
A Proof of Lemma 1

Proof (Lemma 1).

L̂(q;S)− L̂(q′;S) = ÊS [log q
′(x)− log q(x)]

= ÊS [−af(x)− logZq′ ]

= a(Eq [f(x)]− ÊS [f(x)])− aEq [f(x)]− logZq′

= aα̂(f)− aEq [f(x)]− logZq′ (4)

Since α̂(f) ≥ a by assumption, it remains to show aEq [f(x)] + logZq′ ≤ a2/2. Using the bound
log r ≤ r − 1 for any r > 0, we get that,

aEq [f(x)] + logZq′ ≤ aEq [f(x)] + Zq′ − 1

= aEq [f(x)] + Eq[e
−af(x)]− 1

= Eq

[
af(x) + e−af(x) − 1

]
≤ Eq[(af(x))

2/2],

where we have used the fact that Zq′ = Eq[e
−af(x)] and, to get to the last line we use e−r + r − 1 ≤

r2/2 for r ≥ 0 by Taylor expansion. Since f(x) ∈ [0, 1], the last quantity is at most a2/2, which
together with (4), gives L̂(q;S)− L̂(q′;S) ≥ a2/2 .

B Proof of Lemma 2

Proof (Lemma 2). Let g(x) = log q(x)− log q′(x). By Jensen’s inequality,

Eq[g(x)]− ÊS [g(x)] = −Eq
[
log

q′(x)

q(x)

]
− ÊS [g(x)]

≥ − log Eq

[
q′(x)

q(x)

]
− ÊS [g(x)]

= − log(1)− ÊS [g(x)]

= ES [log q
′(x)]− ÊS [log q(x)]

= L̂(q;S)− L̂(q′;S)

Since f(x) = 1
2 logC (g(x) + logC), the training advantage of f is that of g scaled by a factor of

1
2 logC . Finally, it is straightforward to verify that f(x) ∈ [0, 1] by our assumptions on the ratio
between q and q′.

C Proof of Lemma 3

Proof. We proceed analogously as in the proof of Lemma 1. We first note that

L̂(q;S) = −ÊS

[
log

N∏
i=1

q(xi | x1, . . . , xi−1)

]
= −

N∑
i=1

ÊS log q(xi | x1, . . . , xi−1),

and

L̂(q′;S) = −ÊS

[
log

N∏
i=1

q′(xi | x1, . . . , xi−1)

]

=

N∑
i=1

−ÊS log q(xi | x1, . . . , xi−1) + bg(x1, . . . , xi) + logZq′(x1, . . . , xi−1)
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Let us use the short-hand notation x1:i , (x1, . . . , xi). Subtracting the two equalities above we
obtain

L̂(q;S)− L̂(q′;S) =
N∑
i=1

ÊS [−bg(x1:i)− logZq′(x1:i−1)] ,

which, after adding and subtracting ÊSEw∼q(w|x1:i−1)g(x1:i−1, w) and rearranging terms, yields

L̂(q;S)− L̂(q′;S) = b

[
N∑
i=1

ÊS

(
Ew∼q(w|x1:i)g(x1:i−1, w)− g(x1:i)

)]
(5)

−
N∑
i=1

ÊS
[
logZq′(x1:i−1)− bEw∼q(w|x1:i−1)g(x1:i−1, w)

]
(6)

= bNβ̂(g)−
N∑
i=1

ÊS [bEwg(x1:i−1, w) + logZq′(x1:i−1)] (7)

By assumption we have Nbβ̂(g) ≥ Nb2, so it it remains to show that the second term is upper
bounded by Nb2/2. Using, as before, the bound log r ≤ r − 1 for every r = Zq′(x1:i−1) ≥ 0, we
get that, for every i = 1, . . . , N :

ÊS [bEwg(x1:i−1, w) + logZq′(x1:i−1)] ≤ ÊS [bEwg(x1:i−1, w) + Zq′(x1:i−1)− 1]

= ÊS

[
bEwg(x1:i−1, w) + Ewe

−bg(x1:i−1,w) − 1
]

= ÊSEw

[
bg(x1:i−1, w) + e−bg(x1:i−1,w) − 1

]
≤ ÊSEw (bg(x1:i−1, w)/2)

2 ≤ b2

2

where the last inequality follows again from the fact that g(x) ∈ [0, 1] for any x. Therefore, the sum
over theseN terms is upper bounded byN b2

2 , which combined with (7), yields the desired result.

D Proof of Theorem 1

Proof. The fact that Algorithm 1 terminates with a distribution q which is ε-indistinguishable by Od
is immediate from the stopping criterion.

Now, for the runtime analysis, note that —by construction— the iterates gt, t ∈ {0, . . . , T − 1}
have training advantage β̂(gt,S, qt) ≥ ε. Thus, by Lemma 3, the algorithm makes at least Nε2

2

improvement in each iteration. Therefore, the total number of iterations T is at most 2L0

Nε2 , where
L0 := L̂(q0;S) is the log-loss of the initial model. Each iteration of Algorithm 1 requires calling Od
oracle once, evaluating β̂(·) at an O(NmnTg) complexity, and updating each of the n next-token
probabilities of q for each sequence length 1, . . . , N . Each of these updates involves evaluating g
plus an O(n) partition normalization. Putting these together, we conclude that each iteration has
O(Td +NnTg(m+ n)) complexity.

Combining the the two arguments above, we conclude that Algorithm 1 has a total runtime of
O
(

1
ε2L0(

Td

N + nTg(m+ n))
)
.

E Empirical validation
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Figure 1: Empirical Validation of Lemma 3. For a simple pre-trained SeqGAN model (generator +
discriminator), we show that the boosting scheme proposed in that Lemma results in reduced log-loss
(NLL) throughout training. Furthermore, the empirical difference between original and boosted
models is indeed lower-bounded by the gap predicted by the Lemma.
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