
A Proof of Proposition 1

Note that p(x) is uniquely determined by the pair (π, g), and that we set without loss of generality
π(u′) = N (u′; 0, Id) as we assumed that U is diffeomorphic to Rd. Since LDNF(θ) = 0, we have
that x = fψ(Pad(hφ(u′))) is distributed according to p(x) when u′ ∼ N (u′; 0, Id), and thus it must
hold that

(fψ ◦ Pad ◦ hφ)(u′) = g(u′), (1)

for all u′ ∈ Rd. Therefore,

(h−1φ ◦ Proju ◦ f
−1
ψ)(x) = g−1(x), (2)

for all x ∈ RD. Note that u(x) = (Proju ◦ f
−1
ψ)(x) so that the above equation can be written as

(h−1φ (u(x)) = g−1(x). (3)

By assumption, we have that DKL(qσ(x̃)||qθ(x̃)) = 0 and qσ(x) = p(x)qv(x|x). Thus,

p(x)qσ(x|x) = qθ(x)

p(x) = |detGfψ (x)|−
1
2 |detGhφ(x)|−

1
2

(
pu′(h−1φ (u(x)))pv(v(x))

qσ(x|x)

)

|detGg(x)|−
1
2 π(g−1(x)) = |detGfψ (x)|−

1
2 |detGhφ(x)|−

1
2

(
pu′(h−1φ (u(x)))pv(v(x))

qσ(x|x)

)

|detGg(x)|−
1
2 = |detGfψ (x)|−

1
2 |detGhφ(x)|−

1
2

(
pu′(h−1φ (u(x)))pv(v(x))

π(g−1(x))qσ(x|x)

)
(4)

where for the second equation we have used the definition of qθ (equation (13) in the main text), and
for the third equation the definition of p(x). Since pu′(u′) = π(u′) = N (u′; 0, Id) and equation (3)
holds, we have that

pu′(h−1φ (u(x))) = π(g−1(x)). (5)

Note that we can choose pv to match qσ such that pv(0) = qσ(x|x). For instance, if qσ is a Normal
distributions with covariance matrix σ2Id, we set pv(v) = N (v; 0, σ2Id). In any case, v(x) must be
0 as otherwise fψ would not bijective. Therefore, equation (4) yields

|detGg(x)| = |detGfψ (x)| · | detGhφ(x)| (6)

which was to be shown.

B Experiments

We first describe the main ingredients of the architectures used to construct the flows fψ and hφ.
These architectures are based on (multi-scale) coupling layers ([3]), neural splines ([4]), and trainable
permutations ([10]).

Coupling layers: Given an input x = (x1, . . . , xN)T ∈ RN , a coupling layer is a bijective trans-
formation of x. As mentioned in the main text, for an NF to be tractable, the Jacobian of this
transformation should be efficiently computable. For instance, an affine-coupling ([3]) splits x
into two halves, x1:n = (x1, . . . , xn)

T and xn+1:N = (xn+1, . . . , xN)T , leaves the first half x1:n
unchanged, and the second half is affine-linearly transformed. The parameters of this affine-linear
transformation are outputs of a neural network with input x1:n. Thus, denoting the output of this
transformation as y, we have that

y1:n = x1:n
yn+1:N = xn+1:N � exp(s(x1:n)) + t(x1:n), (7)

where s and t are neural networks mapping Rn to RN−n, and � is the element-wise product. The Ja-
cobian matrix of this transformation is triangular and the log-determinant is given by

∑N−n
k=1 sk(x1:n).

1

Masking: With a single coupling layer, the first n components remain unchanged. However, several
coupling layers can be composed where for each new layer, a different subset of components stays
unchanged and the remaining ones are transformed. For vector data, a checkerboard pattern (i.e. a
fixed permutation) was proposed in [3], and for images, an additional channel-wise masking. Addi-
tionally,a linear, LU-decomposed transformation can be applied. Also, the batch can be normalized
before passing it to the coupling transformation. The composition of batch normalization, coupling
layer, and masking operation is compactly denoted as a flow step.

Glow: In [10], the fixed permutation was replaced by a learnable one. For images, this corresponds to
an invertible 1× 1 convolution. Additionally, [10] proposed to replace the batch normalization with a
learnable affine transformation per channel - an ActNorm layer. This aims to alleviate the problem of
training large networks with small minibatches, see [10] for more details. Thus, a flow step in Glow
consists of applying an actnorm layer, a 1× 1 convolution, and the coupling transformation.

Multi-scale: To overcome the computational burden for high-resolution images, a multi-scale
architecture was proposed in [3]. Before applying a series of flow steps, a squeezing operation
reshapes the input tensor to reduce the spatial resolution while increasing the channels. After
applying the series of flow steps, half of the variables are directly modeled as latent variables and the
other half serves as input for the next scale.

Neural splines: To allow for more flexible coupling transformations, [4] proposed to replace the
affine-linear with a monotonic rational-quadratic mapping. More precisely, an interval [−B,B] is
split into K equidistant bins, and on each subinterval, a rational-quadratic spline is defined such
that the derivatives are continuous at the boundary points. The parameters of the splines are again
outcomes of neural networks. We refer to B as the spline range and K as the bin size in the following.
Outside of the interval [−B,B], the transformation is set to the identity.

B.1 Density estimation

Dataset: The thin spiral is a 1-dimensional manifold embedded in R2. We generate a training set by
sampling 104 Exp(0.3)-distributed latent variables u′, setting u =

√
u′ · 540 · (2π)/360 and mapping

u to the data space by applying g(u) = u(cos(u), sin(u))T . Out of those 104 samples, we reserve
10% as validation set.

Training protocol: We train on 100 epochs with a batch size of 100 (i.e. in total 9000 gradient steps),
and take the model yielding the best result on the validation set. We use the AdamW ([12]) optimizer
with annealing of the learning rate to 0 after 100 epochs using a cosine schedule ([11]).

Architectures: TheM−flow and DNF consist of two NFs, fψ and hφ. The standard NF consists
only of fψ . For all models, we use rational-quadratic splines as coupling layers for fψ with trainable,
LU-decomposed linear transformation without batch normalization or dropout (as mentioned in [2],
these operations introduce stochasticity leading to problems with the invertibility of fψ and hφ). For
the flow hφ, we use only one coupling layer, an affine-autoregressive transformation introduced in
[13], as the latent dimension is 1, see Table S1. The parameters for the coupling transforms are
obtained from a residual network with two residual blocks of 100 units in each layer and ReLU
activation.

flow fψ flow hφ

model # levels # couplings coupling type masking # couplings coupling type masking

standard NF 1 10 spline with B = 3,K = 5 LU - - -
M-flow & DNF 1 9 spline with B = 3,K = 5 LU 1 affine-autoregressive -

Table S1: Architectures for standard NF,M−flow, and DNF on the thin spiral dataset

The PAE and VAE consist both of an encoder and decoder network. We use a residual network for
both encoder and decoder with 5 blocks for the PAE and 10 blocks for the VAE. Each block has 100
hidden units with ReLU activation. After having trained the encoder and decoder of the PAE on the
mean squared reconstruction error, the latent variables are transformed using the same architecture
for hφ as in theM−flow and DNF, respectively.

In Table S2, we report the total number of parameters used in each model.

2

standard NF M−flow DNF PAE VAE

parameters in million 0.4 0.4 0.4 0.4 0.46

Table S2: Total number of parameters (in million) used to learn the density on the thin spiral by the
various models.

Density evaluation: For the standard NF, DNF, andM−flow, the density evaluation is straightfor-
ward. For the DNF, we additionally constrain the v−component to be small, as described in the main
text. The PAE has no intrinsic estimation for p(x), but estimates the latent distribution π(z). To
estimate p(x), [1] marginalize over the latent space, i.e. p(x) =

∫
z
π̂(z)p(x|z)dz, where for p(x|z) a

Gaussian ansatz is chosen. To approximate this intractable integral, a Laplace ansatz followed by a
maximum posterior (MAP) estimate for z is made (see [1] for more details).
The VAE with encoder fφ1

, variance σφ2
, and decoder gθ, is trained on the following lower bound on

p(x):

log p(x) ≥ LVAE(φ, θ;x) := −DKL[qφ(z|x)||π(z)] + Ez∼qφ(z|x)[log pθ(x|z)], (8)

where pθ(x|z) = N (x; gθ(z), ID) and qφ(z|x) = N (x; fφ1
(x), σφ2

(x)ID). We use an estimate of
this lower bound to approximate p(x). For that, we approximate the second term using a Monte-Carlo
estimate for the integral over qφ(z|x) by sampling one z ∼ qφ(z|x) and calculating log pθ(x|z).

B.2 StyleGAN image manifold

Datasets: The StyleGAN image manifolds were introduced in [2]. A pre-trained StyleGAN network
([8]) on the FFHQ dataset ([7]) consisting of 512 latent variables z and additional noise variables was
used to generate a d-dimensional image manifold as follows: 1) generate a single sample z from a
standard Gaussian (and another one for the noise variables with smaller variance), 2) vary the first d
latent variables while keeping the others fixed.

Preprocessing: All 8-bit images are downsampled to a resolution of 64× 64 and are preprocessed
through uniform dequantization as in [10].

Regularization: For the residual networks generating the parameters for the coupling transforma-
tions, we apply weight decay with a prefactor of 10−6 without dropout. Furthermore, for theM−flow
and DNF, a L2−regularization on the latent variables u and v with a prefactor of 0.01 was used to
stabilize the training.

Metric: As in [2], we use the PyTorch implementation [15] to calculate the FID scores.

B.2.1 StyleGAN d = 2

Dataset: The dimensionality of the manifold is d = 2 and it is embedded in RD withD = 64·64·3 =
12288. For training, 104 images were generated of which 10% are used for validation, and 103 images
were generated for testing purposes.

Training protocols:

M−flow, DNF: We train on 100 epochs with a batch size of 25 (i.e. in total 36000 gradient steps),
and take the model yielding the best result on the validation set. We use AdamW optimizer ([12])
and anneal the learning rate to 0 after 100 epochs using a cosine schedule ([11]).

InfoMax VAE: We follow the original implementation of the InfoMax VAE on the CelebA dataset
which uses Adam optimizer ([9]) and does not use a learning rate schedule. To avoid numerical
instabilities, we use a batch size of 100 as recommended by the authors of [14].

PAE: We follow the original implementation of the PAE trained on the CelebA dataset setting the
latent dimension to 2.

Architectures:

M−flow and DNF: We use the same architecture proposed originally in [2]. Thus, a multi-scale
architecture where each scale applies several rational-quadratic coupling transformations using the

3

Glow setting (i.e. with an ActNorm and 1× 1 convolution layer) after a squeezing transformation,
see Table S3. After the multi-scale transformation, [2] transformed the output with an invertible
(LU-decomposed) layer, an invertible activation function, and another invertible layer acting on the
first few channels per scale. The reason for this post-processing is to give the model some flexibility
to align the manifold with features across different scales (see [2]).

The parameters for the rational-quadratic splines are obtained from a residual network with two
residual blocks of 100 units in each layer and ReLU activation.

flow fψ flow hφ

model # levels # couplings coupling type masking # couplings coupling type masking

M-flow/ DNF 4 20 spline with B = 10,K = 11 glow 6 spline with B = 10,K = 11 glow

Table S3: Architectures forM−flow and DNF on the StyleGAN n = 2 manifold.

InfoMax VAE: The encoder and decoder are based on convolutional neural networks, see [14]
for more details. In addition to that, a good latent representation is enforced by maximizing the
mutual information between latent and input variables. This mutual information is estimated using
a multilayer perceptron (MLP) mapping an input of dimension D + d to a scalar. For this MLP, 5
linear networks are used with leaky ReLU activation.

PAE: The encoder and decoder are based on convolutional neural networks. For the NF a realNVP
[3] architecture with random permutations is chosen, see [1] for more details.

In Table S4, we report the total number of parameters used in each model.

M−flow DNF PAE InfoMax VAE

parameters in million 16.4 16.4 67.5 28.6

Table S4: Total number of parameters (in million) used to learn the density on the StyleGAN d = 2
dataset by the various models.

B.3 StyleGAN d = 64

Dataset: The dimensionality of the manifold is d = 64 and it is embedded in RD with D =
64 · 64 · 3 = 12288. For training, 2 · 104 images were generated of which 10% are used for validation,
and 103 images were generated for testing purposes.

Training protocols:

M−flow and DNF: We train on 200 epochs with a batch size of 25 (i.e. in total 1.44 · 105 gradient
steps), and take the model yielding the best result on the validation set. We use AdamW optimizer
([12]) and anneal the learning rate to 0 after 100 epochs using a cosine schedule ([11]).

InfoMax VAE: We follow the original implementation of the InfoMax VAE on the CelebA dataset
which uses Adam optimizer ([9]) and does not use a learning rate schedule. Also, to avoid numerical
instabilities, we used a batch size of 100 as recommended by the authors of [14].

PAE: We follow the original implementation of the PAE trained on the CelebA dataset setting the
latent dimension to 64.

Architectures:

M−flow and DNF: We use the same architecture proposed originally by [2]. It differs from the
architectures used for the StyleGAN d = 2 manifold in two ways. First, 2 additional coupling
transformations are used for hφ, i.e. 8 in total. Second, the number of channels per scale on which
the post-processing is acting is doubled.
The parameters for the rational-quadratic splines are obtained from a residual network with two
residual blocks of 100 units in each layer and ReLU activation.

InfoMax VAE: We use the same architectures as for d = 2.

4

PAE: The encoder and decoder are based on convolutional neural networks as for d = 2. To
incorporate the higher dimensionality of the latent space, the NF is now based on neural splines and
trainable permutations (glow), see [1] for more details.

In Table S5, we report the total number of parameters used in each model.

M−flow DNF PAE InfoMax VAE

parameters in million 39.5 39.5 67.9 28.9

Table S5: Total number of parameters (in million) used to learn the density on the StyleGAN d = 64
dataset by the various models.

C Additional Experiments

In this section, we first investigate the role of σ2 in the DNF. Then, we conduct further density
estimation experiments. Finally, we apply the DNF to real-world data.

C.1 Thin spiral and StyleGAN 2d with σ2 = 0

How does the performance of the DNF depend on σ2? Certainly, if σ2 is too large, the data-manifold
is too disturbed to be restored. For instance, if the data lives on a circle with radius r, setting σ > r
will garble the manifold substantially, and the circle can’t be retrieved. In [6], this intuition was
formalized and an upper bound (depending on the manifold’s curvature) for σ2 was derived. However,
what if σ2 is too small?

In Figure S1, we show the learned density on the thin spiral when using the DNF with σ = 0. Similar
to the NF, the density degenerates as the Gram determinant of the flow fψ degenerates.

DNF with 2 = 0

Figure S1: DNF with σ2 = 0 on the thin spiral.

In Table S6, we show the FID and reconstruction error obtained on the StyleGAN d = 2 dataset
using the DNF with σ2 = 0 (together with the value for σ2 used in the paper for comparison).

StyleGAN d = 2

DNF with FID Mean reconstr. error

σ2 = 0.1 4.42± 0.2 225.78± 14.4
σ2 = 0.0 4.38± 0.26 224.2± 20.6

Table S6: FID and mean reconstruction error of the DNF with different values of σ2 on the StyleGAN
image manifold for d = 2. We train 10 models with different initializations, remove the best and the
worst result, and report the mean and standard deviation of the remaining 8 models.

5

There is no significant difference in performance. There might be two reasons for that. First, the
dequantization in the pre-processing is essentially a noise inflation preventing the DNF to degenerate.
Second, the StyleGan image manifold is not a manifold in a strict mathematical sense as it is generated
by a GAN and not an immersion.

In summary, inflation seems to be crucial only for densities strictly supported on low-dimensional
manifolds.

C.2 Density estimation on a circle and sphere

Dataset: In [6], a von Mises distribution on a circle, and a mixture of von Mises distributions on a
sphere was learned using the proposed inflation-deflation method.

Circle: Given samples from π(z) ∝ exp(8 cos(z)), the dataset consists of points generated by
the mapping g(z) = 3(cos(z), sin(z)). Thus, the Gram determinan of g is detGg = 3. We show
samples from the induced distribution p(x) in Figure S2 (top right).

Sphere: The latent distribution is a mixture of four von Mises distributions,
p∗1(φ1, θ1), p

∗
2(φ2, θ2), p

∗
3(φ3, θ3) and p∗4(φ4, θ4). Each of those distributions has the same

product form

p∗i (φi, θi) ∝ exp(κ cos(θi − µi)) exp(κ cos(2(φi −mi))), (9)

where κ = 6. However, they differ in their mean values µi and mi, see Table S7.

i µi mi

1 π
2

π
4

2 4π
3

3π
4

3 π
2

3π
4

4 π
4

4π
3

Table S7: Mean values for the mixture of von Mises distributions.

The dataset consists of transformed samples from this mixture distribution, where the transformation
is given by

g(θ, φ) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))T . (10)

Thus, the Gram determinant of g is detGg = sin(θ).

Training protocol and architectures: We use the same protocol and architecture as for the thin
spiral experiment.

Metric: To evaluate the performance, the Kolmogorov-Smirnov (KS) statistic was used. The KS
statistic is defined as

KS = sup
x∈X
|F (x)−G(x)|, (11)

where F and G are the cumulative distribution functions associated with the probability densities
p(x) and q(x) with domain X , respectively. By definition, KS ∈ [0, 1] and KS = 0 if and only if
p(x) = q(x) for almost every x ∈ X .

Results: In Figure S2, we plot the target distributions in the first row (the true latent distribution
for the sphere on the left, and samples for the circle on the right). In the second row, we show the
learned latent distributions using the DNF. For that, we first divide the learned density qσ(x) with the
normalization constant qσ(x|x) of the noise distribution used for the inflation (a standard Gaussian
with σ2 = 0.01) to obtain an estimate for p(x), i.e. p(x) = q(x)/qσ(x|x). Second, we multiply this
estimate with the corresponding Gram determinant of the true generating mapping.

Thus, for the case of a spiral and sphere, the DNF can be used to approximate the true Gram
determinant almost exactly. This is also reflected in the small KS-values which we report in Table S8.

6

2
z1

0

2z 2

Mixture of von Mises

0 1 2 3 4
x1

2

1

0

1

2

3

x 2

Von Mises on a circle

2
z1

0

2z 2

Learned latent density

0
z

0.0

0.2

0.4

0.6

0.8

1.0

(z
)

Learned latent density
true
DNF

Figure S2: DNF with σ2 = 0.01 on a sphere (left) and a circle (right).

KS

Model circle sphere

inflation-deflation 0.004 0.021
DNF with σ2 = 0.01 0.008 0.023

Table S8: KS values of DNF and inflation-deflation method on circle and sphere.

C.3 DNF for probabilistic inference

Dataset: In [2], the graph of a function f : R2 → R,

f(z) = exp(−0.1||z||)
∑
ij

aijz
i
0z
j
1, (12)

was considered. Further, points on the graph were rotated using a rotation matrix R ∈ R3 × R3, i.e.
the 2-dimensional manifold embedded in R3 consists of points x = R(z0, z1, f(z))

T , z = (z0, z1)
T .

We refer to the appendix of [2] for the values of R and aij . A density on that manifold was induced
by a mixture of two Gaussians in the latent space conditioned on some parameter θ ∈ [0, 1],

7

p(z|θ) = 0.6N
(
z

∣∣∣∣(1
−1

)
, 22I

)
+ 0.4N

(
z

∣∣∣∣(−11
)
, (0.6 + 0.4θ)2I

)
(13)

A training sample x is generated by first sampling θ ∼ Uniform(−1, 1), then generating latent
variables z ∼ p(z|θ), and finally setting x = R(z0, z1, f(z))

T . Like this, 105 training examples were
sampled.

Training protocol: As in [2], we train on 100 epochs with a batch size of 100 (i.e. in total 5 · 104
updating gradient steps). We use the AdamW ([12]) optimizer with annealing of the learning rate to 0
after 50 epochs using a cosine schedule ([11]).

Architectures: We use the same architecture as in [2], see Table S9. Note that fψ does not depend
on θ whereas the density learning NF hφ is conditioned on the corresponding θ used to generate the
training example.

flow fψ flow hφ

model # levels # couplings coupling type masking # couplings coupling type masking

M-flow/ DNF 1 6 spline with B = 6,K = 10 lu 4 spline with B = 6,K = 10 lu

Table S9: Architecture forM−flow and DNF on the polynomial surface dataset..

Inference task: Given a new sample x, the goal is to infer θ such that θ ∼ p(θ|x). From Bayes rules,
we have that

p(θ|x) ∝ p(x|θ)p(θ) (14)

such that given a model for p(x|θ) and a prior p(θ) (Uniform(−1, 1) in this case), samples from
p(θ|x) can be generated with a Markov Chain Monte Carlo (MCMC) sampler. In [2], an MCMC
of length 5000, with a Gaussian proposal distribution with step size 0.15 and a burn in of 100 steps
was used to generate posterior samples using 10 samples from the true density p(x|θ) for θ = 0.
Using the maximum mean discrepancy (MMD) [5], these samples were compared with MCMC
samples using the true density p(x|θ).1 In Table S10, we report the median MMD based on five runs
with independent training data and initializations. The DNF clearly outperforms theM−flow and
performs similar to theMe−flow, a variant of theM−flow where the encoder is not restricted to be
invertible.

Model Posterior MMD

M−flow 0.017
Me−flow 0.007
DNF 0.005

Table S10: Median MMD (lower is better) out of 5 independent runs using different model-likelihoods
(M−flow ,Me−flow, DNF) for a MCMC sampler.

C.4 CelebA-HQ

Different from the StyleGAN image manifolds, the dimensionality (if it exists) is not known for this
dataset. In [2], d was set to 512 which resulted in a worse performance than a standard NF. One
reason may be a bad choice for d. Another reason could be that the CelebA data-manifold is simply
not a differentiable manifold or at least not describable by a single chart. Extending the DNF or
M−flow to allow for multiple charts is an interesting research question.

1This can be done because the Jacobian determinant of the manifold generating mapping does not depend on
θ, see the supplementary of [2] for more details.

8

The compare the DNF’s performance with theM−flow on such a real-world dataset, we trained an
DNF using the same architecture and training settings as theM−flow in [2]2.

In Figure S3, we show in the first 5 columns samples from the original dataset (top), M−flow
(second row), and DNF (last row). In the remaining 5 columns, we show how smoothly these models
interpolate linearly in the latent space. For that, we linearly interpolate between two training images
in latent space and display the corresponding trajectory in image space. We compare the FID and
mean reconstruction error of the models in Table S11.

Or
ig

in
al

Samples Latent Interpolation

-fl
ow

DN
F

Figure S3: Samples from the CelebA dataset,M−flow, and DNF (first 5 figures). Latent interpola-
tion ofM−flow (middle) and DNF (bottom).

CelebA

Model FID Mean reconstr. error

M−flow 38.07 831.5
DNF 34.14 858.1

Table S11: FID and mean reconstruction error of theM−flow and DNF on the CelebA dataset. For
both models, we set d = 512 and follow the original training protocol used in [2].

References
[1] Vanessa Böhm and Uroš Seljak. Probabilistic auto-encoder. arXiv:2006.05479, 2020.

[2] Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density
estimation. Advances in Neural Information Processing Systems, 33, 2020.

[3] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv:1605.08803, 2016.

[4] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows.
Advances in Neural Information Processing Systems, pages 7511–7522, 2019.

[5] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773,
2012.

[6] Christian Horvat and Jean-Pascal Pfister. Density estimation on low-dimensional manifolds: an
inflation-deflation approach. arXiv:2105.12152, 2021.

[7] T Karras, S Laine, and T Aila. A style-based generator architecture for generative adversarial
networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

2The architectures are the same as for the StyleGAN d = 64 models. The batch size and number of training
samples is increased (500 and 27 · 103, respectively).

9

[8] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Analyzing and improving the image quality of stylegan. 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 8107–8116, 2020.

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2014.

[10] Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolu-
tions. arXiv:1807.03039, 2018.

[11] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
arXiv:1608.03983, 2016.

[12] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv:1711.05101,
2017.

[13] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. arXiv:1705.07057, 2017.

[14] Ali Lotfi Rezaabad and Sriram Vishwanath. Learning representations by maximizing mutual
information in variational autoencoders. In 2020 IEEE International Symposium on Information
Theory (ISIT), pages 2729–2734, 2020.

[15] Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/
pytorch-fid, August 2020. Version 0.1.1.

10

https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid

	Proof of Proposition 1
	Experiments
	Density estimation
	StyleGAN image manifold
	StyleGAN d=2

	StyleGAN d=64

	Additional Experiments
	Thin spiral and StyleGAN 2d with 2=0
	Density estimation on a circle and sphere
	DNF for probabilistic inference
	CelebA-HQ

