(t)
B0,2(x)

∥∥(1 + ϵ20)h
(t)
x + h

(t)
A0,1(x)

)
(86)

for x ∈ X1,
h(t+1)
x = h(t)

x , (87)
and for x ∈ X2

h(t+1)
x = MLP(t)

(
(1 + ϵ2)h

(t)
x + h

(t)

B⊤
2,0(x)

)
. (88)

.

Multi-cellular cochain initialization. SCL layers take as input multi-cellular cochains of the form
h
(t)
0,1 ∈ C0,1 and h

(t)
0,2 ∈ C0,2. These multi-cellular cochains are initialized with

(h
(t)
0,r)x1,x2

= MLP
(t)
r,1((h

(t)
0 )x1

) +MLP
(t)
r,2((h

(t)
r )x2

) +MLP
(t)
r,3(mark(x1, x2)), (89)

where mark(x1, x2) is a marking strategy. Similarly to Zhang et al. (2023b) and Bar-Shalom et al.
(2024) we consider two marking strategies: (1) binary marking:

markB(x1, x2) =

{
1 x1 ∈ B0,r(x2)

0 otherwise.
(90)

(2) distance-based marking:
markD(x1, x2) = min

x∈B⊤
r,0(x2)

dA0,1
(x1, x), (91)

where dA0,1
is the shortest path distance on HA0,1

.
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SCL updates. We use two types of SCL updates, 1-SCL and 2-SCL, defined by

h(t+1)
x1,x2

= Cat1

(1 + ϵ11)h
(t+1)
x1,x2

+
∑
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1
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(t)
x′,x2
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)∥∥∥∥(1 + ϵ21)h
(t)
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+ h
(t)
x1,B0,1(x1)


(92)

for x1 ∈ X0, x2 ∈ X1, and

h(t+1)
x1,x2

= Cat2

(1 + ϵ12)h
(t+1)
x1,x2

+
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(t)
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(t)
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+ h
(t)
x1,B0,2(x1)


(93)

for x1 ∈ X0, x2 ∈ X2, respectivley.

SCL pooling. To use a HOMP block after an SCL block we need to pool the information from
multi-cellular cochains to standard cochains. This is done via an SCL pooling block, defied by

(h0)
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0
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0,r)x,Xr
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0,r)X0,x

)
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r

( ∑
x′∈X0

(h
(t)
0,r)x′,x

) (94)

Readout. All tasks considered in this paper require predicting a single value per input CC. There-
fore, we employ a final readout layer of the form:

hout = MLP

(
agg0

(
{{h(T )

x | x ∈ X0}}
)
+ agg1

(
{{h(T )

x | x ∈ X1}}
)

+ agg2

(
{{h(T )

x | x ∈ X2}}
)
+ agg3

(
{{h(T )

x1,x2
| x1 ∈ X0, x2 ∈ X1}}

)
+ agg4

(
{{h(T )

x1,x2
| x1 ∈ X0, x2 ∈ X2}}

))
,

(95)

where T is the final layer and aggi are either mean aggregation, sum aggregation, or the zero func-
tion.

Tensor diagrams. We use two types of tensor diagrams: sequential and parallel, both illustrated
in Figure 14. In sequential tensor diagram, a stack of HOMP blocks is followed by a stack of SCL
updates and then another stack of HOMP blocks. The parallel tensor diagram uses concurrent stacks
of HOMP and SCL layers. Both the types of blocks/layers and the number of blocks/layers within
each stack are treated as hyperparameters in the model.

G.2 SYNTHETIC BENCHMARKS

Torus dataset. To construct the torus dataset we first select three parameters: m which specifies
the number of nodes in the smallest CC in the dataset, M which specifies the number of nodes in the
largest CC, and n, which specifies the maximum number of connected components in any CC within
the dataset. The dataset is then constructed by iterating over all possible choices for the number of
nodes and connected components, generating all possible disjoint unions of 2-dimensional tori with
the specified parameters. We then select all the pairs that have the same size (number of nodes). As
mentioned in the main text, each such pair is indistinguishable by HOMP despite differing in basic
metric/topological properties: they either have distinct homology, or they differ in the diameters
of some of the components. In our experiments, we use m = 18 (the smallest size that admits
indistinguishable pairs), M = 40, and n = 3, resulting in 223 pairs.

To evaluate the ability of both HOMP and SMCN to distinguish between each pair, we follow the
training and evaluation protocol presented in Wang & Zhang (2024). For each pair, we generate 64
copies where the order of cells is randomly permuted. The model is then trained to minimize the
cosine similarity between the outputs corresponding to the two CCs in each pair. We measure the
number of pairs where the output difference is statistically significant. Our results show that, while
HOMP fails to distinguish any of the pairs, SMCN successfully differentiates all of them.

35



Published as a conference paper at ICLR 2025

We use an SMCN model implementing a sequential tensor diagram composed of two CIN blocks,
followed by four 1-SCL updates, and concluding with two additional CIN blocks. In comparison,
the HOMP model consists of a stack of four consecutive CIN blocks, designed to have a comparable
number of learnable parameters. The readout layer of both models uses a zero function as the
aggregation for all multi-cellular cochains and a sum aggregation for all standard cochains. All
models are trained for 20 epochs on each individual pair using a constant learning rate of 0.001. The
embdding dimension used by all models is 128.

Lifted ZINC cross-diameter. We construct a CC dataset by adding cycles of length ≤ 18 as 2-
cells to graphs taken from the ZINC-12K dataset (Sterling & Irwin, 2015). We remove edge and
node features, and predict the (0, 1, 2) cross diameter, computed by:

max
x∈X0,
y∈X2

min
x′∈y

dA0,1(x, x
′) (96)

where dA0,1(x, x
′) is the shortest path distance w.r.t the original graph. Training targets are nor-

malized to have mean 0 and standard deviation 1. The model is trained using an MSE loss. At test
time, we evaluate both the MSE of the normalized target as well as the accuracy in predicting the
cross-diameter value, which has 18 possible outcomes. We compare three architectures: the first
two are HOMP models which employ a stack of four CIN blocks, and a stack of four custom HOMP
blocks respectively. The third is an SMCN model, which implements a sequential tensor diagram
constructed by a single stack of six 2-SCL blocks, followed by a non-learnable pooling procedure
as described in Equation 94. All models are constrained to a budget of 500K learnable parameters.
The readout layer of all three models is defined according to Equation 95 where agg1, agg3, agg4 are
taken to be the zero function and agg0, agg2 are taken to be the mean function. Models are trained
for 200 epochs using a constant learning rate of 0.0001. The hidden dimension used by all models
is 64.

Lifted ZINC second Betti number. For the second topological property prediction task we tested
our model’s ability to learn to predict the second order Betti numbers- the ranks of the second
homology group. To this end we constructed our benchmark dataset the following way: We started
with the ZINC-FULL datasets (containing 250k molecular graphs), lifting all graphs to CCs as in the
cross-diameter task. We then computed the second Betti number for each of the lifted graphs and
randomly selected 850 samples from each of the 6 most common values (which were 0, 1, 2, 3, 4
and 6), resulting in a balanced dataset of size 5,100. We used a 60%, 20%, 20% random split for
training, validation, and test sets. As before, we remove all node and edge features, and normalized
training targets to have mean 0 and standard deviation 1. The models are then trained using an MSE
loss. At test time we evaluated both the MSE of the normalized target as well as the accuracy of
predicting the seconnd Betti number. We use the same 3 models reported in the last experiment with
the same exact hyperparameters.

The results of both lifted ZINC experiments are presented in Tables 2. Following the experimental
setting of (Rieck, 2023) in which TDL models are tasked with learning metric properties of graphs
taken from the MOLHIV dataset (Hu et al., 2020), we report the model’s accuracy in predicting the
correct target value. We additionally provide the normalized MSE score of the model.

SMCN significantly outperforms both HOMP methods in learning both the cross-diameter and the
second Betti numbers, achieving higher accuracy as well as significantly lower standard deviation
indicating a more stable learning process. This is particularly evident in the custom HOMP model,
which, although it surpasses the CIN model in performance, suffers from a considerably larger
standard deviation. Additionally, the SMCN model achieves strong results after a significantly lower
number of epochs compared to both HOMP models, as illustrated in Figure 15.

Moreover, the results of the three synthetic experiments further demonstrate SMCN’s superior ca-
pability in capturing the topological properties of CCs compared to existing HOMP architectures.
While our theoretical analysis established that SMCN can express topological information beyond
the capabilities of any HOMP architecture, the synthetic experiments validate that SMCN models
can effectively learn and leverage these properties in practice.

G.3 REAL-WORLD GRAPH BENCHMARKS

ZINC Dataset (Sterling & Irwin, 2015; Dwivedi et al., 2023). The ZINC-12K dataset comprises
12,000 molecular graphs, extracted from the ZINC database, which is a collection of commercially
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Figure 14: Experiments are using two types of SMCN tensor diagrams. Sequential diagrams 14(a)
stacks CIN blocks and SCL updates; Parallel diagrams 14(b) performs SCL updates and CIN blocks
in parallel.

available chemical compounds. These molecular graphs vary in size, ranging from 9 to 37 nodes
each. In these graphs, nodes correspond to heavy atoms, encompassing 28 distinct atom types. Edges
in the graphs represent chemical bonds, with three possible bond types. We perform regression
on the constrained solubility (logP) of the molecules. The dataset is pre-partitioned into training,
validation, and test sets, containing 10,000, 1,000, and 1,000 molecular graphs, respectively.

For this experiment, we use an SMCN model implementing a sequential tensor diagram. The archi-
tecture consists of a single CIN block, followed by a stack of five 1-SCL layers, and concludes with
an additional CIN block. Each CIN block has an embedding dimension of 85, while each SCL layer
uses an embedding dimension of 70, resulting in a model with fewer than 500k parameters, as out-
lined in Dwivedi et al. (2023). The readout layer is defined according to Equation 95, where agg2,
agg3, and agg4 are zero functions, and agg0 and agg1 are a sum aggregation. Since we observed
that this model converges slowly, we trained it for 2000 epochs, following the approach of Ma et al.
(2023). The learning rate is initialized at 0.001 and decays by a factor of 0.5 every 300 epochs.

OGB Datasets (Hu et al., 2020). MOLHIV and MOLESOL are molecular property prediction
datasets, adapted by the Open Graph Benchmark (OGB) from MoleculeNet. These datasets employ
a unified featurization for nodes (atoms) and edges (bonds), encapsulating various chemophysical
properties. The task in MOLHIV is to predict the capacity of compounds to inhibit HIV replication.
The task in MOLESOL is regression on water solubility (log solubility in mols per liter) for common
organic small molecules.

For both datasets, we use an SMCN model that utilizes a parallel tensor diagram. For MOLHIV
the architecture consists of two CIN blocks, and tow parallel 2-SCL blocks. CIN blocks have an
embedding dimension of 64 and dropout in between layers with probability of 0.2 while SCL layers
have an embedding dimension of 24 and dropout in between layers with probability of 0.5. The final
SCL layer is followed by a non learnable pooling operation as per Equation 94. The readout layer
is defined according to Equation 95, where agg3, and agg4 are zero functions, and agg0, agg1 and
agg2 are a mean aggregation. The mdoel is trained for 100 epochs with a constant learning rate of
0.0001.
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Figure 15: The accuracy per epoch of both synthetic lift experiments. SMCN is depicted in green,
Custom HOMP is depicted in blue and CIN is depicted in yellow.
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Table 3: Accuracy on the MUTAG dataset.
Model Accuracy (↑)
GIN (Xu et al., 2018) 89.4± 5.6%
CIN (Bodnar et al., 2021a) 92.7± 6.1%
PPGN (Maron et al., 2019) 90.6± 8.7%
DS-GNN (Bevilacqua et al., 2021) 91.0± 4.8%
DSS-GNN (Bevilacqua et al., 2021) 91.1± 7.0%
SUN (Frasca et al., 2022) 92.7± 5.8%
SMCN (ours) 92.5± 6.2%

Table 4: Train time (seconds per epoch). Time measurements from training each of the models.
Measures are averaged across 10 epochs, starting from epoch number 20.

SMCN GNN-SSWL+ CIN
ZINC 7.39 ± 0.17 9.65 ± 0.19 5.35 ± 0.33
MOLHIV 17.70 ± 0.42 51.02 ± 0.25 14.34 ± 0.27

For MOLESOL the architecture consists of two custom HOMP blocks, and two parallel 1-SCL layers.
HOMP blocks have an embedding dimension of 16 while SCL layers have an embedding dimension
of 228 where neither block uses dropout. The final SCL block is followed by a non learnable pooling
operation as per Equation 94. The readout layer is defined according to Equation 95, where agg2,
agg3, and agg4 are zero functions, and agg0 and agg1 are a mean aggregation. The model is trained
for 200 epochs with a constant learning rate of 0.0001.

MUTAG. The MUTAG dataset, part of the TUDataset benchmarks (Morris et al., 2020), comprises
188 molecular graphs. The task is to identify mutagenic molecular compounds, which are relevant
for the development of potentially marketable drugs (Kazius et al., 2005; Riesen & Bunke, 2008).
Our training setup and evaluation procedure adhere to those outlined in Xu et al. (2018). For this
experiment, the SMCN model utilizes a sequential tensor diagram constructed with a single stack
of six 2-SCL blocks, followed by a non-learnable pooling procedure, as detailed in Equation 94.
Results are presented in Table 3.

G.4 RUNTIME EVALUATIONS

To empirically measure the runtime differences between SMCN, subgraph GNNs and HOMP, we
ran several wall clock measurements for data set construction, single epoch training and test set
evaluation. We evaluate the SMCN variants used for the ZINC and MOLHIV experiments, GNN-
SSWL+ which is the backbone subgraph GNN for SMCN, and CIN, a standard HOMP model.
Runtime was evaluated across 10 runs, all experiments ran on a single NVIDIA A100 48GB GPU.
Dataset construction times (in seconds) are:

• ZINC: 322.21 ± 8.764,

• MOLHIV: 678.01 ± 11.38.

We used the same lifting procedures and dataset construction for both SMCN and CIN so construc-
tion times are identical. Results for the train/test times appear in Tables 4 and 5 respectively. SMCN
incurs a computational overhead of approximately 23% on the MOLHIV benchmark and 38% on
ZINC benchmark compared to CIN (trade-off for its improved predictive performance). Additionally
SMCN consistently surpasses subgraph networks in runtime, achieving a 2.9x speedup on MOLHIV

Table 5: Test time (seconds per full test set inference). Time measurements for inference over the
entire test set. Results are averaged over 10 runs.

SMCN GNN-SSWL+ CIN
ZINC 0.93 ± 0.08 1.04 ± 0.03 0.71 ± 0.05
MOLHIV 2.09 ± 0.15 3.07 ± 0.03 2.02 ± 0.12
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and a 1.3x speedup on ZINC. This improvement over subgraph networks stems from the fact SMCN
uses fewer subgraphs updates and leverages higher order topological information instead.
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