
A Appendix475

A.1 Algorithm Details476

We provide additional implementation details for Eurekaverse below. We first describe the core477

algorithm loop in pseudocode. Next, we describe “soft” policy selection, a more robust way to select478

the best policy using evaluation on the proxy (all generated training) environments.479

Algorithm 1 Eurekaverse
1: Require: RL algorithm A, coding LLM LLM, performance criteria F , LP transformation G
2: // Generate initial environments
3: ✓ij ⇠ ⇤init

LLM(✓incontext)
4: // Run iterations of co-evolution
5: for generation iteration t = 1 to T do

6: // Train multiple policies on environments
7: for run i = 1 to M do

8: ⇡i = A({✓ij}Jj=1)
9: // Construct evaluation environment and select best policy

10: ⇥proxy = [i{✓ij}Jj=1 across iterations
11: ⇡best = argmax⇡i F (⇡i,⇥proxy)
12: // Evolve environments
13: ✓̃best

j ⇠ ⇤evol
LLM

�
✓best
j

�

14: // Sample environments with learning progress
15: LP(✓ij) := G(V Mi

j (⇡i), V Mi
j (⇡initial))

16: ✓j ⇠ LP(✓)
17: Output: best final policy ⇡best

Soft Selection. During co-evolution, we select the best policy ⇡best via performance on all generated480

environments ⇥proxy, which tests the policies’ generalization and serves as a proxy for the true testing481

environment. Empirically, we find that this proxy accurately orders the policies, where the best policy482

in ⇥proxy also performs the best in our simulation benchmark. Nonetheless, there are rare cases where483

the best-performing benchmark policy is not the best one chosen by the proxy. To increase robustness484

against these inaccuracies, we “softly” select the best policy during each iteration of co-evolution:485

the selected policy is chosen randomly, where the best policy has probability p1, second-best has486

probability p2 < p1, and so on. Each agent in the next iteration performs this selection independently487

(so that Np1 are initialized to the best policy, Np2 are initialized to the second-best, etc.). In practice,488

we select p1 = 0.75, p2 = 0.25, p3, . . . , pN = 0.489

A.2 Prompts and Examples490 ⌥491
You are a reinforcement learning engineer trying to write environment functions as effectively492

as possible for a quadruped robot parkour task. Please keep in mind that this robot will493
be trained in simulation and deployed in a real world obstacle course, so we want the494

obstacles to be realistic and challenging.495
496

To do so, you should perform the following steps:497
1. Carefully read the problem statement, specifications, and tips below.498
2. Explain what your obstacle course will look like. Keep in mind that your obstacle sizes499

should be relative to the quadruped’s size, and the entire obstacle should fit within the500
terrain bounds. You should be creative when designing your obstacles, and You may draw501

inspiration from features seen in dog parks, playgrounds, and urban environments.502
3. Write a function that generates the obstacle course according to your plan.503

504
Problem Statement:505
You are given a quadruped robot that needs to navigate through an obstacle course in 3D space.506

The floor of the course is represented as a 2D numpy array, height_field, where each507
element represents the height of the ground at that point, in meters. To direct the508
quadruped, the course has 8 goals that the quadruped must reach in order. The goal509
locations should be stored in a 2D numpy array, goals, as (x, y) indices in height_field.510

511
To create your course, you will write a function set_terrain(length, width, field_resolution,512

difficulty) that creates and returns the height_field and goals arrays. The function513
takes in the length and width of the course, in meters, the scale of quantization for the514
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obstacle course, in meters, and the difficulty of the obstacle course, a float between 0515
(easiest) and 1 (hardest) inclusive. Please follow the template below to write your516

function:517
‘‘‘python518
import numpy as np519
import random520

521
def set_terrain(length, width, field_resolution, difficulty):522

"""Description of your course and the tested skill."""523
524

def m_to_idx(m):525
"""Converts meters to quantized indices."""526
return np.round(m / field_resolution).astype(np.int16) if not (isinstance(m, list) or527

isinstance(m, tuple)) else [round(i / field_resolution) for i in m]528
529

height_field = np.zeros((m_to_idx(length), m_to_idx(width)))530
goals = np.zeros((8, 2))531

532
# Your code here533

534
return height_field, goals535

‘‘‘536
537

You can use any function from the numpy and random libraries as well as any in-built Python538
functions. Please write everything as Python code and annotate your code with comments,539
including a one-line docstring after the function definition that summarizes your540
obstacle course.541

542
Environment Specifications:543
1. height_field quantizes the ground plane into a grid of points. field_resolution = 0.05, in544

meters, is the quantization of the ground’s (x, y) axes, which represents the distance545
between adjacent points in the height_field array.546

2. The ground plane size is 12 x 4 meters, so the height_field.shape = (12 / field_resolution,547
4 / field_resolution) = (240, 80). Please make sure that your obstacle course spans548

exactly these dimensions.549
3. The quadruped’s standing size (length, width, height) is 0.645 x 0.28 x 0.4 meters. Keep550

these dimensions in mind when designing the size of your obstacles.551
4. The quadruped will spawn with its center at (x, y, z) = (1, width / 2, 0) meters. You must552

place obstacles at indices with x >= 2 / field_resolution to avoid the quadruped spawning553
inside an obstacle.554

5. Please make sure that your obstacles have a width of at least 1 meter. However, in rare555
cases, we will allow narrow obstacles with length and width of at least 0.4 meters and no556
smaller, as long as the quadruped is not expected to climb up or down.557

6. The goal coordinates should be within the bounds of the course. Even if you have fewer than558
8 obstacles, you must set all 8 goal positions in the goals array.559

7. The quadruped will be instructed to travel in a straight line from one goal to the next.560
Thus, if you want the quadruped to turn, you must place a goal at the turning point.561

8. Your course should test a particular one of the robot’s skills, for example by repeating a562
single type of obstacle. Make the course relatively consistent throughout. There will be563
other courses to test other skills and different obstacles.564

9. The heights in field_height can be negative. The quadruped’s spawning area will always be565
at a height of 0 meters, so you can use negative heights to create pits or gaps in the566
terrain. Use this to force the quadruped to walk or jump across the tops of your567
obstacles without climbing up or down.568

10. Since each index in the terrain has one height value, it is impossible to create overhangs569
or tunnels. Do not try to create these features in your course.570

571
Tips:572
1. Do not call your function. Only write the function definition and the code inside it.573
2. To broadcast a 1D array to a 2D array (or 2D slice), you must first add a new axis to the 1574

D array.575
3. You should not add noise directly to height_field. Random noisy terrain is not necessary576

for our task, and we do not want it as an obstacle.577
4. When slicing into height_field, make sure to convert from meters to quantized units578

beforehand. For example, a 2 x 2 meter slice looks like [x - m_to_idx(1):x + m_to_idx(1),579
y - m_to_idx(1):y + m_to_idx(1)].580

5. If you write helper functions, please make them nested functions of set_terrain. Your581
response should be a self-contained function definition following our template.582 ⌃ ⇧583

Listing 1: System Prompt. In the function template, we provide a conversion function m to idx to simplify the
conversion from coordinates, in meters, to the index in the array.

⌥584
The following is an example of a terrain generation function. Please reference the example585

provided, but make your terrain different.586
587

‘‘‘588
import numpy as np589

590
def set_terrain(length, width, field_resolution, difficulty):591
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"""Multiple platforms traversing a pit for the robot to climb on and jump across."""592
593

def m_to_idx(m):594
"""Converts meters to quantized indices."""595
return np.round(m / field_resolution).astype(np.int16) if not (isinstance(m, list) or596

isinstance(m, tuple)) else [round(i / field_resolution) for i in m]597
598

height_field = np.zeros((m_to_idx(length), m_to_idx(width)))599
goals = np.zeros((8, 2))600

601
# Set up platform dimensions602
# We make the platform height near 0 at minimum difficulty so the quadruped can learn to603
climb up604
platform_length = 1.0 - 0.3 * difficulty605
platform_length = m_to_idx(platform_length)606
platform_width = np.random.uniform(1.0, 1.6)607
platform_width = m_to_idx(platform_width)608
platform_height_min, platform_height_max = 0.0 + 0.2 * difficulty, 0.05 + 0.25 *609
difficulty610
gap_length = 0.1 + 0.7 * difficulty611
gap_length = m_to_idx(gap_length)612

613
mid_y = m_to_idx(width) // 2614

615
def add_platform(start_x, end_x, mid_y):616

half_width = platform_width // 2617
x1, x2 = start_x, end_x618
y1, y2 = mid_y - half_width, mid_y + half_width619
platform_height = np.random.uniform(platform_height_min, platform_height_max)620
height_field[x1:x2, y1:y2] = platform_height621

622
dx_min, dx_max = -0.1, 0.1623
dx_min, dx_max = m_to_idx(dx_min), m_to_idx(dx_max)624
dy_min, dy_max = -0.4, 0.4625
dy_min, dy_max = m_to_idx(dy_min), m_to_idx(dy_max)626

627
# Set spawn area to flat ground628
spawn_length = m_to_idx(2)629
height_field[0:spawn_length, :] = 0630
# Put first goal at spawn631
goals[0] = [spawn_length - m_to_idx(0.5), mid_y]632

633
# Set remaining area to be a pit634
# We do this to force the robot to jump from platform to platform635
# Otherwise, the robot can just jump down and climb back up636
height_field[spawn_length:, :] = -1.0637

638
cur_x = spawn_length639
for i in range(6): # Set up 6 platforms640

dx = np.random.randint(dx_min, dx_max)641
dy = np.random.randint(dy_min, dy_max)642
add_platform(cur_x, cur_x + platform_length + dx, mid_y + dy)643

644
# Put goal in the center of the platform645
goals[i+1] = [cur_x + (platform_length + dx) / 2, mid_y + dy]646

647
# Add gap648
cur_x += platform_length + dx + gap_length649

650
# Add final goal behind the last platform, fill in the remaining gap651
goals[-1] = [cur_x + m_to_idx(0.5), mid_y]652
height_field[cur_x:, :] = 0653

654
return height_field, goals655

‘‘‘656 ⌃ ⇧657

Listing 2: Initial Example. This example demonstrates the main structure of a terrain function, including helper
functions and a for loop over multiple obstacles.

⌥658
We trained a quadruped policy to perform parkour on the obstacle course created by the659

generation code above (as well as others), and we tracked the values of individual reward660
components as well as other metrics such as the number of goals reached (out of 8),661

episode length, and the rate of edge violations (feet too close to edge of obstacles):662
<INSERT POLICY STATISTICS HERE>663

664
We have also computed statistics for the terrain height of the direct path between goals665

across multiple difficulties. Note that this is a heuristical shortest-path between goals666
that approximates the locations an optimal quadruped would traverse. The statistics do667
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not reflect the actual path taken by the quadruped policy, nor does it include the height668
of gaps, pits, and other obstacles that the quadruped would not step on:669

<INSERT TERRAIN STATISTICS HERE>670
671

Please carefully analyze the statistics above and provide a new, improved generation function.672
You should pay attention to which parts of the course the quadruped successfully learned673
and which parts it struggled with. The goal of your course is to balance difficulty and674

feasibility for the quadruped robot, allowing it to learn and perform better. Thus, if675
the robot is getting stuck on a certain obstacle or goal, you should consider changing or676
removing it. You should also follow the guidelines below:677

- If the number of reached goals is over 80%, please create a harder course while ensuring678
that it is feasible and safe for a real robot. You should consider adding more obstacles,679
increasing the complexity of the course, and increasing the difficulty of existing680

obstacles. For example, you can make climbing obstacles taller or jumping gaps wider.681
- If the number of reached goals is below 20%, please create an easier course by decreasing682

the difficulty of existing obstacles or simplifying the course layout. For example, you683
can make climbing obstacles shorter or jumping gaps narrower. Please also double-check684
that the course obstacles are fair and feasible for the quadruped.685

- Otherwise, please create a variation of the current course with the same difficulty but686
different obstacles. If the quadruped seems stuck on a certain obstacle, please change it687
.688

689
Again, please be creative when designing your course as we want to provide a diverse set of690

training environments for the quadruped. Here is a list of the courses and skills that691
the quadruped was already trained on. You may use them as inspiration, but please make692
sure yours is different:693

<INSERT TERRAIN DESCRIPTIONS HERE>694
695

Please use the same template for the course generation function and provide a detailed696
reasoning of the changes you made. The function signature should remain the same.697 ⌃ ⇧698

Listing 3: Evolution Prompt. Here, we insert policy training statistics including reward term values, episode
length, number of goals reached, and number of edge violations (feet too close to edge) both before and after
training. We also compute height field (terrain) statistics, including maximum value, maximum difference
between consecutive indices, and standard deviation. Finally, we provide the LLM with docstrings of previous
terrains used for training.

⌥699
The following is an example of an initial terrain generation function.700

701
‘‘‘702
(SAME AS INITIAL EXAMPLE)703
‘‘‘704

705
And the following is an example of a new, improved terrain generation function that has more706

complex obstacles. You can reference the example provided, but please make your terrain707
different. This example serves to illustrate how terrains can be made more complex, but708
you should tune the difficulty according to the previous instructions.709

710
‘‘‘711
import numpy as np712

713
def set_terrain(length, width, field_resolution, difficulty):714

"""Multiple sideways-facing ramps traversing a pit for the robot to climb on and jump715
across."""716

717
def m_to_idx(m):718

"""Converts meters to quantized indices."""719
return np.round(m / field_resolution).astype(np.int16) if not (isinstance(m, list) or720

isinstance(m, tuple)) else [round(i / field_resolution) for i in m]721
722

height_field = np.zeros((m_to_idx(length), m_to_idx(width)))723
goals = np.zeros((8, 2))724

725
# Set up platform and ramp dimensions726
# We make the platform height near 0 at minimum difficulty so the quadruped can learn to727
climb up728
platform_length = 1.0 - 0.3 * difficulty729
platform_length = m_to_idx(platform_length)730
platform_width = np.random.uniform(1.0, 1.1) # Decrease platform width731
platform_width = m_to_idx(platform_width)732
platform_height_min, platform_height_max = 0.0 + 0.2 * difficulty, 0.05 + 0.25 *733
difficulty734
ramp_height_min, ramp_height_max = 0.0 + 0.5 * difficulty, 0.05 + 0.55 * difficulty735
gap_length = 0.1 + 0.5 * difficulty # Decrease gap length736
gap_length = m_to_idx(gap_length)737

738
mid_y = m_to_idx(width) // 2739
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740
def add_platform(start_x, end_x, mid_y):741

half_width = platform_width // 2742
x1, x2 = start_x, end_x743
y1, y2 = mid_y - half_width, mid_y + half_width744
platform_height = np.random.uniform(platform_height_min, platform_height_max)745
height_field[x1:x2, y1:y2] = platform_height746

747
def add_ramp(start_x, end_x, mid_y, direction):748

half_width = platform_width // 2749
x1, x2 = start_x, end_x750
y1, y2 = mid_y - half_width, mid_y + half_width751
ramp_height = np.random.uniform(ramp_height_min, ramp_height_max)752
slant = np.linspace(0, ramp_height, num=y2-y1)[::direction]753
slant = slant[None, :] # Add a dimension for broadcasting to x754
height_field[x1:x2, y1:y2] = slant755

756
dx_min, dx_max = -0.1, 0.1757
dx_min, dx_max = m_to_idx(dx_min), m_to_idx(dx_max)758
dy_min, dy_max = 0.0, 0.4 # Polarity of dy will alternate instead of being random759
dy_min, dy_max = m_to_idx(dy_min), m_to_idx(dy_max)760

761
# Set spawn area to flat ground762
spawn_length = m_to_idx(2)763
height_field[0:spawn_length, :] = 0764
# Put first goal at spawn765
goals[0] = [spawn_length - m_to_idx(0.5), mid_y]766

767
# Set remaining area to be a pit768
# We do this to force the robot to jump from platform to platform769
# Otherwise, the robot can just jump down and climb back up770
height_field[spawn_length:, :] = -1.0771

772
# Add first platform773
cur_x = spawn_length774
dx = np.random.randint(dx_min, dx_max)775
dy = np.random.randint(dy_min, dy_max)776
add_platform(cur_x, cur_x + platform_length + dx, mid_y + dy)777
goals[1] = [cur_x + (platform_length + dx) / 2, mid_y + dy]778
cur_x += platform_length + dx + gap_length779

780
for i in range(1, 6): # Set up 5 ramps781

dx = np.random.randint(dx_min, dx_max)782
dy = np.random.randint(dy_min, dy_max)783
direction = (-1) ** i # Alternate left and right ramps784
dy = dy * direction # Alternate positive and negative y offsets785

786
add_ramp(cur_x, cur_x + platform_length + dx, mid_y + dy, direction)787

788
# Put goal in the center of the ramp789
goals[i+1] = [cur_x + (platform_length + dx) / 2, mid_y + dy]790

791
# Add gap792
cur_x += platform_length + dx + gap_length793

794
# Add final goal behind the last ramp, fill in the remaining gap795
goals[-1] = [cur_x + m_to_idx(0.5), mid_y]796
height_field[cur_x:, :] = 0797

798
return height_field, goals799

‘‘‘800 ⌃ ⇧801

Listing 4: Evolution Example. The initial example is exactly the initial example above, and we provide an
example of evolving it; in our example, we replace some flat platforms with slanted ramps.

⌥802
Here’s an alternative terrain generation function that focuses on creating a series of ramps803

for the quadruped robot to navigate through. This course will test the robot’s ability to804
handle inclined surfaces and maintain balance.805

806
‘‘‘python807
import numpy as np808
import random809

810
def set_terrain(length, width, field_resolution, difficulty):811

"""Ramps of varying angles for the robot to climb and descend."""812
813

def m_to_idx(m):814
"""Converts meters to quantized indices."""815
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return np.round(m / field_resolution).astype(np.int16) if not (isinstance(m, list) or816
isinstance(m, tuple)) else [round(i / field_resolution) for i in m]817

818
height_field = np.zeros((m_to_idx(length), m_to_idx(width)))819
goals = np.zeros((8, 2))820

821
# Initialize parameters822
ramp_length = 1.0 + difficulty * 2.0 # Make ramps longer and steeper with higher823
difficulty824
ramp_length = m_to_idx(ramp_length)825
ramp_height = 0.1 + difficulty * 0.4 # Ramp height varies with difficulty826
ramp_height_change = ramp_height / ramp_length # Height change per quantized step827
ramp_width = 1.0 # Set ramp width to 1 meter828
ramp_width = m_to_idx(ramp_width)829

830
mid_y = m_to_idx(width) // 2831

832
def add_ramp(start_x, end_x, mid_y, upward=True):833

"""Add a ramp either upward or downward starting from start_x."""834
for i in range(start_x, end_x):835

height = (i - start_x) * ramp_height_change if upward else (end_x - 1 - i) *836
ramp_height_change837

height_field[i, mid_y - ramp_width // 2: mid_y + ramp_width // 2] = height838
if not upward:839

height_field[i, mid_y - ramp_width // 2: mid_y + ramp_width // 2] -=840
ramp_height # Adjust for downward ramp841

842
dx_min, dx_max = -0.1, 0.1843
dx_min, dx_max = m_to_idx(dx_min), m_to_idx(dx_max)844
dy_min, dy_max = -0.4, 0.4845
dy_min, dy_max = m_to_idx(dy_min), m_to_idx(dy_max)846

847
# Set flat ground at the start848
spawn_length = m_to_idx(2)849
height_field[0:spawn_length, :] = 0850
goals[0] = [spawn_length - m_to_idx(0.5), mid_y] # First goal at spawn851

852
# Initial height is 0853
cur_x = spawn_length854
cur_upward = True # Start with an upward ramp855

856
for i in range(7): # Set up 7 ramps857

dx = np.random.randint(dx_min, dx_max)858
dy = np.random.randint(dy_min, dy_max)859
end_x = cur_x + ramp_length + dx860

861
add_ramp(cur_x, end_x, mid_y + dy, upward=cur_upward)862

863
# Place goal in the center of the ramp864
goals[i+1] = [(cur_x + end_x) / 2, mid_y + dy]865

866
# Switch direction (up or down)867
cur_upward = not cur_upward868
cur_x = end_x869

870
# Final goal at the end of the last ramp871
goals[-1] = [cur_x + m_to_idx(0.5), mid_y]872
height_field[cur_x:, :] = 0873

874
return height_field, goals875

‘‘‘876 ⌃ ⇧877

Listing 5: Example LLM Output. This output generates multiple ramps in a configuration that’s distinctly
different from any previously-seen terrains.

⌥878
Here’s an alternative terrain generation function that focuses on creating a series of ramps879

for the quadruped robot to navigate through. This course will test the robot’s ability to880
handle inclined surfaces and maintain balance.881

882
‘‘‘python883
import numpy as np884
import random885

886
def set_terrain(length, width, field_resolution, difficulty):887

"""Ramps of varying angles for the robot to climb and descend."""888
889

def m_to_idx(m):890
"""Converts meters to quantized indices."""891
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return np.round(m / field_resolution).astype(np.int16) if not (isinstance(m, list) or892
isinstance(m, tuple)) else [round(i / field_resolution) for i in m]893

894
height_field = np.zeros((m_to_idx(length), m_to_idx(width)))895
goals = np.zeros((8, 2))896

897
# Initialize parameters898
ramp_length = 1.0 + difficulty * 2.0 # Make ramps longer and steeper with higher899
difficulty900
ramp_length = m_to_idx(ramp_length)901
ramp_height = 0.1 + difficulty * 0.4 # Ramp height varies with difficulty902
ramp_height_change = ramp_height / ramp_length # Height change per quantized step903
ramp_width = 1.0 # Set ramp width to 1 meter904
ramp_width = m_to_idx(ramp_width)905

906
mid_y = m_to_idx(width) // 2907

908
def add_ramp(start_x, end_x, mid_y, upward=True):909

"""Add a ramp either upward or downward starting from start_x."""910
for i in range(start_x, end_x):911

height = (i - start_x) * ramp_height_change if upward else (end_x - 1 - i) *912
ramp_height_change913

height_field[i, mid_y - ramp_width // 2: mid_y + ramp_width // 2] = height914
if not upward:915

height_field[i, mid_y - ramp_width // 2: mid_y + ramp_width // 2] -=916
ramp_height # Adjust for downward ramp917

918
dx_min, dx_max = -0.1, 0.1919
dx_min, dx_max = m_to_idx(dx_min), m_to_idx(dx_max)920
dy_min, dy_max = -0.4, 0.4921
dy_min, dy_max = m_to_idx(dy_min), m_to_idx(dy_max)922

923
# Set flat ground at the start924
spawn_length = m_to_idx(2)925
height_field[0:spawn_length, :] = 0926
goals[0] = [spawn_length - m_to_idx(0.5), mid_y] # First goal at spawn927

928
# Initial height is 0929
cur_x = spawn_length930
cur_upward = True # Start with an upward ramp931

932
for i in range(7): # Set up 7 ramps933

dx = np.random.randint(dx_min, dx_max)934
dy = np.random.randint(dy_min, dy_max)935
end_x = cur_x + ramp_length + dx936

937
add_ramp(cur_x, end_x, mid_y + dy, upward=cur_upward)938

939
# Place goal in the center of the ramp940
goals[i+1] = [(cur_x + end_x) / 2, mid_y + dy]941

942
# Switch direction (up or down)943
cur_upward = not cur_upward944
cur_x = end_x945

946
# Final goal at the end of the last ramp947
goals[-1] = [cur_x + m_to_idx(0.5), mid_y]948
height_field[cur_x:, :] = 0949

950
return height_field, goals951

‘‘‘952 ⌃ ⇧953

Listing 6: Example LLM Output. This output generates multiple ramps in a configuration that’s distinctly
different from any previously-seen terrains.

A.3 Generated Terrain Examples954

In Figure 6, we visualize some of the terrains generated by Eurekaverse. We see that the955

complexity and difficulty generally increases each iteration, and the quadruped learns to pass through956

progressively more difficult obstacle courses. We also see some cases of resampling for courses that957

are difficult but learnable.958
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Figure 6: Visualizing a subset of our generated terrains, collected across 5 iterations within one run of
Eurekaverse.

A.4 Environment Check and Automatic Fixing959

For every LLM-generated terrain function, we first check that it is executable and feasible before960

using it for training. We check the former by running the training script and the latter with simple961

heuristics: whether the maximum height is below 3 meters whether the maximum height difference962

between goals is below 0.8 meters (double the Unitree Go1’s standing height).963

To save token usage and query costs, we also automatically fix invalid terrains: moving out-of-bounds964

goals, setting the quadruped spawn area to flat ground, and expanding obstacles that are too skinny.965

Note that these fixes can be easily replaced with assertions and additional LLM queries.966

A.5 Learning Progress Reweighting967

We compute learning progress with the function G, which serves to prioritize progress in difficult968

tasks (low V ) over easy tasks (high V ). Following Kanitscheider et al. [58], we use the function969

G(x, y) = f(x)� f(y) where970

f(x) =
(1� x✓)x

x+ x✓(1� 2x)
(3)

with x✓ = 0.25. As seen in Figure 7, taking f(x)� f(y) leads to a larger learning progress estimate971

between 0.1 to 0.3 than 0.8 to 1.0.

Figure 7: Our learning progress reweighting function G.
972
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A.6 Simulation Setup973

Environment Specification. We adopt the simulation framework from Cheng et al. [21], which974

constructs an obstacle course terrain by quantizing the ground plane into a 2D grid and specifying the975

height at each index in the grid. Along with the terrain heights, the course includes 8 goal positions976

indicating both progression and heading the policy should follow. Due to the difficult-but-progressive977

nature of parkour skills, the course includes an in-built inner curriculum where obstacles are scaled978

by a difficulty parameter between 0 and 1; during training, policies are initialized at lower difficulties979

and progress to higher difficulties if they pass the course. This specification is completely defined980

via a Python function, which takes the difficulty as input and outputs a 2D array for terrain heights981

and a list of 8 (x, y) coordinates for the goal positions. In Eurekaverse, the LLM is instructed to982

output precisely this function, which defines terrains ✓j modulated by the difficulty argument.983

Policy Training. We train the policy on multiple terrains in parallel; specifically, one round of984

training consists of 10 terrain classes, each with 10 difficulties. Following Cheng et al. [21], we first985

train a teacher policy using privileged scandot sensing. After fully training a privileged teacher, we986

then distill a student policy that takes in depth frames from a front-facing camera. Apart from the987

scandot or depth, the policy also receives proprioception and heading and speed commands. We train988

the policy with PPO [60] with heading and velocity tracking rewards, regularizations like action rate989

and torque, and penalties for foot placements near terrain edges. We use this same reward across all990

methods and ablations.991

Sim-To-Real. To facilitate sim-to-real transfer, as in Cheng et al. [21], we use regularized online992

adaptation (ROA) [67], which trains an adaptation module that estimates environment properties993

from observation history. We also domain randomize over physical properties like friction, mass,994

and motor strength. During distillation, we introduce an action delay and depth sensing delay of 1995

simulation step (0.02s), and we update the depth frame only once every 5 steps (10Hz). Finally, we996

introduce noise in the depth input, adding Gaussian noise to its true value and randomly setting some997

pixels to 0.998

Simulation Benchmark. In Figure 8, we render each of the 20 obstacles in our parkour benchmark.999

Each of these obstacles is instantiated with 10 difficulties during evaluation, and these renders capture1000

the obstacles at medium difficulty.

Figure 8: Visualizing our simulated parkour benchmark, roughly organized by skill: climbing boxes, walking
on slopes, jumping, traversing stepping stones, climbing stairs, navigating narrow hallways, moving zig-zag
through agility poles, and balancing.

1001

A.7 Deployment Details1002

We deploy on the Unitree Go1, a quadrupedal robot with 12 degrees of freedom. When standing,1003

the robot is 64.5 cm long, 28 cm wide, and 40 cm tall. We use the 3D camera mount introduced1004
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by Zhuang et al. [20] to attach an Intel RealSense D435 camera onto the Go1’s head. Our vision1005

policy runs onboard the Nvidia Jetson Xavier NX, with the depth encoder running asynchronously at1006

10 Hz and the policy at 50 Hz. Before depth inputs are passed through the depth encoder, we crop1007

the left and right edges to remove dead pixels; we then apply hole-filling and temporal filters and1008

down-sample the resolution from 270x480 to 60x90.1009

A.8 Ablations1010

In Figure 9, we plot the performance of ablations from Figure 4 (right) across training steps. All1011

ablations plateau except for Eurekaverse and Random Resampling, and we see that Random1012

Resampling exhibits much higher variance than Ours.1013

Figure 9: Comparing sim benchmark performance across training steps for Eurekaverse and ablations.

23


	Introduction
	Related Work
	Problem Setting
	Methods
	Initial Environment Generation
	Co-Evolution of Agents and Environments

	Experiments
	Experimental Setup
	Simulated Parkour Benchmark
	Simulation Experiments Results
	Real-World Experiments

	Conclusion
	Appendix
	Algorithm Details
	Prompts and Examples
	Generated Terrain Examples
	Environment Check and Automatic Fixing
	Learning Progress Reweighting
	Simulation Setup
	Deployment Details
	Ablations


