
Published as a conference paper at ICLR 2023

Appendix

Table of Contents
A Implementation 13

B Improving PLMS 13

C Numerical methods for unguided diffusion 15

D Comparing PLMS and DEIS 15

E LPIPS vs. the number of sampling step 15

F More statistics for Experiment 4.2 17

G STSP4 vs. additional numerical method combinations 17

H Comparison with DEIS and DPM-solver 18

I Experiment on FID vs. sampling time 19

J Text-guided image generation 19

K Controllable generation 19

L Dreambooth stable diffusion 22

M CLIP-Guided stable diffusion 22

N Convergence orders of numerical methods 23

O Toy example where high-order methods become unstable 25

P Stability analysis 25

A IMPLEMENTATION

Our implementation is available here1. The implementation is based on Katherine Crowson’s
guided-diffusion 2, which is inspired by OpenAI’s guided-diffusion3. All of the pre-trained dif-
fusion and classifier models are available here4. For evaluation, we use OpenAI’s measurement
implementation with their reference image batch, which can be found here5.

B IMPROVING PLMS

Initial points are required for using high-order PLMS. The fourth-order formulation, for example,
requires three initial points. The original paper (Liu et al., 2022) employs the Runge-Kutta method
to compute the initial points. However, Runge-Kutta’s method has high computational costs and

1https://github.com/sWizad/split-diffusion
2https://github.com/crowsonkb/guided-diffusion
3https://github.com/openai/guided-diffusion
4https://github.com/openai/guided-diffusion/blob/main/model-card.md
5https://github.com/openai/guided-diffusion/tree/main/evaluations

13

Published as a conference paper at ICLR 2023

is inconvenient to use when the number of steps is small. To reduce the computation costs, we
compute the starting points of the higher-order PLMS using lower-order PLMS. Our PLMS can be
summarized using Algorithm 3.

Algorithm 3: PLMS
input: x̄n (previous result), σn+1, σn,
{ei}i<n (evaluation buffer), r (method order) ;

en = ϵ̄σ(x̄n) ;
c = min(r, n) ;
if c == 1 then
ê = en ;

else if c == 2 then
ê = (3en − en−1)/2 ;

else if c == 3 then
ê = (23en − 16en−1 + 5en−2)/12 ;

else
ê = (55en − 59en−1 + 37en−3 − 9en−4)/24 ;

Result: x̄n + (σn+1 − σn)ê

In Algorithm 3, the PLMS formulation is obtained by assuming a constant ∆σ for each step. The
results in our experiments and previous work (e.g., Liu et al. (2022); Zhang & Chen (2022)) are still
reasonable when this assumption is not strictly satisfied, i.e., when ∆σ is not constant. Inspired by
Zhang & Chen (2022), we also show how to derive another linear multi-step formulation for non-
constant ∆σ. Let us first define a dummy variable τ in which ∆τ is a constant in each time step. To
make it simple, let the value τ = 0 when t = T and when t = 0, τ = N , the total number of steps.
As a result, the discretization of τ can be defined by τn = n and ∆τ = τn − τn−1 = 1 is a constant.
Next, we want to extrapolate the value of ϵθ using a polynomial Pϵ(τ).

For example, the first order formulation can be produced by integrating a constant polynomial
Pϵ(τ) = en :

dx̄

dσ
= ϵ̄(x̄) ≈Pϵ(τ) = en,∫ x̄n+1

x̄n

dx̄ =

∫ σn+1

σn

en dσ,

x̄n+1 − x̄n =en∆σ

which leads us to Euler’s formulation. Rather than using Lagrange’s polynomial like Zhang & Chen
(2022), we use Newton’s polynomial, which gives a nicer final formulation. However, both are
the same polynomial but have different expressions. For the 2nd order formulation, we interpolate
between (τn, en) and (τn−1, en−1) using a Newton’s polynomial Pϵ(τ) = en+(en−en−1)(τ−τn).∫ x̄n+1

x̄n

dx̄ =

∫ σn+1

σn

en + (en − en−1)(τ − τn)dσ.

Every term is the same as in the 1st order formulation, except for one term that is
∫ σn+1

σn
(τ − τn)dσ.

Let us use separable integration to approximate this term.∫ σn+1

σn

(τ − τn)dσ =

∫ τn+1

τn

(τ − τn)
dσ

dτ
dτ ≈

∫ τn+1

τn

(τ − τn)dτ

∫ τn+1

τn

dσ

dτ
dτ =

∆σ

2

The result is x̄n+1 − x̄n = en∆σ+ (en − en+1)
∆σ
2 , which is the PLMS2 formulation. To compute

this term more precisely, we need to know the derivation dσ/dτ . For this example, let us define σ
by

σ(τ) = exp
(
lnσmax +

τ

N
(lnσmin − lnσmax)

)
= exp(a+ τb), (16)

where a = lnσmax and b = (lnσmin − lnσmax)/N . Now, we have∫ τn+1

τn

(τ − τn)
dσ

dτ
dτ = ∆σ

(
exp(b)

exp(b)− 1
− 1

b

)
.

14

Published as a conference paper at ICLR 2023

Consider exp(b)
exp(b)−1 − 1

b when limit N → ∞ (or b → 0), this term is equal to 1
2 , which turns the

formulation back to PLMS2. When we set N = 30 (or b = −0.33), the term exp(b)
exp(b)−1−

1
b = 0.4723,

which is also close to 1
2 in PLMS2 formulation.

We can continue using higher-order Newton’s polynomials to obtain higher-order formulations. We
call this method GLMS (Generalized Linear Multi-Step) and summarize it with Algorithm 4. In our
comparison in Figure 6, both PLMS and GLMS produce comparable results. In the fourth order,
GLMS4 performs slightly better than PLMS4. However, the GLMS formulation is dependent on the
σ schedule, and the formulation must be revised if the σ schedule changes. As a result, we decided
to use PLMS as part of our main algorithm for more flexibility.

Algorithm 4: GLMS
input: x̄n (previous result), σn+1, σn, {ei}i<n (evaluation buffer), r (method order) ;
b = ln(σn+1)− ln(σn) en = ϵ̄σ(x̄n) ; {ei}.append(en) ; c = min(r, n) ;
if c ≥ 1 then
ê = en ;

if c ≥ 2 then
ê = ê+ (en − en−1)

(
exp(b)

exp(b)−1 − 1
b

)
;

if c ≥ 3 then
ê = ê+ (en − 2en−1 + en−2)

(
exp(b)

exp(b)−1 (2−
2
b)−

1
b + 2

b2

)
;

if c ≥ 4 then
ê = ê+ (en − 3en−1 + 3en−2 − en−3)

(
exp(b)

exp(b)−1 (6−
9
b + 6

b2)−
2
b + 6

b2 − 6
b3

)
;

Result: x̄n + (σn+1 − σn)ê

C NUMERICAL METHODS FOR UNGUIDED DIFFUSION

This experiment evaluates the numerical methods used in our paper on unguided sampling to see
whether they may behave differently. We perform a similar experiment as in Section 4.1, 4.2 except
on an unguided, unconditional diffusion model and use samples from 1,000-step DDIM as reference
images. For each method, we use the same initial noise maps as the DDIM and evaluate the image
similarity between its generated images and the reference images based on LPIPS. Figure 6 reports
LPIPS vs sampling time for ImageNet128 using the σ schedule in Equation 16.

We found that RK2 and RK4 perform better than DDIM, but in our main papers these methods
perform worse than DDIM when used on the split sub-problems for guided sampling. Linear multi-
step methods continue to be the best performers. The graph also shows that higher order is generally
better, especially when the number of steps is large.

D COMPARING PLMS AND DEIS

In Tables 3 and 4, we compare the coefficients en, en−1, en−2, and en−3 of PLMS in Algorithm
3 and the original implementation DEIS Zhang & Chen (2022) using the default linear schedule
and 10 sampling steps. This comparison demonstrates that DEIS and PLMS are similar methods.
However, there are some differences. DEIS uses non-fixed coefficients that can change depending
on the number of steps and the noise schedule, whereas PLMS has fixed coefficients. Although
the coefficients from both methods are close, it should be noted that the DEIS coefficients will
converge to the PLMS coefficients over time. Since DEIS’s implementation relies heavily on the
noise schedule, if the schedule changes, we must re-implement the method. Therefore, for practical
purposes, we prefer PLMS over DEIS.

E LPIPS VS. THE NUMBER OF SAMPLING STEP

We report additional LPIPS results of the experiment in Section 4.1 but with respect to the number
of sampling steps. The result shows that methods in the RK family can outperform other methods

15

Published as a conference paper at ICLR 2023

coefficient of
nth step en en−1 en−2 en−3

1 1.0 0. 0. 0.
2 1.5 -0.5 0. 0.
3 1.5 -0.5 0. 0.
4 1.5 -0.5 0. 0.
5 1.5 -0.5 0. 0.
6 1.5 -0.5 0. 0.
7 1.5 -0.5 0. 0.
8 1.5 -0.5 0. 0.
9 1.5 -0.5 0. 0.

10 1.5 -0.5 0. 0.
(a) PLMS

coefficient of
nth step en en−1 en−2 en−3

1 1.00 0. 0. 0.
2 1.42 -0.42 0. 0.
3 1.43 -0.43 0. 0.
4 1.43 -0.43 0. 0.
5 1.44 -0.44 0. 0.
6 1.45 -0.45 0. 0.
7 1.46 -0.46 0. 0.
8 1.47 -0.47 0. 0.
9 1.48 -0.48 0. 0.

10 1.50 -0.50 0. 0.
(b) DEIS

Table 3: Comparison of second-order DEIS and PLMS coefficients

coefficient of
nth step en en−1 en−2 en−3

1 1.0 0. 0. 0.
2 1.5 -0.5 0. 0.
3 1.92 -1.33 0.41 0.
4 2.29 -2.46 1.54 -0.38
5 2.29 -2.46 1.54 -0.38
6 2.29 -2.46 1.54 -0.38
7 2.29 -2.46 1.54 -0.38
8 2.29 -2.46 1.54 -0.38
9 2.29 -2.46 1.54 -0.38

10 2.29 -2.46 1.54 -0.38
(a) PLMS

coefficient of
nth step en en−1 en−2 en−3

1 1.0 0. 0. 0.
2 1.42 -0.42 0. 0.
3 1.77 -1.12 0.34 0.
4 2.09 -2.07 1.28 -0.34
5 2.11 -2.11 1.31 -0.32
6 2.14 -2.16 1.35 -0.33
7 2.16 -2.22 1.38 -0.34
8 2.20 -2.28 1.42 -0.35
9 2.23 -2.35 1.47 -0.35

10 2.23 -2.28 1.55 -0.38
(b) DEIS

Table 4: Comparison of fourth-order DEIS and PLMS coefficients

10 20 30 40 50
Evaluation time (s)

10 3

10 2

10 1

LP
IP

S

DDIM
RK2
RK4
PLMS2
PLMS4
GLMS2
GLMS4

Figure 6: Comparison of different numerical methods on an unguided diffusion model. Using sam-
ples from a 1000-step DDIM as reference solutions, we measure average LPIPS scores and plot
them against the average sampling time.

16

Published as a conference paper at ICLR 2023

20 40 60 80 100 120
Number of Steps

10 1

LP
IP

S

PLMS1 (DDIM)
PLMS4
[PLMS1,PLMS1]
[PLMS2,PLMS1]
[PLMS4,PLMS1]
[RK2, PLMS1]
[RK4, PLMS1]

(a) Vary method for diffusion subproblem

20 40 60 80 100 120 140
Number of Steps

10 1

LP
IP

S

PLMS1 (DDIM)
[PLMS1, PLMS1]
[PLMS1, PLMS2]
[PLMS1, PLMS4]
[PLMS1, RK2]
[PLMS1, RK4]

(b) Vary method for condition subproblem

Figure 7: In addition to Figure 4.1, we plot LPIPS against their sampling steps. RK family can
outperform other methods in many situations. However, methods in RK family took a longer time
per diffusion step.

Sampling time within
5 sec. 10 sec. 15 sec. 20 sec.

DDIM 0.111 ± .078 0.062 ± .065 0.042 ± .056 0.031 ± .048
PLMS4 0.240 ± .131 0.085 ± .112 0.039 ± .072 0.018 ± .040
RK2 0.152 ± .090 0.048 ± .051 0.030 ± .037 0.026 ± .037
RK4 0.190 ± .106 0.044 ± .022 0.033 ± .038 0.019 ± .032
LTSP4 0.111 ± .092 0.056 ± .060 0.040 ± .054 0.028 ± .046
STSP4 0.072 ± .065 0.033 ± .044 0.018 ± .028 0.012 ± .022

Table 5: Our STSP4 has low average LPIPS scores and low standard deviations of LPIPS (N=120
samples).

given the same number of sampling steps. However, once taken into account the slower evaluation
time per step, these methods are overall slower to reach the same level of LPIPS of other methods.

F MORE STATISTICS FOR EXPERIMENT 4.2

We report the mean and standard deviation of each LPIPS score of the experiment in Section 4.2 in
Table 5. In Table 6, we report the p-value for the null hypothesis that our STSP4 performs worse
than other methods.

G STSP4 VS. ADDITIONAL NUMERICAL METHOD COMBINATIONS

We extend the experiment from Section 4.2 and compare our STSP4 and DDIM baselines with more
numerical method combinations. Here we report LPIPS vs sampling time in Figure 8. The results

Sampling time within
5 sec. 10 sec. 15 sec. 20 sec.

DDIM 9.1× 10−11 9.0× 10−10 7.1× 10−9 9.2× 10−8

PLMS4 3.3× 10−41 2.1× 10−13 8.1× 10−4 3.7× 10−2

RK2 1.2× 10−30 6.4× 10−5 6.1× 10−5 2.5× 10−7

RK4 5.0× 10−31 6.2× 10−3 6.1× 10−5 1.6× 10−3

LTSP4 5.6× 10−11 9.1× 10−11 2.8× 10−10 1.7× 10−7

Table 6: p-value for STSP4 has lower average LPIPS scores compare to other methods at approxi-
mately the same sampling time.

17

Published as a conference paper at ICLR 2023

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Sampling time (sec.)

10 2

10 1

LP
IP

S

DDIM 250 steps

3 × 10 2

3 × 10 1
PLMS1 (DDIM)
STSP [RK2, PLMS1]
STSP [RK4, PLMS1]
STSP [PLMS1,PLMS1]
STSP [PLMS2,PLMS1]
STSP4 [PLMS4,PLMS1]

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Sampling time (sec.)

10 2

10 1

LP
IP

S

DDIM 250 steps

3 × 10 2

3 × 10 1
PLMS1 (DDIM)
LTSP [PLMS2, PLMS2]
LTSP [PLMS2,PLMS4]
LTSP [PLMS4,PLMS2]
LTSP [PLMS4,PLMS4]
STSP4 [PLMS4,PLMS1]

Figure 8: We compare Strang splitting with different numerical methods on the diffusion subprob-
lem.

Sampling time within
5 sec. 10 sec. 15 sec. 20 sec.

DPM-Solver-1 (DDIM) 0.333 0.125 0.080 0.045
DPM-Solver-2 0.565 0.188 0.078 0.045
DPM-Solver-3 0.540 0.233 0.087 0.043
LTSP4 0.185 0.105 0.071 0.048
STSP4 0.169 0.062 0.061 0.037

Table 7: The comparison with DPM-solver Lu et al. (2022). Average LPIPS when the sampling time
is limited to be under 5-20 seconds.

show that Strang splitting method with [PLMS4, PLMS1] (our STSP4) is still the best combination,
similar to the finding in Section 4.2.

H COMPARISON WITH DEIS AND DPM-SOLVER

We compare our splitting method to DPM-solver Lu et al. (2022) and DEIS Zhang & Chen (2022).
Since both methods have different implementation details, such as using different noise schedules,
which affect the ODE solution, these methods do not converge to the same exact solution. Thus,
it is not sensible to directly compare them, and we instead implement our method in their official
implementations of DPM-solver Lu et al. (2022) and DEIS Zhang & Chen (2022). We then compare
the results using LPIPS on a classifier-guided diffusion model pretrained on ImageNet256, which is
the same model used in Table 1 in Section 3. The results are shown in Table 7 and 8. Our splitting
methods perform better than both DPM-solver Lu et al. (2022) and DEIS Zhang & Chen (2022).

Sampling time within
3 sec. 6 sec. 9 sec. 12 sec.

0-DEIS (DDIM) 0.333 0.125 0.080 0.045
1-DEIS 0.466 0.193 0.092 0.044
3-DEIS 0.625 0.511 0.433 0.345
LTSP4 0.321 0.120 0.080 0.048
STSP4 0.212 0.080 0.046 0.031

Table 8: Comparison with DEIS Zhang & Chen (2022). We report the average LPIPS scores when
the sampling time is limited to be under 3-12 seconds.

18

Published as a conference paper at ICLR 2023

Sampling time (sec.)

FI
D

6

8
10

50

0.1 0.2 0.4

Euler (DDIM)
PLMS4
RK2
RK4
LTSP4 [PLMS4,PLMS1]
STSP4 [PLMS4,PLMS1]

Figure 9: FID vs. Sampling time measured on ImageNet128

I EXPERIMENT ON FID VS. SAMPLING TIME

In this section, we demonstrate how splitting methods can accelerate guided diffusion sampling.
We vary the number of sampling steps, generate 20k samples, and compare the FID scores of the
splitting methods (LTSP4 and STSP4) to many non-splitting methods, including DDIM, PLMS4,
RK2, and RK4. Figure 9 shows a comparison of FID vs. sampling time for each method. This
experiment uses a classifier-guided diffusion model that was pretrained on the ImageNet128 dataset
by Dhariwal & Nichol (2021). Our method can generate good sample quality, especially when
the average sampling is limited to under 0.3 seconds (or about 50 steps of DDIM for 128×128
resolution), while other methods show large FID scores at lower sampling steps or require more
time to generate similar high-quality samples.

J TEXT-GUIDED IMAGE GENERATION

For text-to-image generation or text-guided image generation, our implementation is based on
Disco-Diffusion v3.16, which also relies on Crowson (2021). We use v3.1 that does not contain
unrelated features; however, our method can be applied to any of the versions. We use the fine-tuned
512x512 diffusion model from Katherine Crowson 7 and use pre-trained OpenAI’s CLIP models 8

including RN50, ViTB32, and ViTB16. For other model and conditional function configurations,
we use Disco-Diffusion v3.1’s default settings.

K CONTROLLABLE GENERATION

We provide implementation details of our sampling algorithm for other conditional generation tasks.

Image inpainting: Given a target masked image, y0, and a mask P which is a matrix of 0, 1 values,
we want to sample x0 so that y0 = Px0. The key concept from Song et al. (2020b) is to use reverse
diffusion in the unmasked area and forward diffusion in the masked area through an additional step
called the impose step. Let x′

t−1 be an unconditional diffusion sample from xt and yt−1 be a forward
diffusion sample from y0. The impose step can be summarized as follows:

xt−1 = (I − PTP)x′
t−1 + PT yt−1. (17)

To sample a corrupted target image yt−1, we use the sampling formulation from Song et al. (2020a)
to sample from y0 by

yt ∼ N (
√
ᾱty0 +

√
1− ᾱt − η2t ϵθ(xt, t), η

2
t I) (18)

where ηt =
√
(1− ᾱt−1)/(1− ᾱt)

√
1− ᾱt/ᾱt−1. This formulation works more effectively with

numerical methods than the original sampling formulation from Song et al. (2020b), which is yt ∼
N (

√
ᾱty0, (1− ᾱt)I).

6https://colab.research.google.com/drive/1bItz4NdhAPHg5-u87KcH-MmJZjK-XqHN
7http://batbot.tv/ai/models/guided-diffusion/512x512 diffusion uncond finetune 008100.pt
8https://github.com/openai/CLIP

19

Published as a conference paper at ICLR 2023

Rather than sampling x′
t−1 unconditionally, we follow Chung et al. (2022a) and use guided diffusion

sampling with the conditional function defined by:

f(xt) =
1

2γ
||y0 − Px̂0(xt)||22, x̂0(xt) =

xt −
√
1− ᾱtϵθ(xt, t)√

ᾱt
, (19)

where γ is a control parameter. Since directly computing ϵθ(xt, t) with the diffusion network in
Equation 18 and 19 is time consuming, we use a secondary-model method from Katherine Crowson9

to speed it up.

Image colorization: The idea behind colorization is very similar to inpainting. We convert images
from the RGB format to the HSV format, with the grayscale value in the first channel, using an
orthogonal matrix:

C =

[
0.577 −0.816 0
0.577 0.408 0.707
0.577 0.408 −0.707

]
.

To mask out other channels and keep only the first grayscale channel, we define the mask matrix
P as 1 in the grayscale channel and 0 in the other two channels. The impose step and conditional
function can be defined as

xt−1 = (I − CTPTPC)x′
t−1 + CTPTPCyt−1, f(xt) =

1

2γ
||y0 − PCx̂0(xt)||2.

Image super-resolution: Let us denote D as a down-sampling matrix. The impose step and condi-
tional function is given by

xt−1 = (I −DTD)x′
t−1 +DT yt−1, f(xt) =

1

2γ
||y0 −Dx̂0(xt)||2.

In our implementation, we replace the D and DT operations with the ILVR (Choi et al., 2021)
down-sampling and up-sampling functions.

Figure 10, 11, and 12 show additional qualitative results on the three tasks. We evaluate LPIPS and
PSNR between the generated images and their original images for the three tasks in Table 9. Our
test set consists of 200 input images, and each test image will be used to produce 6 samples for each
task for the evaluation.

Note that LPIPS and PSNR are not the ideal measurements for this evaluation, but they are a de
facto standard for benchmarking. Our goal here is to demonstrate how our technique can generalize
to other conditional generation tasks. It is not appropriate to compare the acceleration effect of our
diffusion technique with non-diffusion techniques since they are based on fundamentally different
principles. However, for a comparison of the quality of diffusion and non-diffusion techniques for
these tasks, refer to Chung et al. (2022a).

To achieve state-of-the-art performance on these tasks in terms of quality and speed, other recent
techniques may be more suitable, such as improved initialization (Chung et al., 2022b) and forward-
backward repetition (Meng et al., 2021). However, our contributions are orthogonal to these inves-
tigations.

Inpainting Colorization Super-resolution
Methods LPIPS PSNR LPIPS PSNR LPIPS PSNR

DDIM 0.17 19.52 0.28 20.40 0.46 17.88
PLMS4 0.25 15.01 0.47 13.50 0.73 7.85
LTSP4 0.17 19.61 0.31 19.40 0.51 16.07
STSP4 0.16 20.03 0.26 21.27 0.42 19.34

Table 9: Average LPIPS and PSNR scores from different methods on three different tasks.

9https://colab.research.google.com/drive/1mpkrhOjoyzPeSWy2r7T8EYRaU7amYOOi

20

Published as a conference paper at ICLR 2023

Original Input STSP4 DDIM

Figure 10: Additional inpainting results on ImageNet256. We show three different results generated
by each method for each input. All results are generated using the same 5-second sampling time.

Original Input STSP4 DDIM

Figure 11: Additional colorization results on ImageNet256. We show three different results gen-
erated by each method for each input. All results are generated using the same 5-second sampling
time.

21

Published as a conference paper at ICLR 2023

Original Input STSP4 DDIM

Figure 12: Additional 8x super-resolution results on ImageNet256. We show three different results
generated by each method for each input. All results are generated using the same 5-second sampling
time.

L DREAMBOOTH STABLE DIFFUSION

Dreambooth (Ruiz et al., 2022) is a technique for fine-tuning a pretrained text-to-image diffusion
model on a given set of images. We discover that, similar to guided diffusion models, Dreambooth
on Stable Diffusion (a pretrained text-guided latent-space diffusion) sometimes cannot be used with
high-order methods but can be accelerated by our proposed method. This example demonstrates
that our splitting method is effective not only on classifier-guided models but also classifier-free
diffusion models.

The guided ODE of a classifier-free model is given by
dx̄

dσ
= ϵ̄σ(x̄|ϕ) + s(ϵ̄σ(x̄|c)− ϵ̄σ(x̄|ϕ)), (20)

where c is the input prompt, ϵ̄σ(x̄|c) is the network output conditioned on the input prompt, and
ϵ̄σ(x̄|ϕ) is the network output conditioned on a null label ϕ. We can split the guided ODE into two
subproblems as follows:

dy

dσ
= ϵ̄σ(y|ϕ),

dz

dσ
= s(ϵ̄σ(z|c)− ϵ̄σ(z|ϕ)). (21)

We test on “mo-di-diffusion10,” a Dreambooth Stable Diffusion model that was fine-tuned on a
dataset of screenshots from Disney studio. We use the prompt “a girl face in modern Disney style.”
The result is shown in Figure 13. However, we believe that the underlying problems of Dreambooth
diffusion models may differ from those of classifier-guided diffusion models, and therefore require
their own comprehensive study.

M CLIP-GUIDED STABLE DIFFUSION

UPainting (Li et al., 2022) suggests that incorporating gradients from CLIP models can improve
the quality of text-to-image Stable Diffusion results. This approach is an example of combining

10https://huggingface.co/nitrosocke/mo-di-diffusion

22

Published as a conference paper at ICLR 2023

Number
of steps 20 40 80 160

PLMS4
(Liu et al., 2022)

LTSP4
(Ours)

STSP4
(Ours)

Figure 13: Generated samples from a text-guided Stable Diffusion model fine-tuned on a dataset
of screenshots from Disney studio using 20-160 sampling steps. Our splitting technique produces
high-quality results in fewer sampling steps. Prompt: “a girl face in modern Disney style.”

classifier-free and gradient-guided techniques to achieve better outcomes. The CLIP-guided ODE 8
can be defined as follows:

dx̄

dσ
= ϵ̄σ(x̄|ϕ) + s(ϵ̄σ(x̄|c)− ϵ̄σ(x̄|ϕ))− λ∇x̄(fimg(x̄) · ftxt(a)), (22)

where fimg(x̄) represents the output from CLIP’s image encoder and ftxt(a) represents the output of
CLIP’s text encoder. As we have shown in our paper, adding a gradient term to the diffusion model
can hinder acceleration by high-order methods. To address this problem, we apply our methods and
split Equation 22 into two subproblems, given by

dy

dσ
= ϵ̄σ(y|ϕ) + s(ϵ̄σ(y|c)− ϵ̄σ(y|ϕ)),

dz

dσ
= −λ∇z(fimg(z) · ftxt(a)). (23)

We illustrate sample images generated using different numerical methods in Figure 14. Our pro-
posed method produces high-quality results in fewer sampling steps.

N CONVERGENCE ORDERS OF NUMERICAL METHODS

In this section, we establish the convergence orders of Lie-Trotter and Strang splitting methods for
solving the differential equation

dx

dt
= f0(x) = f1(x) + f2(x), (24)

where f1 and f2 are differentiable functions.

We define Φ∆t,fi as the mapping solution of the ODE dx
dt = fi(x, t) in the interval [t0, t0 + ∆t].

Note that Φ0,fi(x) = x and d
dtΦ∆t,fi(x) = fi(x).

Note that by performing a Taylor expansion, we can express the mapping solution Φ∆t,fi as

Φ∆t,fi(x) = x+∆tfi(x) +
(∆t)2

2
f ′
i(x)fi(x) +O(∆t3). (25)

23

Published as a conference paper at ICLR 2023

Stable Diffusion’s prompt: “a ball”
CLIP’s prompt: “a metal sphere”

Stable Diffusion’s prompt: “a ball”
CLIP’s prompt: “a red apple”

PLMS4 LTSP4 STSP4
(Liu et al., 2022) (Ours) (Ours)

(100 steps) (100 steps) (55 steps)

Figure 14: Text-to-image generation using CLIP-guided Stable Diffusion from different high-order
sampling methods with approximately the same sampling time.

We will use this expansion in the proofs of the convergence orders for both Lie-Trotter and Strang
splitting methods.

Proposition 1. The Lie-Trotter splitting method converges at a first-order rate.

Proof. We can express a single step of the Lie-Trotter splitting method as Φ∆t,f2(Φ∆t,f1(x)). By
applying the expansion of Equation 25, we get:

Φ∆t,f2(Φ∆t,f1(x)) = [x+∆tf1(x) +O(∆t2)] + ∆tf2[x+∆tf1(x) +O(∆t2)] +O(∆t2)

= x+∆tf1(x) + ∆tf2(x) +O(∆t2)

= Φ∆t,f0(x) +O(∆t2). (26)

This shows that the error in each step is of order O(∆t2), which is a first-order convergence rate.

Proposition 2. The Strang splitting method has a convergence rate of second-order.

Proof. Consider a single step of the Strang splitting, which is Φ∆t/2,f2(Φ∆t,f1(Φ∆t/2,f2(x))). To
show the second-order accuracy of the Strang splitting, we first expand the two inner operators.
Using the expansion of Equation 25, we have

Φ∆t,f1(Φ∆t/2,f2(x)) = x+
∆t

2
f2(x) +

(∆t)2

222!
f ′2(x)f2(x) +O(∆t3)

+ (∆t)f1[x+
∆t

2
f2(x) +O(∆t2)]

+
(∆t)2

2
f ′1[x+O(∆t)]f1[x+O(∆t)] +O(∆t3) (27)

= x+
∆t

2
f2(x) +

(∆t)2

222!
f ′2(x)f2(x)

+ (∆t)f1(x) +
(∆t)2

2
f ′1(x)f2(x)

+
(∆t)2

2
f ′1(x)f1(x) +O(∆t3) (28)

24

Published as a conference paper at ICLR 2023

Then, we apply the same expansion to the outer operator Φ∆t
2 ,f2

:

Φ∆t
2 ,f2

(Φ∆t,f1(Φ∆t
2 ,f2

(x))) = x+ (∆t)f1(x) +
∆t

2
f2(x)

+
(∆t)2

222!
f ′
2(x)f2(x) +

(∆t)2

2
f ′
1(x)f2(x) +

(∆t)2

2!
f ′
1(x)f1(x)

+
∆t

2
f2[x+ (∆t)f1(x) +

∆t

2
f2(x) +O(∆t2)]

+
(∆t)2

222!
f ′
2[x+O(∆t)]f2[x+O(∆t)] +O(∆t3) (29)

Φ∆t
2 ,f2

(Φ∆t,f1(Φ∆t
2 ,f2

(x))) = x+ (∆t)f1(x) + (∆t)f2(x)

+
(∆t)2

2!
[f ′

1(x)f1(x) + f ′
1(x)f2(x) + f ′

2(x)f1(x) + f ′
2(x)f2(x)]

+O(∆t3) (30)

= x+ (∆t)f0(x) +
(∆t)2

2!
f ′
0(x)f0(x) +O(∆t3) (31)

= Φ∆t,f0(x) +O(∆t3) (32)

Therefore, the Strang splitting method’s convergence rate is of second-order.

O TOY EXAMPLE WHERE HIGH-ORDER METHODS BECOME UNSTABLE

In this section, we create a toy example to demonstrate how high-order numerical methods can
become unstable on a certain class of ODE problems (Stiff equation) despite involving no neural
networks. Let us define the following ODE:

dx

dt
= ϵ(x) + s · g(x), x(0) =

[
1
0

]
, (33)

where s is a scaling parameter and

ϵ

([
x1

x2

])
=

[
0 1
−1 −2

] [
x1

x2

]
, g

([
x1

x2

])
=

[
0 0
−1 −1

] [
x1

x2

]
. (34)

Figure 15 depicts solution trajectories of various numerical methods. We can observe that the
PLMS4’s trajectory situates farther from the exact solution than the Euler’s method or the splitting
methods, LSTP4 and STSP4. The exact solution of Equation 33 is

x(t) =
1

s

[
−1
s+ 1

]
e−(s+1)t +

1

s

[
s+ 1
−s− 1

]
e−t. (35)

When s increases, the term e−(s+1)t decays to zero more rapidly than the term e−t. When the two
terms behave differently, classical high-order numerical methods tend to perform poorly unless they
employ a very small step size.

P STABILITY ANALYSIS

In this section, we analyze the stability of numerical methods by computing the lowest number of
steps before their numerical solutions are guaranteed to diverge by theory. We visualize the solution

25

Published as a conference paper at ICLR 2023

s = 3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
x1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

x 2

exact
PLMS1 (Euler)
PLMS4
LTSP4
STSP4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
x1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

x 2

exact
PLMS1 (Euler)
PLMS4
LTSP4
STSP4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
x1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

x 2

exact
PLMS1 (Euler)
PLMS4
LTSP4
STSP4

s = 5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
x1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

x 2

exact
PLMS1 (Euler)
PLMS4
LTSP4
STSP4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
x1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

x 2

exact
PLMS1 (Euler)
PLMS4
LTSP4
STSP4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
x1

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

x 2

exact
PLMS1 (Euler)
PLMS4
LTSP4
STSP4

10 steps 15 steps 20 steps

Figure 15: Solution trajectories of different numerical methods on a toy ODE problem using differ-
ent numbers of steps. Non-splitting methods, especially PLMS4, are more likely to fail to converge
to the exact solution when the number of steps is reduced.

trajectories using different numbers of steps to empirically support the theory. We only focus on
Euler and other second-order numerical methods in this part.

One way to analyze numerical methods that solve Equation 33 is to evaluate them with a test equa-
tion that leads to the solution y(t) = e−(s+1)t, such as

y′ = −(s+ 1)y. (36)

Note that the solution y(t) → 0 as t → ∞.

Euler’s Method: Applying the Euler’s method to Equation 36 yields:

yn+1 = yn −∆t(s+ 1)yn = (1−∆t(s+ 1))yn.

After solving this recurrence relation, we have yn = (1 − ∆t(s + 1))ny0. The condition for the
numerical solution yn → 0 as n → ∞ is equivalent to |1−∆t(s+ 1)| < 1 or

−1 < 1−∆t(s+ 1) < 1,

2 > ∆t(s+ 1) > 0.

Let us substitute ∆t = 1/N , where N is the number of steps. Now, we can conclude that if N is
lower than s+1

2 , the solution of Euler’s method in Equation 36 diverges from the exact solution.

PLMS2: Consider a second-order linear multistep method on the same test Equation 36:

yn+1 = yn +∆t

(
−3

2
(s+ 1)yn +

1

2
yn−1(s+ 1)

)
(37)

=

(
1−∆t

3

2
(s+ 1)

)
yn +∆t

1

2
(s+ 1). (38)

26

Published as a conference paper at ICLR 2023

After solving the linear recurrence relation, we obtain

yn = a1r
n
1 + a2r

n
2 , (39)

where r1 =
1

2

(
1− 3

2
∆t(s+ 1) +

√
1−∆t(s+ 1) +

9

4
(∆t)2(s+ 1)2

)
, (40)

and r2 =
1

2

(
1− 3

2
∆t(s+ 1)−

√
1−∆t(s+ 1) +

9

4
(∆t)2(s+ 1)2

)
. (41)

The numerical solution yn → 0 as n → ∞ when both |r1| < 1 and |r2| < 1, which is equivalent to∣∣∣∣∣∣12
1− 3

2

(s+ 1)

N
±

√
1− (s+ 1)

N
+

9

4

(
(s+ 1)

N

)2
∣∣∣∣∣∣ < 1. (42)

In Table 10, we report the lowest number N for each s before Inequality 42 is not satisfied. In other
words, if the number of steps is below the lowest number N in the table, the solution of the method
in Equation 36 is guaranteed to diverge from the exact solution. The analysis of the higher-order
methods can be done in a similar fashion.

LTSP2: We analyze the Lie-Trotter splitting method similarly. In this case, the test Equation 36
needs to also be split into

ŷ′ =− ŷ, (43)

ỹ′ =− sỹ. (44)

Let us apply the second order linear multistep method (PLMS2) to Equaiton 43 and Euler’s method
(PLMS1) to Equation 44. We have

ŷn+1 = ŷn −∆t

(
3

2
ŷn − 1

2
ŷn−1

)
, ỹn+1 = ỹn −∆tsỹn. (45)

Thus, a single combining step of LTSP2 can be formulated by

yn+1 = (1− s∆t)

((
1− 3

2
∆t

)
yn +

∆t

2
yn−1

)
. (46)

Similarly to the above, we solve the linear recurrence relation and obtain the following condition∣∣∣∣∣∣12
(

1− s

N

)(
1− 3

2

s

N

)
±

√(
1− s

N

)2
(
1− 3

2

s

N

)2

+
2

N

(
1− s

N

)∣∣∣∣∣∣ < 1. (47)

We report the lowest integer number N for each s before Inequality 47 is not satisfied in Table 10.

STSP2: We analyze the Strang splitting method by splitting the test Equation 36 into

ȳ′ =− sȳ (48)

ŷ′ =− ŷ (49)

ỹ′ =− sỹ (50)

We apply the second-order linear multistep method (PLMS2) on Equation 49 and Euler’s method
on Equation 48 and 50.

ȳn+1 =

(
1− ∆t

2
s

)
ȳn (51)

ŷn+1 =

(
1− 3

2
∆t

)
ŷn +

∆t

2
ŷn−1 (52)

ỹn+1 =

(
1− ∆t

2
s

)
ỹn (53)

27

Published as a conference paper at ICLR 2023

s = 5 s = 10 s = 15 s = 20 s = 30 s = 40 s = 60 s = 80

Euler 4 6 9 11 16 21 31 41
PLMS2 6 11 16 22 32 42 63 83
LTSP2 2 3 7 9 14 19 29 39
STSP2 2 3 4 5 8 10 15 20

Table 10: The lowest number of steps before each numerical method will fail to solve Equation 36.
Notice that LTSP2 and STSP2 have lower numbers, which indicate that they are less likely to fail
when the number of steps is reduced, as compared to Euler and PLMS2.

We combine Equation 51-53 into

yn+1 =
(
1− s

2N

)2(
1− 3

2N

)
yn +

1

2N

(
1− s

2N

)2
yn−1. (54)

After solving the linear recurrence relation, we obtain the following condition∣∣∣∣∣12
(
b±

√
b2 +

2

N
c

)∣∣∣∣∣ < 1, (55)

where b =
(
1− s

2N

)2 (
1− 3

2N

)
and c =

(
1− s

2N

)2
. In Table 10, we report the lowest number of

steps N for each s before Inequality 55 is not satisfied.

In Table 10, we compare the lowest number of steps N before each method is guaranteed to diverge
from our analysis. We also show numerical solutions of our toy example in Figure 16 and compare
them with our analysis. It is important to note that if the number of steps exceeds Table 10, we
cannot presume that the numerical solution will function properly.

28

Published as a conference paper at ICLR 2023

s = 10

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
x1

0.8

0.6

0.4

0.2

0.0

x 2

exact
Euler (PLMS1)
PLMS2
LTSP2
STSP2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
x1

0.8

0.6

0.4

0.2

0.0

x 2

exact
Euler (PLMS1)
PLMS2
LTSP2
STSP2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
x1

0.8

0.6

0.4

0.2

0.0

x 2

exact
Euler (PLMS1)
PLMS2
LTSP2
STSP2

s = 15

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
x1

0.8

0.6

0.4

0.2

0.0

x 2

exact
Euler (PLMS1)
PLMS2
LTSP2
STSP2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
x1

0.8

0.6

0.4

0.2

0.0

x 2

exact
Euler (PLMS1)
PLMS2
LTSP2
STSP2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
x1

0.8

0.6

0.4

0.2

0.0

x 2

exact
Euler (PLMS1)
PLMS2
LTSP2
STSP2

s = 20

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
x1

0.8

0.6

0.4

0.2

0.0

x 2

exact
Euler (PLMS1)
PLMS2
LTSP2
STSP2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
x1

0.8

0.6

0.4

0.2

0.0

x 2

exact
Euler (PLMS1)
PLMS2
LTSP2
STSP2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
x1

0.8

0.6

0.4

0.2

0.0

x 2

exact
Euler (PLMS1)
PLMS2
LTSP2
STSP2

10 steps 15 steps 20 steps.

Figure 16: Solution trajectories of different numerical methods when their numbers of steps are
close to those in Table 10.

29

	 Appendix
	Implementation
	Improving PLMS
	Numerical methods for unguided diffusion
	Comparing PLMS and DEIS
	LPIPS vs. the number of sampling step
	More statistics for Experiment 4.2
	STSP4 vs. additional numerical method combinations
	Comparison with DEIS and DPM-solver
	Experiment on FID vs. sampling time
	Text-guided image generation
	Controllable generation
	Dreambooth stable diffusion
	CLIP-Guided stable diffusion
	Convergence orders of numerical methods
	Toy example where high-order methods become unstable
	Stability analysis

