475

476

477
478
479

480
481
482
483
484
485

487
488
489

500

502
503
504
505
506
507
508
509
510
511
512
513
514

A Appendix

A.1 Algorithm Details

We provide additional implementation details for Eurekaverse below. We first describe the core
algorithm loop in pseudocode. Next, we describe “soft” policy selection, a more robust way to select
the best policy using evaluation on the proxy (all generated training) environments.

Algorithm 1 Eurekaverse

1: Require: RL algorithm A, coding LLM LLM, performance criteria F', LP transformation G
2: // Generate initial environments

3: 0; ~ A?]{}M(eincomext)

4: // Run iterations of co-evolution

5: for generation iteration t = 1 to 7" do

6: // Train multiple policies on environments

7. forruni=1to M do

8 m=A({0}}])

9: // Construct evaluation environment and select best policy
10: Oprony = Ui {0%}7_; across iterations

11: Tlhest — argmaXqr, F(ﬂ'i’ epmxy)

12: // Evolve environments

13: 6?65t ~ AEL\E)]{/[(01]3_55[)

14: // Sample environments with learning progress

15 LP(6}) := GV (n'), VM (i)
16: 6 ~LP(6)
17: Output: best final policy 7

best

Soft Selection. During co-evolution, we select the best policy 7% via performance on all generated

environments ©poxy, Which tests the policies’ generalization and serves as a proxy for the true testing
environment. Empirically, we find that this proxy accurately orders the policies, where the best policy
in Oproxy also performs the best in our simulation benchmark. Nonetheless, there are rare cases where
the best-performing benchmark policy is not the best one chosen by the proxy. To increase robustness
against these inaccuracies, we “softly” select the best policy during each iteration of co-evolution:
the selected policy is chosen randomly, where the best policy has probability p;, second-best has
probability pa < p1, and so on. Each agent in the next iteration performs this selection independently
(so that Np; are initialized to the best policy, N ps are initialized to the second-best, etc.). In practice,
we select p; = 0.75,p2 = 0.25,p3,...,py = 0.

A.2 Prompts and Examples

You are a reinforcement learning engineer trying to write environment functions as effectively
as possible for a quadruped robot parkour task. Please keep in mind that this robot will
be trained in simulation and deployed in a real world obstacle course, so we want the

obstacles to be realistic and challenging.

To do so, you should perform the following steps:

1. Carefully read the problem statement, specifications, and tips below.

2. Explain what your obstacle course will look like. Keep in mind that your obstacle sizes
should be relative to the quadruped’s size, and the entire obstacle should fit within the
terrain bounds. You should be creative when designing your obstacles, and You may draw
inspiration from features seen in dog parks, playgrounds, and urban environments.

3. Write a function that generates the obstacle course according to your plan.

Problem Statement:

You are given a quadruped robot that needs to navigate through an obstacle course in 3D space.
The floor of the course is represented as a 2D numpy array, height_ field, where each
element represents the height of the ground at that point, in meters. To direct the
quadruped, the course has 8 goals that the quadruped must reach in order. The goal
locations should be stored in a 2D numpy array, goals, as (x, y) indices in height_field.

To create your course, you will write a function set_terrain(length, width, field_resolution,

difficulty) that creates and returns the height_field and goals arrays. The function
takes in the length and width of the course, in meters, the scale of quantization for the

14

515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

571
572
573
574
575
576
577
578
579
580
581

583

obstacle course, in meters, and the difficulty of the obstacle course, a float between 0
(easiest) and 1 (hardest) inclusive. Please follow the template below to write your
function:
‘Y 'python
import numpy as np
import random

def set_terrain(length, width, field_resolution, difficulty):
"""Description of your course and the tested skill."""

def m_to_idx (m) :

"""Converts meters to quantized indices."""

return np.round(m / field_resolution).astype (np.int16) if not (isinstance(m, list) or
isinstance (m, tuple)) else [round(i / field_resolution) for i in m]

height_field = np.zeros((m_to_idx(length), m_to_idx(width)))
goals = np.zeros((8, 2))

Your code here

return height_field, goals

You can use any function from the numpy and random libraries as well as any in-built Python
functions. Please write everything as Python code and annotate your code with comments,
including a one-line docstring after the function definition that summarizes your
obstacle course.

Environment Specifications:

1. height_field quantizes the ground plane into a grid of points. field_resolution = 0.05, in
meters, is the quantization of the ground’s (x, y) axes, which represents the distance
between adjacent points in the height_field array.

2. The ground plane size is 12 x 4 meters, so the height_field.shape = (12 / field_resolution,

4 / field_resolution) = (240, 80). Please make sure that your obstacle course spans
exactly these dimensions.

3. The quadruped’s standing size (length, width, height) is 0.645 x 0.28 x 0.4 meters. Keep
these dimensions in mind when designing the size of your obstacles.

4. The quadruped will spawn with its center at (x, y, z) = (1, width / 2, 0) meters. You must
place obstacles at indices with x >= 2 / field_resolution to avoid the quadruped spawning

inside an obstacle.

5. Please make sure that your obstacles have a width of at least 1 meter. However, in rare
cases, we will allow narrow obstacles with length and width of at least 0.4 meters and no

smaller, as long as the quadruped is not expected to climb up or down.

6. The goal coordinates should be within the bounds of the course. Even if you have fewer than

8 obstacles, you must set all 8 goal positions in the goals array.

7. The quadruped will be instructed to travel in a straight line from one goal to the next.
Thus, if you want the quadruped to turn, you must place a goal at the turning point.

8. Your course should test a particular one of the robot’s skills, for example by repeating a
single type of obstacle. Make the course relatively consistent throughout. There will be
other courses to test other skills and different obstacles.

9. The heights in field _height can be negative. The quadruped’s spawning area will always be
at a height of 0 meters, so you can use negative heights to create pits or gaps in the
terrain. Use this to force the quadruped to walk or jump across the tops of your
obstacles without climbing up or down.

10. Since each index in the terrain has one height value, it is impossible to create overhangs

or tunnels. Do not try to create these features in your course.

Tips:

1. Do not call your function. Only write the function definition and the code inside it.

2. To broadcast a 1D array to a 2D array (or 2D slice), you must first add a new axis to the 1
D array.

3. You should not add noise directly to height_field. Random noisy terrain is not necessary
for our task, and we do not want it as an obstacle.

4. When slicing into height_field, make sure to convert from meters to quantized units
beforehand. For example, a 2 x 2 meter slice looks like [x - m_to_idx(l):x + m_to_idx (1),
y - m_to_idx(l):y + m_to_idx(1l)].

5. If you write helper functions, please make them nested functions of set_terrain. Your
response should be a self-contained function definition following our template.

Listing 1: System Prompt. In the function template, we provide a conversion function m_t o_idx to simplify the
conversion from coordinates, in meters, to the index in the array.

The following is an example of a terrain generation function. Please reference the example
provided, but make your terrain different.

T

import numpy as np

def set_terrain(length, width, field_resolution, difficulty):

15

592
593
594
595
596
597
598
599
600
601
602
603

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

649
650
651
652
653
654
655

88¢

658
659

660
661

663
664
665
666
667

"""Multiple platforms traversing a pit for the robot to climb on and jump across."""

def m_to_idx (m):

"""Converts meters to quantized indices."""

return np.round(m / field_resolution).astype (np.intl6) if not (isinstance(m, list) or
isinstance (m, tuple)) else [round(i / field_resolution) for i in m]

height_field = np.zeros((m_to_idx(length), m_to_idx(width)))
goals = np.zeros((8, 2))

Set up platform dimensions

We make the platform height near 0 at minimum difficulty so the quadruped can learn to
climb up

platform_length = 1.0 - 0.3 x difficulty

platform_length = m_to_idx(platform_length)

platform width = np.random.uniform(1.0, 1.6)

platform_width = m_to_idx(platform _width)

platform_height_min, platform_height_max = 0.0 + 0.2 % difficulty, 0.05 + 0.25 x
difficulty

gap_length = 0.1 + 0.7 » difficulty

gap_length = m_to_idx (gap_length)

mid_y = m_to_idx(width) // 2

def add_platform(start_x, end_x, mid_y):
half_width = platform_width // 2
x1l, x2 = start_x, end_x
yl, y2 = mid_y - half _width, mid_y + half_width
platform _height = np.random.uniform(platform height_min, platform_height_max)

height_field[x1:x2, yl:y2] = platform _height
dx_min, dx_max = -0.1, 0.1
dx_min, dx_max = m_to_idx(dx_min), m_to_idx (dx_max)
dy_min, dy_max = -0.4, 0.4
dy_min, dy_max = m_to_idx(dy_min), m_to_idx (dy_max)

Set spawn area to flat ground
spawn_length = m_to_idx(2)

height_field[0:spawn_length, :] = 0
Put first goal at spawn
goals[0] = [spawn_length - m_to_idx(0.5), mid_y]

Set remaining area to be a pit
We do this to force the robot to jump from platform to platform
Otherwise, the robot can just jump down and climb back up

height_field[spawn_length:, :] = -1.0
cur_x = spawn_length
for i in range(6): # Set up 6 platforms

dx = np.random.randint (dx_min, dx_max)
dy = np.random.randint (dy_min, dy_max)
add_platform(cur_x, cur_x + platform length + dx, mid_y + dy)

Put goal in the center of the platform
goals[i+l] = [cur_x + (platform_length + dx) / 2, mid_y + dy]

Add gap
cur_x += platform_length + dx + gap_length

Add final goal behind the last platform, fill in the remaining gap
goals[-1] = [cur_x + m_to_1idx(0.5), mid_y]
height_field[cur_x:, :] = 0

return height_field, goals

Listing 2: Initial Example. This example demonstrates the main structure of a terrain function, including helper
functions and a for loop over multiple obstacles.

We trained a quadruped policy to perform parkour on the obstacle course created by the
generation code above (as well as others), and we tracked the values of individual reward
components as well as other metrics such as the number of goals reached (out of 8),
episode length, and the rate of edge violations (feet too close to edge of obstacles):
<INSERT POLICY STATISTICS HERE>

We have also computed statistics for the terrain height of the direct path between goals

across multiple difficulties. Note that this is a heuristical shortest-path between goals
that approximates the locations an optimal quadruped would traverse. The statistics do

16

668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

695
696

688

699
700

710

719

724

730
731
732
733
734
735

737
738
739

not reflect the actual path taken by the quadruped policy, nor does it include the height
of gaps, pits, and other obstacles that the quadruped would not step on:
<INSERT TERRAIN STATISTICS HERE>

Please carefully analyze the statistics above and provide a new, improved generation function.
You should pay attention to which parts of the course the quadruped successfully learned
and which parts it struggled with. The goal of your course is to balance difficulty and

feasibility for the quadruped robot, allowing it to learn and perform better. Thus, if
the robot is getting stuck on a certain obstacle or goal, you should consider changing or
removing it. You should also follow the guidelines below:

— If the number of reached goals is over 80%, please create a harder course while ensuring
that it is feasible and safe for a real robot. You should consider adding more obstacles,

increasing the complexity of the course, and increasing the difficulty of existing
obstacles. For example, you can make climbing obstacles taller or jumping gaps wider.

— If the number of reached goals is below 20%, please create an easier course by decreasing
the difficulty of existing obstacles or simplifying the course layout. For example, you
can make climbing obstacles shorter or jumping gaps narrower. Please also double-check
that the course obstacles are fair and feasible for the quadruped.

- Otherwise, please create a variation of the current course with the same difficulty but
different obstacles. If the quadruped seems stuck on a certain obstacle, please change it

Again, please be creative when designing your course as we want to provide a diverse set of
training environments for the quadruped. Here is a list of the courses and skills that
the quadruped was already trained on. You may use them as inspiration, but please make
sure yours is different:

<INSERT TERRAIN DESCRIPTIONS HERE>

Please use the same template for the course generation function and provide a detailed
reasoning of the changes you made. The function signature should remain the same.

Listing 3: Evolution Prompt. Here, we insert policy training statistics including reward term values, episode
length, number of goals reached, and number of edge violations (feet too close to edge) both before and after
training. We also compute height field (terrain) statistics, including maximum value, maximum difference
between consecutive indices, and standard deviation. Finally, we provide the LLM with docstrings of previous
terrains used for training.

The following is an example of an initial terrain generation function.

T

(SAME AS INITIAL EXAMPLE)

Y

And the following is an example of a new, improved terrain generation function that has more
complex obstacles. You can reference the example provided, but please make your terrain
different. This example serves to illustrate how terrains can be made more complex, but
you should tune the difficulty according to the previous instructions.

T

import numpy as np

def set_terrain(length, width, field_resolution, difficulty):
"""Multiple sideways-facing ramps traversing a pit for the robot to climb on and jump
across."""

def m_to_idx(m):

"""Converts meters to quantized indices."""

return np.round(m / field_resolution).astype (np.int16) if not (isinstance(m, list) or
isinstance (m, tuple)) else [round(i / field_resolution) for i in m]

height_field = np.zeros((m_to_idx(length), m_to_idx(width)))
goals = np.zeros((8, 2))

Set up platform and ramp dimensions

We make the platform height near 0 at minimum difficulty so the quadruped can learn to
climb up

platform length = 1.0 - 0.3 * difficulty

platform_length = m_to_idx(platform_length)

platform width = np.random.uniform(1.0, 1.1) # Decrease platform width

platform width = m_to_idx(platform width)

platform_height_min, platform_height_max = 0.0 + 0.2 % difficulty, 0.05 + 0.25 «*
difficulty

ramp_height_min, ramp_height max = 0.0 + 0.5 x difficulty, 0.05 + 0.55 x difficulty
gap_length = 0.1 + 0.5 * difficulty # Decrease gap length

gap_length = m_to_idx (gap_length)

mid_y = m_to_idx(width) // 2

17

740
741
742
743
744
745
746
747
748
749
750
751
752

754
755
756
757
758
759
760
761
762
763
764
765

767
768
769
770
771
772
773
774
775
776
777
778
779

781
782
783
784
785
786
787
788

791

802
803

804
805
806
807
808
809
810
811
812
813
814
815

def add_platform(start_x, end_x, mid_y):
half _width = platform width // 2
x1, x2 = start_x, end_x
yl, y2 = mid_y - half_width, mid_y + half_ width
platform _height = np.random.uniform(platform height_min, platform_height_max)
height_field[x1:x2, yl:y2] = platform height

def add_ramp (start_x, end_x, mid_y, direction):
half_width = platform_width // 2
x1l, x2 = start_x, end_x
vl, y2 = mid_y - half_width, mid_y + half_ width
ramp_height = np.random.uniform(ramp_height_min, ramp_height_max)

slant = np.linspace (0, ramp_height, num=y2-yl) [::direction]
slant = slant[None, :] # Add a dimension for broadcasting to x
height_field[x1:x2, yl:y2] = slant

dx_min, dx_max = -0.1, 0.1

dx_min, dx_max = m_to_idx(dx_min), m_to_idx (dx_max)

dy_min, dy_max = 0.0, 0.4 # Polarity of dy will alternate instead of being random
dy_min, dy_max = m_to_idx(dy_min), m_to_idx (dy_max)

Set spawn area to flat ground
spawn_length = m_to_idx(2)

height_field[0:spawn_length, :] = 0
Put first goal at spawn
goals[0] = [spawn_length - m_to_idx(0.5), mid_y]

Set remaining area to be a pit

We do this to force the robot to jump from platform to platform
Otherwise, the robot can just jump down and climb back up
height_field[spawn_length:, :] = -1.0

Add first platform

cur_x = spawn_length

dx = np.random.randint (dx_min, dx_max)

dy = np.random.randint (dy_min, dy_max)

add_platform(cur_x, cur_x + platform_length + dx, mid_y + dy)
goals[l] = [cur_x + (platform_length + dx) / 2, mid_y + dy]
cur_x += platform_length + dx + gap_length

for i in range(l, 6): # Set up 5 ramps
dx = np.random.randint (dx_min, dx_max)
dy = np.random.randint (dy_min, dy_max)
direction = (-1) *» i # Alternate left and right ramps
dy = dy * direction # Alternate positive and negative y offsets

add_ramp (cur_x, cur_x + platform_length + dx, mid_y + dy, direction)

Put goal in the center of the ramp
goals[i+l] = [cur_x + (platform_ length + dx) / 2, mid_y + dy]

Add gap
cur_x += platform_length + dx + gap_length

Add final goal behind the last ramp, fill in the remaining gap
goals[-1] = [cur_x + m_to_idx(0.5), mid_y]
height_field[cur_x:, :]1 =0

return height_field, goals

Listing 4: Evolution Example. The initial example is exactly the initial example above, and we provide an

example of evolving it; in our example, we replace some flat platforms with slanted ramps.

Here’s an alternative terrain generation function that focuses on creating a series of ramps

for the quadruped robot to navigate through. This course will test the robot’s ability to

handle inclined surfaces and maintain balance.

‘Y 'python
import numpy as np

import random

def set_terrain(length, width, field_resolution, difficulty):
"""Ramps of varying angles for the robot to climb and descend."""

def m_to_idx (m) :
"""Converts meters to quantized indices."""

18

816
817
818
819
820
821
822
823
824
825

831

834
835
836
837
838
839
840
841
842

844
845
846
847
848
849
850
851
852
853
854
855
856

858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875

87%

878
879

880
881
882
883
884
885
886

888
889
890
891

return np.round(m / field_resolution).astype (np.intl6) if not (isinstance(m, list) or
isinstance (m, tuple)) else [round(i / field_resolution) for i in m]

height_field = np.zeros((m_to_idx(length), m_to_idx(width)))
goals = np.zeros((8, 2))

Initialize parameters

ramp_length = 1.0 + difficulty * 2.0 # Make ramps longer and steeper with higher
difficulty

ramp_length = m_to_idx (ramp_length)

ramp_height = 0.1 + difficulty = 0.4 # Ramp height varies with difficulty
ramp_height_change = ramp_height / ramp_length # Height change per quantized step
ramp_width = 1.0 # Set ramp width to 1 meter

ramp_width = m_to_idx (ramp_width)

mid_y = m_to_idx (width) // 2
def add_ramp(start_x, end_x, mid_y, upward=True) :

"""Add a ramp either upward or downward starting from start_x."""
for i in range(start_x, end_x):

height = (i - start_x) % ramp_height_change if upward else (end_x - 1 - 1) %
ramp_height_change
height_field[i, mid_y - ramp_width // 2: mid_y + ramp_width // 2] = height

if not upward:
height_field[i, mid_y - ramp_width // 2: mid_y + ramp_width // 2] -=
ramp_height # Adjust for downward ramp

dx_min, dx_max = -0.1, 0.1
dx_min, dx_max = m_to_idx(dx_min), m_to_idx (dx_max)
dy_min, dy_max = -0.4, 0.4
dy_min, dy_max = m_to_idx(dy_min), m_to_idx (dy_max)

Set flat ground at the start

spawn_length = m_to_idx(2)

height_field[0:spawn_length, :] = 0

goals[0] = [spawn_length - m_to_idx(0.5), mid_y] # First goal at spawn

Initial height is 0
cur_x = spawn_length
cur_upward = True # Start with an upward ramp

for i in range(7): # Set up 7 ramps
dx = np.random.randint (dx_min, dx_max)
dy = np.random.randint (dy_min, dy_max)
end_x = cur_x + ramp_length + dx

add_ramp (cur_x, end_x, mid_y + dy, upward=cur_upward)

Place goal in the center of the ramp
goals[i+l] = [(cur_x + end_x) / 2, mid_y + dy]

Switch direction (up or down)
cur_upward = not cur_upward
cur_xX = end_x

Final goal at the end of the last ramp
goals[-1] = [cur_x + m_to_idx(0.5), mid_y]
height_field[cur_x:, :]1 =0

return height_field, goals

Listing 5: Example LLM Output. This output generates multiple ramps in a configuration that’s distinctly
different from any previously-seen terrains.

Here’s an alternative terrain generation function that focuses on creating a series of ramps
for the quadruped robot to navigate through. This course will test the robot’s ability to
handle inclined surfaces and maintain balance.

‘Y 'python

import numpy as np

import random

def set_terrain(length, width, field_resolution, difficulty):
"""Ramps of varying angles for the robot to climb and descend."""

def m_to_idx (m) :
"""Converts meters to quantized indices."""

19

892 return np.round(m / field_resolution).astype (np.intl6) if not (isinstance(m, list) or
893 isinstance (m, tuple)) else [round(i / field_resolution) for i in m]

894

895 height_field = np.zeros((m_to_idx(length), m_to_idx(width)))

896 goals = np.zeros((8, 2))

897

898 # Initialize parameters

899 ramp_length = 1.0 + difficulty * 2.0 # Make ramps longer and steeper with higher
900 difficulty

901 ramp_length = m_to_idx (ramp_length)

902 ramp_height = 0.1 + difficulty = 0.4 # Ramp height varies with difficulty
903 ramp_height_change = ramp_height / ramp_length # Height change per quantized step
904 ramp_width = 1.0 # Set ramp width to 1 meter

905 ramp_width = m_to_idx (ramp_width)

906

907 mid_y = m_to_idx (width) // 2

908

909 def add_ramp (start_x, end_x, mid_y, upward=True):

910 """Add a ramp either upward or downward starting from start_x."""

911 for i in range(start_x, end_x):

912 height = (i - start_x) % ramp_height_change if upward else (end_x - 1 - 1) %
913 ramp_height_change

914 height_field[i, mid_y - ramp_width // 2: mid_y + ramp_width // 2] = height
915 if not upward:

916 height_field[i, mid_y - ramp_width // 2: mid_y + ramp_width // 2] -=
917 ramp_height # Adjust for downward ramp

918

919 dx_min, dx_max = -0.1, 0.1

920 dx_min, dx_max = m_to_idx(dx_min), m_to_idx (dx_max)

921 dy_min, dy_max = -0.4, 0.4

922 dy_min, dy_max = m_to_idx(dy_min), m_to_idx (dy_max)

923

924 # Set flat ground at the start

925 spawn_length = m_to_idx(2)

926 height_field[0:spawn_length, :] = 0

927 goals[0] = [spawn_length - m_to_idx(0.5), mid_y] # First goal at spawn
928

929 # Initial height is 0

930 cur_x = spawn_length

931 cur_upward = True # Start with an upward ramp

932

933 for i in range(7): # Set up 7 ramps

934 dx = np.random.randint (dx_min, dx_max)

935 dy = np.random.randint (dy_min, dy_max)

936 end_x = cur_x + ramp_length + dx

937

938 add_ramp (cur_x, end_x, mid_y + dy, upward=cur_upward)

939

940 # Place goal in the center of the ramp

941 goals[i+l] = [(cur_x + end_x) / 2, mid_y + dy]

942

943 # Switch direction (up or down)

944 cur_upward = not cur_upward

945 cur_xX = end_x

946

947 # Final goal at the end of the last ramp

948 goals[-1] = [cur_x + m_to_idx(0.5), mid_y]

949 height_field[cur_x:, :]1 =0

950

951 return height_field, goals

883 | '*"

Listing 6: Example LLM Output. This output generates multiple ramps in a configuration that’s distinctly
different from any previously-seen terrains.

954 A.3 Generated Terrain Examples

955 In Figure 6, we visualize some of the terrains generated by Eurekaverse. We see that the
956 complexity and difficulty generally increases each iteration, and the quadruped learns to pass through
957 progressively more difficult obstacle courses. We also see some cases of resampling for courses that
958 are difficult but learnable.

20

959

960

962
963

964
965
966

967

968
969
970

971

972

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

¥ 7 T 7 o

| ABERE (S _3 4 = § \.:5 / —:.‘—L_) v -“__4;»)

e s a0 U TV AR
W e

Figure 6: Visualizing a subset of our generated terrains, collected across 5 iterations within one run of
Eurekaverse.

A.4 Environment Check and Automatic Fixing

For every LLM-generated terrain function, we first check that it is executable and feasible before
using it for training. We check the former by running the training script and the latter with simple
heuristics: whether the maximum height is below 3 meters whether the maximum height difference
between goals is below 0.8 meters (double the Unitree Gol’s standing height).

To save token usage and query costs, we also automatically fix invalid terrains: moving out-of-bounds
goals, setting the quadruped spawn area to flat ground, and expanding obstacles that are too skinny.
Note that these fixes can be easily replaced with assertions and additional LLM queries.

A.5 Learning Progress Reweighting

We compute learning progress with the function GG, which serves to prioritize progress in difficult
tasks (low V') over easy tasks (high V). Following Kanitscheider et al. [58], we use the function
G(z,y) = f(2) = f(y) where

(1 —zp)x

J(@) = z+xg(l — 2x)

3

with zg = 0.25. As seen in Figure 7, taking f(x) — f(y) leads to a larger learning progress estimate
between 0.1 to 0.3 than 0.8 to 1.0.

1.0 A

0.8

0.6

fix)

0.4 A

0.2 1

0.0

0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 7: Our learning progress reweighting function G.

21

973

974
975
976
977
978
979
980
981
982
983

984
985
986
987
988
989
990
991

992

993

995
996
997
998

999
1000

1001

1002

1003
1004

A.6 Simulation Setup

Environment Specification. We adopt the simulation framework from Cheng et al. [21], which
constructs an obstacle course terrain by quantizing the ground plane into a 2D grid and specifying the
height at each index in the grid. Along with the terrain heights, the course includes 8 goal positions
indicating both progression and heading the policy should follow. Due to the difficult-but-progressive
nature of parkour skills, the course includes an in-built inner curriculum where obstacles are scaled
by a difficulty parameter between 0 and 1; during training, policies are initialized at lower difficulties
and progress to higher difficulties if they pass the course. This specification is completely defined
via a Python function, which takes the difficulty as input and outputs a 2D array for terrain heights
and a list of 8 (z, y) coordinates for the goal positions. In Eurekaverse, the LLM is instructed to
output precisely this function, which defines terrains 6; modulated by the difficulty argument.

Policy Training. We train the policy on multiple terrains in parallel; specifically, one round of
training consists of 10 terrain classes, each with 10 difficulties. Following Cheng et al. [21], we first
train a teacher policy using privileged scandot sensing. After fully training a privileged teacher, we
then distill a student policy that takes in depth frames from a front-facing camera. Apart from the
scandot or depth, the policy also receives proprioception and heading and speed commands. We train
the policy with PPO [60] with heading and velocity tracking rewards, regularizations like action rate
and torque, and penalties for foot placements near terrain edges. We use this same reward across all
methods and ablations.

Sim-To-Real. To facilitate sim-to-real transfer, as in Cheng et al. [21], we use regularized online
adaptation (ROA) [67], which trains an adaptation module that estimates environment properties
from observation history. We also domain randomize over physical properties like friction, mass,
and motor strength. During distillation, we introduce an action delay and depth sensing delay of 1
simulation step (0.02s), and we update the depth frame only once every 5 steps (10Hz). Finally, we
introduce noise in the depth input, adding Gaussian noise to its true value and randomly setting some
pixels to 0.

Simulation Benchmark. In Figure 8, we render each of the 20 obstacles in our parkour benchmark.
Each of these obstacles is instantiated with 10 difficulties during evaluation, and these renders capture
the obstacles at medium difficulty.

R R e N R
r .l.o..u._\.e&l Ten

f 0 maaman N\ £ Raaadu \‘
VTP TR A

Figure 8: Visualizing our simulated parkour benchmark, roughly organized by skill: climbing boxes, walking
on slopes, jumping, traversing stepping stones, climbing stairs, navigating narrow hallways, moving zig-zag
through agility poles, and balancing.

A.7 Deployment Details

We deploy on the Unitree Gol, a quadrupedal robot with 12 degrees of freedom. When standing,
the robot is 64.5 cm long, 28 cm wide, and 40 cm tall. We use the 3D camera mount introduced

22

1005
1006
1007
1008
1009

1010

1011
1012
1013

by Zhuang et al. [20] to attach an Intel RealSense D435 camera onto the Gol’s head. Our vision
policy runs onboard the Nvidia Jetson Xavier NX, with the depth encoder running asynchronously at
10 Hz and the policy at 50 Hz. Before depth inputs are passed through the depth encoder, we crop
the left and right edges to remove dead pixels; we then apply hole-filling and temporal filters and
down-sample the resolution from 270x480 to 60x90.

A.8 Ablations
In Figure 9, we plot the performance of ablations from Figure 4 (right) across training steps. All

ablations plateau except for Eurekaverse and Random Resampling, and we see that Random
Resampling exhibits much higher variance than Ours.

Method Ablations

w o

Mean Benchmark Goals Reached
D

3
2
1
0
2k 4k 6k 8k 10k
Number of Parallel Steps
—— Ours No Resmpl —— Final Envs
Random Resmpl Initial Envs ~ —— LLM Example

Figure 9: Comparing sim benchmark performance across training steps for Eurekaverse and ablations.

23

	Introduction
	Related Work
	Problem Setting
	Methods
	Initial Environment Generation
	Co-Evolution of Agents and Environments

	Experiments
	Experimental Setup
	Simulated Parkour Benchmark
	Simulation Experiments Results
	Real-World Experiments

	Conclusion
	Appendix
	Algorithm Details
	Prompts and Examples
	Generated Terrain Examples
	Environment Check and Automatic Fixing
	Learning Progress Reweighting
	Simulation Setup
	Deployment Details
	Ablations

