A Proof of Lemma 1

Proof (Lemma 1).

L(g;S) — L(¢; S) = Es[log ¢’ (z) — log g()]
=BEs[—af(z) —log Zy]

= a(Eq [f(2)] — Es [f(2)]) — aEq [f(z)] — log Zy
= ad(f) — aEq [f(x)] — log Zy ()]

Since &(f) > a by assumption, it remains to show aE, [f(z)] + log Z,» < a?/2. Using the bound
logr < r — 1 for any r > 0, we get that,

aEq [f(2)] +log Zy < aBy [f(2)] + Zy — 1

By /()] + Eqle —afm]
B, [af(x) e @
E,l(af (x))*/2],

where we have used the fact that Z, = E, [e_“f (‘”)} and, to get to the last line weusee™" +7r — 1 <
r2/2 for r > 0 by Taylor expansion. Since f(z) € [0, 1], the last quantity is at most a? /2, which
together with (4), gives L(q; S) — L(¢';S) > a?/2. O

B Proof of Lemma 2

Proof (Lemma 2). Let g(x) = log q(x) — log ¢’(z). By Jensen’s inequality,

E,[9()] — Eslg(a)] = —E, [log q’(“"”)} ~ Eslg(a)]

> —log B, [q/(ﬂ — Bslg(x)]

= —log(1) — Es[g(x)]
= Esllog¢'(2)] — Es[log ()]
= L(g; S) - L(d'; 9)
Since f(x) = ﬁ(g(m) + log C), the training advantage of f is that of g scaled by a factor of

ﬁ. Finally, it is straightforward to verify that f(x) € [0, 1] by our assumptions on the ratio
between ¢ and ¢'. O

C Proof of Lemma 3

Proof. We proceed analogously as in the proof of Lemma 1. We first note that

N N
L(¢;S) = —Es [bgHQ(ﬂ?i | 21,...,2i1)| = _ZES logq(z; | z1,...,2i-1),
=1 i—1

and

N
lOqu/(J?i | Tlyen- ,J}i_l)

i=1

L(¢;S) = —Es

Eslogg(z; | z1,...,xi—1) + bg(x1, ..., z;) +log Zy(x1, ..., xi—1)
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Let us use the short-hand notation z1.; £ (21, ..
obtain

., ;). Subtracting the two equalities above we

L(g;8) — L(¢'; S) ZES —bg(w1.i) —log Zy (x1:i-1)] ,

which, after adding and subtracting ESEqu(w‘xmfl) g(21.4—1,w) and rearranging terms, yields

N
ZES <Ew~q(wz1:i)g($1:ilaw) _g(xlz))] (5)
=1
N
- Z ES [log Zq’ (xlzi—l) - bEwmq(w\ml;i,l)g(xlzi—la w)} (6)
=1

L(¢;8) — L(¢;8) =b

N
Z [bEwg(21:i-1, w) +log Zg (21:i-1)] (7

By assumption we have N b3 (g) > Nb?, so it it remains to show that the second term is upper
bounded by Nb2/2 Usmg, as before, the bound logr < r — 1 for every r = Z (z1.,—1) > 0, we
get that, forevery i = 1,..., N:

Bs [VBwg (211, w) + log Zy (21.5-1)] < Bs [WBwg(@1:-1,w) + Zg (214-1) — 1]
- ES [bEwg(xlzi—la UJ) + Eweibg(ml:i_l’w) - 1:|

= EsE, [bg(xlzifla w) + e tolrizw) 1}
. b2

S ESEw (bg(zl:i—lv )/2)
where the last inequality follows again from the fact that g(x) € [0, 1] for any x. Therefore, the sum
over these N terms is upper bounded by N ﬁ, which combined with (7), yields the desired result. [

D Proof of Theorem 1

Proof. The fact that Algorithm 1 terminates with a distribution ¢ which is e-indistinguishable by Oy
is immediate from the stopping criterion.

Now, for the runtime analysis, note that —by construction— the iterates gi, t € {0,. — 1}
have training advantage 3(g;, S, q;) > €. Thus, by Lemma 3

improvement in each iteration. Therefore, the total number of iterations 7" is at most JQVLE(; s where

Ly := ﬁ(qo; §) is the log-loss of the initial model. Each iteration of Algorithm 1 requires calling O,4
oracle once, evaluating 5(-) at an O(NmnT,) complexity, and updating each of the n next-token
probabilities of ¢ for each sequence length 1, ..., N. Each of these updates involves evaluating g
plus an O(n) partition normalization. Putting these together, we conclude that each iteration has
O(Ty + NnTy(m + n)) complexity.

Combining the the two arguments above, we conclude that Algorithm 1 has a total runtime of
O(S%Lg(%—l-nTg(m—l-n))). O

E Empirical validation
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Figure 1: Empirical Validation of Lemma 3. For a simple pre-trained SeqGAN model (generator +
discriminator), we show that the boosting scheme proposed in that Lemma results in reduced log-loss
(NLL) throughout training. Furthermore, the empirical difference between original and boosted
models is indeed lower-bounded by the gap predicted by the Lemma.
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