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RefMask3D: Language-Guided Transformer for 3D Referring
Segmentation
Anonymous Authors

ABSTRACT
3D referring segmentation is an emerging and challenging vision-
language task that aims to segment the object described by a natural
language expression in a point cloud scene. The key challenge be-
hind this task is vision-language feature fusion and alignment. In
this work, we propose RefMask3D to explore the comprehensive
multi-modal feature interaction and understanding. First, we pro-
pose a Geometry-Enhanced Group-Word Attention to integrate lan-
guage with geometrically coherent sub-clouds through cross-modal
group-word attention, which effectively addresses the challenges
posed by the sparse and irregular nature of point clouds. Then, we
introduce a Linguistic Primitives Construction to produce semantic
primitives representing distinct semantic attributes, which greatly
enhance the vision-language understanding at the decoding stage.
Furthermore, we introduce an Object Cluster Module that analyzes
the interrelationships among linguistic primitives to consolidate
their insights and pinpoint common characteristics, helping to cap-
ture holistic information and enhance the precision of target iden-
tification. The proposed RefMask3D achieves new state-of-the-art
performance on 3D referring segmentation, 3D visual grounding,
and also 2D referring image segmentation. Especially, RefMask3D
outperforms previous state-of-the-art method by a large margin of
5.36% mIoU on the challenging ScanRefer dataset.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.

KEYWORDS
3D referring segmentation, Language-guided Transformer, vision-
language learning

1 INTRODUCTION
Given a point cloud scene and a natural language description of the
target object within the scene, 3D referring segmentation [16, 35, 40]
aims at predicting a point-wise mask for the target object. Despite
its similarity to 3D visual grounding task [2, 5] that focuses on
predicting bounding boxes based on language descriptions, 3D
referring segmentation has remained underexplored. This disparity
in research attention could be attributed to the fact that 3D referring
segmentation demands point-wise masks and a deeper, nuanced
understanding of intricate fine-grained semantics.
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(a) Two-stage Framework
“This is a white kitchen counter. 

It is above the cabinets”

Group A

“This is a white kitchen counter. 
It is above the cabinets”

Contrastive 
Loss

Linguistic Primitives 
Construction

Figure 1: (a) Two-stage framework, fusing language features
in the later matching stage, exhibit limited interactions and
weak alignment between vision and language features. In
contrast, (b) our RefMask3D conducts comprehensive vision-
language fusion in both the early feature encoding stage
and decoding stage. Combined with contrastive learning, our
model learns a well-structured vision-language joint feature
space than two-stage methods.

The prevailing methods [2, 5, 16, 35] in 3D referring segmenta-
tion, as shown in Figure 1 (a), typically adopt a two-stage segmentation-
then-matching pipeline that firstly segments redundant objects us-
ing a pre-trained instance segmentation model, and then selects
the target object by matching visual and linguistic features [16, 35].
However, this pipeline exhibits inherent limitations. Given that the
matching phase relies on segmentation predictions from the first
phase, any omissions or inaccuracies at the first phase inevitably
significantly weaken the accuracy of the following matching phase.
Furthermore, simplistic incorporation of textual information dur-
ing matching fails to analyze the semantic impact of individual
words, thus overlooking complex semantic nuances and leading
to matching errors. These issues underscore the necessity for a
unified approach that integrates both segmentation and matching
processes with a deeper linguistic understanding. In response, our
work introduces a streamlined, effective end-to-end pipeline that
comprehensively leverages language information. The proposed
method, RefMask3D, enhances the interaction and understanding
between vision and language, aiming to enhance the performance
of 3D referring segmentation.

First, different from previous two-stage works [2, 5, 16, 35] that
adopt segmentation-then-matching pipeline, we propose to fully har-
ness the early feature encoding layers to extract rich multi-modal
context. To this end, we introduce a Geometry-Enhanced Group-
Word Attention, which conducts cross-modal attention between
language and local groups (sub-clouds) with geometrically adja-
cent points at each stage of the Point Encoder. This integration

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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not only reduces the noise from direct point-to-word correlations,
which is common due to the sparse and irregular nature of point
clouds, but also leverages the intrinsic geometric relationships and
fine-grained 3D structure within the point clouds. The proposed
Geometry-Enhanced Group-Word Attention significantly improves
the model’s ability to interact with and understand linguistic and
geometric data. Additionally, we incorporate a learnable “back-
ground” language token to prevent the entanglement of irrelevant
language features with local group features. For example, as shown
in Figure 1 (b), “Group A” as a non-target group exhibits low re-
sponses to these irrelevant words. This approach ensures that point
features are enriched with semantic-related linguistic information,
maintaining a continuous and context-aware awareness of the rele-
vant language context at each group or point in the network.

Second, with the fused vision-language features, we further de-
sign how to effectively identify the target object in decoder. Effec-
tively localizing the target significantly hinges on the cues provided
by the query input to the cross-modal decoder [11, 29, 31]. A ma-
jority of existing works [18, 33, 37, 41] initialize non-parametric
query with point positions sampled with furthest point sampling
(FPS) or parametric learnable query. Such strategies typically aim to
scan the whole point cloud scene to identify all possible objects as
candidates. However, it inadvertently sidesteps an essential aspect:
the fact that only one language-referred target object is present,
potentially leading to insufficient training or posing challenges in
optimization. Although 3D-SPS [31] proposes to select the top-𝑘
query points close to the given language description to alleviate this
issue, the selection process is susceptible to noise, particularly in
scenarios where the chosen points do not encompass the language-
related target. To address these challenges, we introduce a strategy
termed Linguistic Primitives Construction (LPC). We initialize a
diverse set of primitives, each designed to represent distinct seman-
tic attributes such as shape, color, size, relationships, location, and
so on. By engaging in interactions with specific linguistic infor-
mation, these primitives are capable of acquiring corresponding
attributes. Feeding these semantically enriched primitives into the
decoder enhances the network’s focus on diverse semantics within
the point cloud, thereby significantly improving the model’s ability
to accurately localize and identify the target object.

Furthermore, an Object Cluster Module is proposed to capture
holistic information and generate the object embedding for seg-
menting the target object. Linguistic primitives are designed to
focus on specific parts of a point cloud that correlate with their se-
mantic attributes. However, our ultimate goal is to identify a unique
target object based on the given text, which requires a holistic un-
derstanding of language. To achieve this, we propose an Object
Cluster Module. This module first explores the relationships among
the linguistic primitives to discern commonalities and differences in
their focus areas. Utilizing this insight, we initialize language-based
queries to capture these common characteristics, which form the
final object embedding crucial for identifying the target object. The
proposed Object Cluster Module greatly help the model to deepen
the holistic understanding of linguistic and visual information.

Our main contributions are summarised as follows:
• We propose a Geometry-Enhanced Group-Word Attention,
which enhances cross-modal interactions by integrating lan-
guage with geometrically coherent sub-clouds, effectively

addressing the challenges posed by the sparse and irregular
nature of point clouds.

• We design a Linguistic Primitives Construction, a strategy
that learns primitives to represent distinct semantic attributes,
enhancing the model’s capability to accurately identify tar-
gets through interaction with specific linguistic information.

• We introduce an Object Cluster Module that analyzes the
interrelationships among linguistic primitives to unify their
insights and pinpoint common characteristics to deepen the
holistic understanding of linguistic and visual information.

• We achieve new state-of-the-art performance on 3D refer-
ring segmentation and visual grounding, and significantly
outperform previous methods by a large margin, e.g., 5.36%
mIoU on the challenging ScanRefer dataset.

2 RELATEDWORKS
2.1 3D Instance and Referring Segmentation
3D Instance Segmentation aims to detect and segment instances
in the sparse point clouds. The success of the transformer has
permeated the 3D modeling domain. In 3D object detection, meth-
ods [29, 33] employing the transformer have achieved state-of-
the-art results. Inspired by this, transformer-based methods like
OneFormer3D [23], Mask3D [37], SPFormer [38], MAFT [24] for in-
stance segmentation have subsequently been developed.Mask3D [37]
treats each object as an instance query. Through Transformer de-
coders, it learns these queries by attending to multi-scale point
cloud features and the queries concurrently produce all instance
masks integrating with point features.

Influenced by advancements in 2D multimodality, 3D referring
segmentation is increasingly gaining attention. This field focuses
on segmenting a target instance based on a given language expres-
sion. TGNN [16] is the first work to solve this challenging prob-
lem and introduces aggregating textual features by considering
the neighboring local structure of each instance but also empha-
sizes capturing spatial interactions centered around each object.
X-RefSeg3D [35] follows the paradigm of TGNN and builds a multi-
modal graph for the given 3D environment, integrating textual and
spatial connections to facilitate reasoning through the use of graph
neural networks. 3D-STMN [40] is proposed to construct dense
superpoint-text matching which is enhanced through dependency-
driven insights in the end-to-end paradigm. Despite the notable
achievements of existing methods, they fall short in facilitating
comprehensive multi-modal feature interaction and understanding.
This paper is dedicated to addressing this challenge.

2.2 3D Visual Grouding
3D visual grounding aims to identify and locate the referred object
in a 3D scene based on the language expression. Three datasets
including ScanRefer [5], ReferIt3D [2] and Multi3DRefer [47] are
proposed to facilitate the research which contains object-expression
pairs based on ScanNet [9]. Previous methods [1, 3, 12–15, 17, 36,
44, 44, 46, 48] mostly employ a two-stage pipeline. They first exploit
either a 3D object detector [20, 22, 29] or ground truth informa-
tion to generate object proposals. Subsequently, they utilize a text
encoder [10, 27] to extract linguistic features and then identify
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Figure 2. The framework overview of the proposed RefMask3D. It extracts text-enriched point features using the Language-Assisted Point
Encoder, which conducts early-stage contextual vision-language fusion. Subsequently, the Language-Cluster Query Generation Module
effectively clusters language information into learnable queries. These features are then fed into the Transformer Decoder to decode object-
level embeddings. Cross-Modal Contrastive Learning is employed on the object embeddings and text embeddings, with the aid of memory
banks, to effectively distinguish the target embedding from distractor embeddings.

language and locates the target directly within a one-stage163
network for the first time. BUTD-DETR [19] calculates the164
correlation between each word and object, subsequently se-165
lecting the word features that align with the object’s name166
to match the corresponding object. EDA [43] builds upon167
BUTD-DETR and further proposes text decoupling to sep-168
arate text components by grammatical analysis. One-stage169
methods have taken a dominant role and both BUTD-DETR170
and EDA have demonstrated superior performance. How-171
ever, these methods either need to train an additional text172
span predictor network or utilize external tools to decouple173
text which is time-consuming and complicated. Besides,174
they are designed for visual grounding and cannot perfectly175
adapt to referring segmentation. To this end, we propose176
our method to simplify the image-text matching and apply177
it to both 3D referring segmentation and visual grounding.178

3. Methods179

3.1. Architecture Overview180

Figure 2 shows the proposed end-to-end 3D referring seg-181
mentation model RefMask3D. RefMask3D takes an input182
pair comprising a point cloud scene and a textual descrip-183
tion, and produces a point-wise mask for the target object184
indicated by the textual description. The point cloud scene,185
denoted as Pcloud 2 RN⇥(3+F ), consists of a total of N186
points, with each point containing 3D coordinate informa-187
tion 2 R3 and an auxiliary feature 2 RF like color.188

First, we extract the vision and language features and189
build deep interaction between them in the encoder. A190
text encoder is employed to embed the text description191
into language features, denoted as T 2 RNt⇥D, where D192

and Nt represent the number of channels and the number 193
of words, respectively. The proposed Language-Assisted 194
Point Encoder is based on MinkowskiEngine [8] follow- 195
ing Mask3D [39]. The proposed Encoder initially down- 196
samples the point cloud features and then incorporates lan- 197
guage information when up-sampling these features, form- 198
ing a hierarchical language-aware point encoding. The 199
multi-scale vision-language features derived from the up- 200
sampling phase are denoted as {F 0

0, F
0
1, F

0
2, F

0
3, F

0
4}. The 201

full-resolution feature map F 0
0 2 RN⇥D is utilized as the 202

mask feature to generate the final mask predictions. 203

In the Transformer Decoder, the proposed Language- 204
Cluster Query Generation module clusters language infor- 205
mation into No learnable queries O, enabling each query 206
to accumulate varying comprehensions of textual descrip- 207
tion. These queries are hence guided by informative lan- 208
guage cues to identify the target object instead of aimlessly 209
seeking objects. The language-cluster queries O0, the multi- 210
scale point features {F 0

1, F
0
2, F

0
3, F

0
4}, and the language fea- 211

ture T collectively serve as input to a 4-layer cross-modal 212
transformer decoder, which is applied L times, culminating 213
in an overall decoder with 4L layers. 214

Next, cross-modal contrastive learning takes the object 215
embedding and language feature of the i-th cross-modal 216
transformer decoder layer as inputs to conduct intra and 217
inter-sample learning to construct the discriminative feature 218
representation of object embedding and language features. 219

Finally, we obtain masks by performing a multiplica- 220
tion operation between the last-layer object embedding and 221
mask feature F 0

0. Meanwhile, we employ a MLP head to 222
predict the confidence score. The mask with the highest 223
confidence score is then selected as the output. 224

3
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The above operations are all performed on the dim Nt.306
With Â, each object query effectively accumulates the307

word embeddings corresponding to its designated group and308
obtains language-cluster embeddings, namely W = ÂV .309
To ensure that these language-cluster embeddings appropri-310
ately complement rather than dominate the object queries,311
and to maintain a balanced integration of linguistic infor-312
mation, we introduce an additional block G. G consists of313
a two-layer Multi-Layer Perceptron (MLP), followed by a314
sigmoid function. The role of G is to generate a series of315
element-wise weight maps derived from W . These weight316
maps are used to adjust the influence of each element in317
the language-cluster embeddings, thereby ensuring a har-318
monious blend of linguistic and object queries.319

Finally, the language-cluster object query is formulated320
by:321

O0 = !1(O + W � G(W)), (5)322

where !1 is the linear projection layer. O0 represents the323
language-cluster object queries, with distinct queries con-324
centrating on various clustered language semantics. The325
object queries are designed to cluster linguistic information326
that exhibits similar semantic patterns. Feeding such object327
queries into the decoder enables it to emphasize diverse lan-328
guage information patterns, which contributes to accurately329
identifying target objects.330

3.4. Cross-Modal Contrastive Learning331

While the proposed Language-Cluster Query Generation332
aids in identifying target objects, it does not effectively miti-333
gate ambiguities arising from other embeddings. These am-334
biguities could lead to false positives during the inference335
stage. Previous approaches employed contrastive learn-336
ing to differentiate the target token from others. This is337
achieved by maximizing the similarity between the target338
token and the corresponding expression while minimizing339
similarities with non-target (negative) pairs. The process340
can be formulated as intra-sample contrastive learning:341

Lintra = � log
exp(< t, o+ > /⌧)

PNo

k=1 exp(< t, ok > /⌧)
, (6)342

where <, > denotes cosine similarity, ⌧ is the temperature343
parameter, t 2 RD represents the text embedding obtained344
by pooling language features T . The set {ok}No

k=1 comprises345
object embeddings derived from the output of the cross-346
modal transformer layer, with o+ being the positive object347
embedding that matches with the ground-truth mask.348

The intra-sample loss Lintra only focuses on penalizing349
discrepancies within a single language description and point350
cloud scene, and doesn’t account for the inter-sample rela-351
tionships between different samples, e.g., the same object352
but different textual descriptions, different objects from the353
same or different point cloud scene. To overcome this lim-354
itation, we propose to operate on the inter-sample level to355
consider the global context of the entire dataset.356

Specifically, within a mini-batch, we organize the pos- 357
itive samples into a set denoted as P, which contains the 358
samples with different textual descriptions for the same ob- 359
ject. Other samples not categorized as positive are assem- 360
bled under the negative sample set N. A limitation arises 361
due to the finite number of negative samples, constrained 362
by the batch size. Additionally, the quality of positive and 363
negative samples for contrastive learning cannot be ensured 364
under such a random mini-batch. To address these issues, 365
we introduce a memory bank and hard sample selection to 366
refine the composition of P and N for effective learning. 367
• Momory Bank Construction. Building upon insights 368
from recent studies [15, 41, 44], which emphasize the im- 369
portance of a large pool of negative samples for effec- 370
tive contrastive learning, we introduce two distinct mem- 371
ory banks: a visual memory bank Mv 2 RNs⇥D, and a 372
textual memory bank Mt 2 RNs⇥D to address the limi- 373
tations imposed by mini-batch sizes. These memory banks 374
are structured to store object embeddings and text features, 375
respectively. The term Ns denotes the total count of train- 376
ing samples, while D represents the dimensionality of the 377
feature vectors. The content of Mv and Mt is dynamically 378
updated throughout the training process with features from 379
all training samples. This approach allows us to effectively 380
access the entire dataset’s sample pool. 381
• Hard Sample Selection: With the extensive sample col- 382
lection in our memory bank, a key question emerges: how 383
do we select the most appropriate positive and negative 384
samples? Drawing from previous studies [22, 23, 37, 41], 385
it’s evident that hard samples play a crucial role in con- 386
trastive learning by aiding the development of robust rep- 387
resentations. Therefore, for a given target object and its 388
textual description, we specifically select objects that be- 389
long to the same class and are located in the same scene as 390
hard negative samples. This approach effectively addresses 391
the issue of distractions caused by multiple instances of the 392
same class in a scene. To ensure a stable training process, 393
the rest of the negative samples are acquired via random 394
sampling. For the positive sample selection, given the target 395
object, we include all its corresponding textual descriptions. 396

Utilizing the constructed positive and negative sample 397
sets, we develop the inter-sample loss Linter using a multi- 398
positive supervised contrastive approach, formularted as: 399

Linter = � 1

|P|
X

a+2P

log
exp(< a, a+ > /⌧)P

a02P,N exp(< a, a0 > /⌧)
,

(7) 400
where a represents the anchor item, which can be either an 401
object or a language feature. When a is an object embed- 402
ding, a+ and a0 are text embeddings, and vice versa. The 403
primary aim of Linter is to refine the embedding space so 404
that embeddings of the same object from different modali- 405
ties (e.g., text and point) are brought closer, while embed- 406
dings of different objects are distanced. This approach ef- 407
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Figure 2: The framework overview of the proposed RefMask3D. It extracts text-enriched point features from the point encoder
which is assisted by Geometry-Enhanced Group-Word Attention. Subsequently, the Linguistic Primitives Construction Module
generates primitives to embody specific semantic attributes. These primitives are then fed into the Transformer Decoder to
focus on diverse semantics. Object Cluster Module is employed to analyze the interrelationships among linguistic primitives to
unify their insights and pinpoint common characteristics to enhance the precision of target identification.

the referred object through feature fusion and language feature
matching. In this context, InstanceRefer [46] streamlines the task
by approaching it as an instance-matching challenge. LanguageRe-
fer [36] turns the multi-modal problem into a language modeling
scenario, achieved by substituting 3D features with predicted ob-
ject labels. SAT [44] employs additional 2D semantics to boost
multi-modal alignment and achieve superior performance.

In contrast to the two-stage methods, 3D-SPS [31] adopts a pro-
gressive keypoint selection strategy guided by language and locates
the target directly within a single-stage network for the first time.
BUTD-DETR [18] calculates the correlation between each word and
object, subsequently selecting the word features that align with the
object’s name to match the corresponding object. EDA [41] builds
upon BUTD-DETR and further proposes text decoupling to separate
text components by grammatical analysis. Single-stage methods
have taken a dominant role and both BUTD-DETR and EDA have
demonstrated superior performance. However, these methods ei-
ther need to train an additional text span predictor network or
employ external tools to decouple text which is time-consuming
and complicated. Besides, they are designed for visual grounding
and cannot perfectly adapt to referring segmentation. To this end,
we propose our method to simplify the image-text matching and
apply it to both 3D referring segmentation and visual grounding.

3 METHODS
3.1 Architecture Overview
Figure 2 shows the overall architecture of our proposed end-to-
end 3D referring segmentation approach RefMask3D. RefMask3D
takes an input pair comprising a point cloud scene and a textual
description, and produces a point-wise mask for the target object
indicated by the textual description. The point cloud scene, denoted
as 𝑃𝑐𝑙𝑜𝑢𝑑 ∈ R𝑁×(3+𝐹 ) , consists of a total of 𝑁 points, with each

point containing 3D coordinate information ∈ R3 and an auxiliary
feature ∈ R𝐹 like color.

First, a text encoder is employed to embed the text description
into language features, denoted as 𝑭𝑡 ∈ R𝑁𝑡×𝐷 , where 𝐷 and 𝑁𝑡
represent the number of channels and words, respectively. We ex-
tract point features from the point encoder which builds deep inter-
action between vision and language through Geometry-Enhanced
Group-Word Attention. The point encoder is a 3D U-Net-like back-
bone. In the vanilla U-Net architecture, the feature map at the
𝑖-th layer in the upsampling path is obtained by combining the
features from the corresponding 𝑖-th layer in the downsampling
path with the features from the (𝑖 + 1)-th layer which is illustrated
in the gray line in Figure 2. The vanilla output features denote
as 𝑭𝑖 ∈ R𝑁𝑖×𝐷 , 𝑖 = {1, 2, 3, 4}. Therefore, the multi-scale vision-
language features derived from the point encoder are denoted
as 𝑭 ′

𝑖
∈ R𝑁𝑖×𝐷 , 𝑖 = {1, 2, 3, 4}. The full-resolution feature map

𝑭 ′0 ∈ R𝑁×𝐷 is used as the mask feature for mask predictions.
Then, Linguistic Primitives Construction produces primitives O′

to represent distinct semantic attributes by informative language
cues, enhancing the model’s capability to accurately localize and
identify targets through interaction with specific linguistic infor-
mation. The linguistic primitives O′, the multi-scale point features
{𝑭 ′1, 𝑭

′
2, 𝑭

′
3, 𝑭

′
4}, and language features 𝑭𝑡 collectively serve as input

to a 4-layer cross-modal transformer decoder, which is applied 𝐿
times, leading to an overall transformer decoder with 4𝐿 layers.

Next, the output of linguistic primitives through transformer
decoder and object queries O𝑐 are fed into the Object Cluster Mod-
ule to analyze the interrelationships among linguistic primitives to
unify their insights and pinpoint common characteristics. Finally,
we obtain masks by performing a multiplication operation between
the last-layer object embeddingO′

𝑐 andmask feature 𝑭 ′0 . Meanwhile,
we employ a MLP head to predict confidence score. The mask with
the highest confidence score is selected as the output.
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3.2 Geometry-Enhanced Group-Word Attention
Different from models [16, 18, 31, 41] that stack a modality fusion
module on top of the vision or language backbones, our approach
integrates multi-modal fusion within the point encoder, leverag-
ing the advantages of an end-to-end paradigm. Early-stage fusion
of cross-modal features is believed to enhance the effectiveness
of the fusion process in 2D-RES tasks [43]. However, it remains
unexplored within the 3D field. The 3D domain, characterized by
the sparse and irregular distribution of point cloud data, presents
unique challenges to cross-modal fusion. The conventional 2D
method of directly establishing relationships between each point
and linguistic terms introduces excessive noise, potentially im-
pairing performance due to the complexity and variability of point
cloud structures. Addressing this challenge, we introduce Geometry-
Enhanced Group-Word Attention mechanism. Unlike traditional
methods that calculate cross-modal relationships at the individual
point level, our approach innovatively processes local groups (sub-
clouds) with geometrically adjacent points. This methodology not
only mitigates the noise associated with direct point-to-word corre-
lations but also capitalizes on the inherent geometric relationships
within point clouds, enhancing the model’s ability to accurately
integrate linguistic and 3D structure.

Firstly, we employ farthest point sampling (FPS) to downsample
the point number of features 𝑭𝑖 from 𝑁𝑖 to 𝑁𝑔 , which serves as a
set of local centroids. Following the identification of these local
centroids, we proceed to gather their neighboring points. This is
achieved through the application of the 𝑘-nearest Neighbor (𝑘-NN)
algorithm, which allows us to systematically associate each local
centroid with its adjacent points based on its geometric proximity.
The aforementioned process is formulated as:

𝑭
𝑔

𝑖
= 𝑘-NN(FPS(𝑭𝑖 ), 𝑭𝑖 ) ∈ R𝑁𝑔×𝑘×𝐷 . (1)

As such, we obtain 𝑁𝑔 local groups, each of which consists of 𝑘
points. Next, we perform group-word cross-modal attention be-
tween 𝑁𝑔 local groups and language features 𝑭𝑡 , We formulate it
as:

S𝑔
𝑖
=

𝑭
𝑔

𝑖
𝑭𝑡𝑇

√
𝐷

∈ R𝑁𝑔×𝑘×𝑁𝑡 , (2)

where S𝑔
𝑖
denotes the relationship between local groups 𝑭𝑔

𝑖
and

𝑭𝑡 and we sum along 𝑘 nearest neighbors dimentation to obtain
the relationship between each local centroid with 𝑭𝑡 denoted as
S𝑐
𝑖

∈ R𝑁𝑔×𝑁𝑡 . Subsequently, we extract linguistic features 𝑭𝑐
𝑖𝑡

related to the local centroids as,

𝑭𝑐𝑖𝑡 = softmax(S𝑐𝑖 )𝑭𝑡 ∈ R
𝑁𝑔×𝐷 . (3)

Finally, inspired by PointNet++ [34], we propagate 𝑭𝑐
𝑖𝑡
from each

local centroid to its corresponding original point number with a
weighted summation and obtain linguistic features related to the
whole point feature map 𝑭𝑖𝑡 ∈ R𝑁𝑖×𝐷 which have the same shape
as 𝑭𝑖 . We combine them to generate multi-modal feature maps 𝑭 ′

𝑖
via element-wise multiplication.

𝑭 ′𝑖 = 𝑭𝑖𝑡 ⊙ 𝑭𝑖 . (4)

Through the above process, we have implemented cross-modal
fusion based on the sparse and irregular characteristics of 3D data
in the point feature extraction stage.

Besides, in vanilla cross-modal attention, the challenge arises
when dealing with situations where a point has no corresponding
words related to it. To tackle this, we introduce learnable back-
ground embeddings for language features, denoted as 𝑻𝑏𝑔 ∈ R𝐷 .
This strategy is designed to allow points without corresponding
text information to focus on a generic background text embedding,
𝑻𝑏𝑔 , reducing the potential distortion caused by unrelated text on
the point feature. Specifically, at each feature encoding layer 𝑖 , we
perform a concatenation operation on the language feature 𝑭𝑡 with
the background feature 𝑻𝑏𝑔 . Subsequently, the above relationship
calculation process becomes:

S𝑔
′

𝑖
=

𝑭
𝑔

𝑖
[𝑭𝑡 ;𝑻𝑏𝑔]𝑇√

𝐷
,

𝑭𝑐
′
𝑖𝑡 = R (softmax(S𝑐

′
𝑖 ))𝑭𝑡 ,

(5)

where [; ] represents the concatenation operation, and𝐷 is the chan-
nel dimension.S𝑔

′

𝑖
enables point features without language element

correspondence to emphasize the background feature, reducing ir-
relevant feature impact. The operation R (·) is used to remove the
last column from a given matrix, which prevents the integration
of the background feature into the final fused feature. As such, we
obtain 𝑭𝑐

′
𝑖𝑡

which represent refined linguistic features related to the
local centroids and not influenced by irrelevant words. The back-
ground embedding is a learnable parameter, designed to capture the
overall data distribution of the dataset and represent background
information effectively. This embedding is only used during the
attention calculation process. By incorporating the background
embedding, we facilitate more accurate cross-modal interactions,
which are not adversely influenced by irrelevant words.

3.3 Linguistic Primitives Construction
In the 3D domain, the existing approaches typically initialize queries
with point coordinates sampled from the input point cloud [29, 33,
37]. These sampling strategies are based on either the farthest
point sampling method [33, 37] or the 𝑘-closest points sampling
technique [18, 29]. Such methods are prevalent in tasks like visual
grounding [18, 29, 41] and instance segmentation [37]. However,
a key limitation of these methods is their neglect of language in-
formation, which is vital for precise referring segmentation. Rely-
ing solely on farthest point sampling often results in predictions
that stray from the objects of interest, especially in sparse scenes,
thereby hindering convergence or resulting in the loss of objects.
Although 3D-SPS [31] attempts to address this issue by introduc-
ing a language-aware query selection that selects the top-𝑘 query
points close to the given language description. Yet, this approach is
manually tailored and susceptible to noise. This becomes particu-
larly problematic when the selected points don’t accurately reflect
the target object or when they are all anchored to a single word.
In response to these challenges, we propose a Linguistic Primi-
tives Construction to incorporate semantic content from language
that learn diverse linguistic primitives to locate objects related to
corresponding semantic properties separately.

In the process outlined in Figure 3, we begin by initializing 𝑁𝑜
learnable primitives by sampling them from different Gaussian
distributions, each specifying a distinct semantic property to be
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3.2. Language-Assisted Point Encoder225

Different from models [19, 33, 43] that stack a modality fu-226
sion module on top of the vision or language backbones,227
our approach integrates multimodal fusion directly within228
the point encoder. Early-stage fusion of features [47] is be-229
lieved to enhance the effectiveness of the fusion process.230
In vanilla cross-modal attention, the challenge arises when231
dealing with situations where a point has no corresponding232
words related to it.233

To tackle this, we introduce learnable background em-234
beddings for language features, denoted as Tbg 2 RD. This235
strategy is designed to allow points without corresponding236
text information to focus on a generic background text em-237
bedding, Tbg , reducing the potential distortion caused by238
unrelated text on the point feature. Specifically, as shown in239
the left part of Figure 2, at each feature encoding layer i, we240
perform a concatenation operation on the language feature241
T with the background feature Tbg . Subsequently, we com-242
pute the similarity S between every point and every word243
feature via point-word attention:244

S =
Fi[T ; Tbg]Tp

D
, (1)245

where [; ] represents the concatenation operation, and D is246
the channel dimension. S enables point features without247
language element correspondence to emphasize the back-248
ground feature, reducing irrelevant feature impact. Subse-249
quently, linguistic feature T is injected into point features250
Fi based on their similarity S:251

F 0
i = Fi + R (softmax(S))T, (2)252

where F 0
i represents the fused point features. The operation253

R (·) is used to remove the last column from a given ma-254
trix, which prevents the integration of the background fea-255
ture into the final fused feature. For the sake of simplicity,256
we omit the linear projection layers in this explanation.257

The background embedding is a learnable parameter, de-258
signed to capture the overall data distribution of the dataset259
and represent background information effectively. This em-260
bedding is only used during the attention calculation pro-261
cess. By incorporating the background embedding, we fa-262
cilitate more accurate cross-modal interactions, which are263
not adversely influenced by irrelevant words.264

3.3. Language-Cluster Query Generation265

In the 3D domain, the existing approaches typically initial-266
ize queries with point coordinates sampled from the input267
point cloud [31, 35, 39]. These sampling strategies are268
based on either the farthest point sampling method [35, 39]269
or the k-closest points sampling technique [19, 31]. Such270
methods are prevalent in tasks like visual grounding [19,271
31, 43] and instance segmentation [39]. However, a key272
limitation of these methods is their neglect of language in-273
formation, which is vital for precise referring segmentation.274
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Figure 3. Primitive Cross-Modal Generator. We use lots of learned
primitives to represent fine-grained attributes. The generator syn-
thesizes visual features via assembling these primitives according
to input semantic embedding.

representation of object query and language features. Fi-234
nally, we obtain masks by performing a multiplication op-235
eration between the last-layer query feature and mask fea-236
ture F0. Parallelly, we employ a straightforward MLP head237
to predict the confidence score, S , of the referral. The mask238
with the highest confidence score is then selected as the out-239
put for our referring 3D instance segmentation.240

3.2. Language-Assisted Point Encoder241

Different from models that stack a modality fusion module242
on top of the vision or language backbones [8, 16], we also243
insert multimodal fusion inside the backbones, and include244
a gating mechanism for the cross-modal layers (shown in245
Figure 4). Specifically, at each encoding layer, we have:246
xxx where � is a learnable parameter initialized to 0.247

By inserting cross-attention layers with the gating mech-248
anism, we enable cross-modal interactions without affect-249
ing the original computational flow of the backbones at the250
beginning of model training.251

3.3. Language-Cluster Query Generation252

In the 3D domain, the conventional approach involves ini-253
tializing queries with point coordinates sampled from the254
input point cloud [27, 30, 34]. This sampling is typically255
based on either the farthest point sampling method [30, 34]256
or the k-closest points sampling technique [18, 27]. Such257
methods have shown initial success in visual grounding [18,258
27, 37] as well as instance segmentation [34]. However,259
a significant limitation is that they overlook language in-260
formation, a vital factor for precise referring. Specifically,261
solely relying on farthest point sampling often results in pre-262

dictions that stray from the objects of interest, especially in 263
sparse scenes. This can either lead to overlooked objects 264
or impede convergence. Although 3D-SPS [28] does try to 265
address this issue by introducing a language-aware query 266
selection mechanism that selects top-k query points close 267
to the given language description, it is often too manually 268
tailored and can be easily affected by noise. This is particu- 269
larly evident when the selected points don’t truly reflect the 270
language-driven target or when they are all anchored to a 271
single word. Against this backdrop, we introduce our pro- 272
posed Language-Cluster Query Generation. 273

Firstly, we opt to seamlessly incorporate language infor- 274
mation into a group of learnable queries. As illustrated in 275
Figure 3, we initialize K learnable embeddings, denoted by 276
O 2 RK⇥D, as our object queries. Two distinct linear lay- 277
ers, !Q and !K , are employed to project the object query 278
and the language word feature Ft into a shared dimension, 279
which are represented as Q and K respectively. 280

Then, the similarity between the object query and word 281
embeddings is computed by multiplying Q and K, and fur- 282
ther refined using the Gumbel-Softmax [19] operation as: 283

284

A = Gumbel�Softmax(
QKT

p
D

, dim = Q). (1) 285

Next, we employ a hard one-hot assignment strategy [39] 286
to convert soft assignment probabilities into one-hot en- 287
coded vectors for the distinct learned object query groups, 288
represented by Â. Each object query then aggregates all the 289
word embeddings linked to its group, resulting in language- 290
clustered tokens, W = ÂV . To ensure that these tokens 291
don’t overshadow the object query and to provide a flexible 292
degree of linguistic integration, we incorporate a two-layer 293
MLP, symbolized as G, followed by a sigmoid activation. 294
This MLP produces a series of element-wise weight maps 295
based on W , adjusting each element’s scale. 296

Finally, the language-cluster query is formulated by: 297

O0 = !1(O + W � G(W)), (2) 298

where O0 represents the language-cluster query, and !1 is 299
the linear layer responsible for projecting the query features. 300
Discussion Our language-cluster query generation works 301
similarly to the Grouping Block of GroupViT [39]. The 302
Grouping Block of GroupViT [39] groups similar seman- 303
tic regions with weak text supervision while our language- 304
cluster query generation clusters similar language words 305
from self-supervision. Additionally, our technique benefits 306
from a unique weight map, allowing for a more nuanced and 307
adaptive clustering of similar language terms. 308

3.4. Cross-Modal Contrastive Learning 309

During training, we use Hungarian matching to select an 310
object query with the lowest cost to the ground-truth ob- 311
ject mask as our output. And then supervise them in the 312

4
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Figure 3. Language-Cluster Query Generation (LCQG) effectively
clusters linguistic information T into object queries O according
to semantic patterns, facilitating the decoding of the target object.

Relying solely on farthest point sampling often results in 275
predictions that stray from the objects of interest, especially 276
in sparse scenes, thereby hindering convergence or resulting 277
in the omission of objects. Although 3D-SPS [33] attempts 278
to address this issue by introducing a language-aware query 279
selection that selects the top-k query points close to the 280
given language description. Yet, this approach is manually 281
tailored and susceptible to noise. This becomes particularly 282
problematic when the selected points don’t accurately re- 283
flect the target object or when they are all anchored to a 284
single word. In response to these challenges, we propose 285
Language-Cluster Query Generation module. 286

In the process outlined in Figure 3, we begin by initializ- 287
ing No learnable embeddings, represented by O 2 RNo⇥D, 288
to serve as our object queries, where No is the number of 289
object queries. Three distinct linear layers, !Q, !K , and 290
!V , are employed to project the object query and the lan- 291
guage word feature T into a shared feature space, which are 292
represented as Q, K, and V , respectively. Subsequently, we 293
calculate the similarity between each pair of object query 294
and word feature, formulated as: 295

A =
QKT

p
D

2 RNo⇥Nt . (3) 296

After computing the similarity matrix A, we then cluster 297
the word features into each group in Q. However, per- 298
forming this clustering with a one-to-one hard assignment 299
is not feasible in a differentiable manner. To overcome this 300
challenge, we employ the differentiable Gumbel-Softmax 301
approach [20, 45] to assign the word features to the ob- 302
ject query Q in a differentiable way and generate the cor- 303
responding clustering matrix between Q and K, i.e., 304

Ã = Gumbel-Softmax(A) 2 RNo⇥Nt ,

Â = one-hot(Ãargmax) + Ã � stop-gradient(Ã).
(4) 305
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The above operations are all performed on the dim Nt.306
With Â, each object query effectively accumulates the307

word embeddings corresponding to its designated group and308
obtains language-cluster embeddings, namely W = ÂV .309
To ensure that these language-cluster embeddings appropri-310
ately complement rather than dominate the object queries,311
and to maintain a balanced integration of linguistic infor-312
mation, we introduce an additional block G. G consists of313
a two-layer Multi-Layer Perceptron (MLP), followed by a314
sigmoid function. The role of G is to generate a series of315
element-wise weight maps derived from W . These weight316
maps are used to adjust the influence of each element in317
the language-cluster embeddings, thereby ensuring a har-318
monious blend of linguistic and object queries.319

Finally, the language-cluster object query is formulated320
by:321

O0 = !1(O + W � G(W)), (5)322

where !1 is the linear projection layer. O0 represents the323
language-cluster object queries, with distinct queries con-324
centrating on various clustered language semantics. The325
object queries are designed to cluster linguistic information326
that exhibits similar semantic patterns. Feeding such object327
queries into the decoder enables it to emphasize diverse lan-328
guage information patterns, which contributes to accurately329
identifying target objects.330

3.4. Cross-Modal Contrastive Learning331

While the proposed Language-Cluster Query Generation332
aids in identifying target objects, it does not effectively miti-333
gate ambiguities arising from other embeddings. These am-334
biguities could lead to false positives during the inference335
stage. Previous approaches employed contrastive learn-336
ing to differentiate the target token from others. This is337
achieved by maximizing the similarity between the target338
token and the corresponding expression while minimizing339
similarities with non-target (negative) pairs. The process340
can be formulated as intra-sample contrastive learning:341

Lintra = � log
exp(< t, o+ > /⌧)

PNo

k=1 exp(< t, ok > /⌧)
, (6)342

where <, > denotes cosine similarity, ⌧ is the temperature343
parameter, t 2 RD represents the text embedding obtained344
by pooling language features T . The set {ok}No

k=1 comprises345
object embeddings derived from the output of the cross-346
modal transformer layer, with o+ being the positive object347
embedding that matches with the ground-truth mask.348

The intra-sample loss Lintra only focuses on penalizing349
discrepancies within a single language description and point350
cloud scene, and doesn’t account for the inter-sample rela-351
tionships between different samples, e.g., the same object352
but different textual descriptions, different objects from the353
same or different point cloud scene. To overcome this lim-354
itation, we propose to operate on the inter-sample level to355
consider the global context of the entire dataset.356

Specifically, within a mini-batch, we organize the pos- 357
itive samples into a set denoted as P, which contains the 358
samples with different textual descriptions for the same ob- 359
ject. Other samples not categorized as positive are assem- 360
bled under the negative sample set N. A limitation arises 361
due to the finite number of negative samples, constrained 362
by the batch size. Additionally, the quality of positive and 363
negative samples for contrastive learning cannot be ensured 364
under such a random mini-batch. To address these issues, 365
we introduce a memory bank and hard sample selection to 366
refine the composition of P and N for effective learning. 367
• Momory Bank Construction. Building upon insights 368
from recent studies [15, 41, 44], which emphasize the im- 369
portance of a large pool of negative samples for effec- 370
tive contrastive learning, we introduce two distinct mem- 371
ory banks: a visual memory bank Mv 2 RNs⇥D, and a 372
textual memory bank Mt 2 RNs⇥D to address the limi- 373
tations imposed by mini-batch sizes. These memory banks 374
are structured to store object embeddings and text features, 375
respectively. The term Ns denotes the total count of train- 376
ing samples, while D represents the dimensionality of the 377
feature vectors. The content of Mv and Mt is dynamically 378
updated throughout the training process with features from 379
all training samples. This approach allows us to effectively 380
access the entire dataset’s sample pool. 381
• Hard Sample Selection: With the extensive sample col- 382
lection in our memory bank, a key question emerges: how 383
do we select the most appropriate positive and negative 384
samples? Drawing from previous studies [22, 23, 37, 41], 385
it’s evident that hard samples play a crucial role in con- 386
trastive learning by aiding the development of robust rep- 387
resentations. Therefore, for a given target object and its 388
textual description, we specifically select objects that be- 389
long to the same class and are located in the same scene as 390
hard negative samples. This approach effectively addresses 391
the issue of distractions caused by multiple instances of the 392
same class in a scene. To ensure a stable training process, 393
the rest of the negative samples are acquired via random 394
sampling. For the positive sample selection, given the target 395
object, we include all its corresponding textual descriptions. 396

Utilizing the constructed positive and negative sample 397
sets, we develop the inter-sample loss Linter using a multi- 398
positive supervised contrastive approach, formularted as: 399

Linter = � 1

|P|
X

a+2P

log
exp(< a, a+ > /⌧)P

a02P,N exp(< a, a0 > /⌧)
,

(7) 400
where a represents the anchor item, which can be either an 401
object or a language feature. When a is an object embed- 402
ding, a+ and a0 are text embeddings, and vice versa. The 403
primary aim of Linter is to refine the embedding space so 404
that embeddings of the same object from different modali- 405
ties (e.g., text and point) are brought closer, while embed- 406
dings of different objects are distanced. This approach ef- 407
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The above operations are all performed on the dim Nt.306
With Â, each object query effectively accumulates the307

word embeddings corresponding to its designated group and308
obtains language-cluster embeddings, namely W = ÂV .309
To ensure that these language-cluster embeddings appropri-310
ately complement rather than dominate the object queries,311
and to maintain a balanced integration of linguistic infor-312
mation, we introduce an additional block G. G consists of313
a two-layer Multi-Layer Perceptron (MLP), followed by a314
sigmoid function. The role of G is to generate a series of315
element-wise weight maps derived from W . These weight316
maps are used to adjust the influence of each element in317
the language-cluster embeddings, thereby ensuring a har-318
monious blend of linguistic and object queries.319

Finally, the language-cluster object query is formulated320
by:321

O0 = !1(O + W � G(W)), (5)322

where !1 is the linear projection layer. O0 represents the323
language-cluster object queries, with distinct queries con-324
centrating on various clustered language semantics. The325
object queries are designed to cluster linguistic information326
that exhibits similar semantic patterns. Feeding such object327
queries into the decoder enables it to emphasize diverse lan-328
guage information patterns, which contributes to accurately329
identifying target objects.330

3.4. Cross-Modal Contrastive Learning331

While the proposed Language-Cluster Query Generation332
aids in identifying target objects, it does not effectively miti-333
gate ambiguities arising from other embeddings. These am-334
biguities could lead to false positives during the inference335
stage. Previous approaches employed contrastive learn-336
ing to differentiate the target token from others. This is337
achieved by maximizing the similarity between the target338
token and the corresponding expression while minimizing339
similarities with non-target (negative) pairs. The process340
can be formulated as intra-sample contrastive learning:341

Lintra = � log
exp(< t, o+ > /⌧)

PNo

k=1 exp(< t, ok > /⌧)
, (6)342

where <, > denotes cosine similarity, ⌧ is the temperature343
parameter, t 2 RD represents the text embedding obtained344
by pooling language features T . The set {ok}No

k=1 comprises345
object embeddings derived from the output of the cross-346
modal transformer layer, with o+ being the positive object347
embedding that matches with the ground-truth mask.348

The intra-sample loss Lintra only focuses on penalizing349
discrepancies within a single language description and point350
cloud scene, and doesn’t account for the inter-sample rela-351
tionships between different samples, e.g., the same object352
but different textual descriptions, different objects from the353
same or different point cloud scene. To overcome this lim-354
itation, we propose to operate on the inter-sample level to355
consider the global context of the entire dataset.356

Specifically, within a mini-batch, we organize the pos- 357
itive samples into a set denoted as P, which contains the 358
samples with different textual descriptions for the same ob- 359
ject. Other samples not categorized as positive are assem- 360
bled under the negative sample set N. A limitation arises 361
due to the finite number of negative samples, constrained 362
by the batch size. Additionally, the quality of positive and 363
negative samples for contrastive learning cannot be ensured 364
under such a random mini-batch. To address these issues, 365
we introduce a memory bank and hard sample selection to 366
refine the composition of P and N for effective learning. 367
• Momory Bank Construction. Building upon insights 368
from recent studies [15, 41, 44], which emphasize the im- 369
portance of a large pool of negative samples for effec- 370
tive contrastive learning, we introduce two distinct mem- 371
ory banks: a visual memory bank Mv 2 RNs⇥D, and a 372
textual memory bank Mt 2 RNs⇥D to address the limi- 373
tations imposed by mini-batch sizes. These memory banks 374
are structured to store object embeddings and text features, 375
respectively. The term Ns denotes the total count of train- 376
ing samples, while D represents the dimensionality of the 377
feature vectors. The content of Mv and Mt is dynamically 378
updated throughout the training process with features from 379
all training samples. This approach allows us to effectively 380
access the entire dataset’s sample pool. 381
• Hard Sample Selection: With the extensive sample col- 382
lection in our memory bank, a key question emerges: how 383
do we select the most appropriate positive and negative 384
samples? Drawing from previous studies [22, 23, 37, 41], 385
it’s evident that hard samples play a crucial role in con- 386
trastive learning by aiding the development of robust rep- 387
resentations. Therefore, for a given target object and its 388
textual description, we specifically select objects that be- 389
long to the same class and are located in the same scene as 390
hard negative samples. This approach effectively addresses 391
the issue of distractions caused by multiple instances of the 392
same class in a scene. To ensure a stable training process, 393
the rest of the negative samples are acquired via random 394
sampling. For the positive sample selection, given the target 395
object, we include all its corresponding textual descriptions. 396

Utilizing the constructed positive and negative sample 397
sets, we develop the inter-sample loss Linter using a multi- 398
positive supervised contrastive approach, formularted as: 399

Linter = � 1

|P|
X

a+2P

log
exp(< a, a+ > /⌧)P

a02P,N exp(< a, a0 > /⌧)
,

(7) 400
where a represents the anchor item, which can be either an 401
object or a language feature. When a is an object embed- 402
ding, a+ and a0 are text embeddings, and vice versa. The 403
primary aim of Linter is to refine the embedding space so 404
that embeddings of the same object from different modali- 405
ties (e.g., text and point) are brought closer, while embed- 406
dings of different objects are distanced. This approach ef- 407
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Figure 3: Linguistic Primitives Construction (LPC) initializes
various primitives O to express distinct semantic attributes.
These primitives after interacting with linguistic informa-
tion are capable of acquiring corresponding attribute values
denoted O′.

captured. represented by O, to serve as our primitives,

O𝑖 ∼ N(𝜇𝑖 , (𝜎𝑖 )) ∈ R𝑁𝑜×𝐷 , (6)

where𝑁𝑜 is the number of primitives, 𝜇𝑖 and 𝜎𝑖 are learnable param-
eters of the Gaussian distribution. These primitives are assumed to
contain diverse semantics e.g., shape, color, size, material, relation-
ship, and location. Then, we let each primitive aggregate language
of distinct linguistic entities and extract corresponding information
from the given language. For example, in the description in Figure 2,
the primitive responsible for color concentrates for “white”, and
the primitive responsible for location highlight “above”. To achieve
this, three distinct linear layers, 𝜔𝑄 , 𝜔𝐾 , and 𝜔𝑉 , are employed
to project the primitives and the language word feature 𝑭𝑡 into a
shared feature space, which are represented as 𝑄 , 𝐾 , and 𝑉 , respec-
tively. Subsequently, we calculate the similarity between each pair
of primitive and word feature, formulated as:

A =
𝑄𝐾𝑇
√
𝐷

∈ R𝑁𝑜×𝑁𝑡 . (7)

After computing the similarity matrix A, unlike the conventional
cross-attention that performs a softmax operation to normalize
the correlation of all words corresponding to a specific primitive,
we aim to enable each primitive to concentrate on the most re-
lated semantic. e.g. “white”. Therefore, we employ the differentiable
Gumbel-Softmax approach [19, 42] to assign the word features to
the primitives 𝑄 in a differentiable way and generate the corre-
sponding clustering matrix Â between 𝑄 and 𝐾 ,

Â = Gumbel-Softmax(A) ∈ R𝑁𝑜×𝑁𝑡 . (8)

With Â, each primitive effectively chooses the word embeddings
corresponding to its semantic and then obtains linguistic primitives
O′, which are formulated by:

O′ = 𝜔1 (Â𝑉 ), (9)

where 𝜔1 is the linear projection layer. The linguistic primitives are
designed to exhibit semantic patterns. Feeding such primitives into
the transformer decoder enables it to emphasize diverse language
information, which contributes to accurately identifying target
objects in the later stage.

3.4 Object Cluster Module
Each linguistic primitive focuses on different semantic patterns in
the given point cloud that correlate with their linguistic attributes.
However, our ultimate goal, based on the given text, is to identify a
unique target object, which requires a comprehensive understand-
ing of language. For example, the primitive responsible for “white”
will focus on all the white parts of the picture, but we need to
find the one above the cabinets. To this end, we employ an Object
Cluster Module to explore the relationships among the linguis-
tic primitives to identify commonalities and differences in their
focus areas. Specifically, we initialize 𝑁𝑐 potential object queries
O𝑐 ∈ R𝑁𝑐×𝐷 , leveraging sentence-level linguistic features. This
initialization facilitates a deeper grasp of object descriptions. We
conduct a self-attention mechanism to extract these common char-
acteristics from linguistic primitives. In the decoding process, we in-
put these object queries, treating them as queries, with the common
characteristics enriched linguistic primitives acting as keys/values.
This setup enables the decoder to merge linguistic insights from
linguistic primitives into object queries, efficiently identifying and
grouping the referred object’s queries into O′

𝑐 , thereby achieving
precise object identification.

3.5 Training Objectives
While the proposed Object Cluster Module aids in identifying target
objects, it does not effectively mitigate ambiguities arising from
other embeddings. These ambiguities could lead to false positives
during the inference stage. We employ contrastive learning to differ-
entiate the target token from others. This is achieved bymaximizing
the similarity between the target token and the corresponding ex-
pression while minimizing similarities with non-target (negative)
pairs. The process can be formulated as,

L𝑐𝑜𝑛 = − log
exp(< 𝑡, 𝑜+ > /𝜏)∑𝑁𝑜

𝑘=1 exp(< 𝑡, 𝑜𝑘 > /𝜏)
, (10)

where <, > denotes cosine similarity, 𝜏 is the temperature parameter,
𝑡 ∈ R𝐷 represents the text embedding obtained by pooling language
features 𝑭𝑡 . The set {𝑜𝑘 }𝑁𝑜

𝑘=1 comprises object embeddings derived
from the output of the object cluster decoder O′

𝑐 , with 𝑜+ being
positive object embedding that matches with ground-truth mask.

During the training phase, we use Hungarian matching to se-
lect an object embedding with the lowest cost to the ground-truth
object as our output. The matching losses include single-class cross-
entropy loss on the output score, binary cross-entropy loss, and
dice loss on mask prediction,

Lmatch = 𝜆clsLcls + 𝜆bceLbce + 𝜆diceLdice . (11)

The total training loss is calculated as: L = Lmatch + 𝜆conLcon,
where the weights 𝜆cls, 𝜆bce, 𝜆dice, and 𝜆con are used for balancing
different loss terms.



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Ablation study of the proposedmethod on ScanRefer
dataset. GEGWA, LPC, and OCM denote Geometry-Enhanced
Group-Word Attention, Linguistic Primitives Construction,
and Object Cluster Module, respectively.

Components Results
GEGWA LPC OCM mIoU Acc@0.5

✗ ✗ ✗ 39.24 43.95
✓ ✗ ✗ 42.16 (+2.92) 46.56 (+2.61)

✗ ✓ ✗ 41.58 (+2.34) 45.81 (+1.86)

✗ ✗ ✓ 40.81 (+1.57) 44.97 (+1.02)

✓ ✓ ✗ 43.83 (+4.59) 48.15 (+4.20)

✓ ✗ ✓ 43.12 (+3.88) 47.48 (+3.53)

✗ ✓ ✓ 42.75 (+3.51) 47.02 (+3.07)

✓ ✓ ✓ 44.86 (+5.62) 49.24 (+5.29)

Table 2: Ablation studies of different fusion strategies for
GEGWA on ScanRefer.

Encoder mIoU Acc@0.5
No fusion 39.24 43.95
Point-level fusion 40.33 44.78
Ours w/o bg 41.25 45.62
Ours 42.16 46.56

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
The ScanRefer dataset [5] is based on the 800 ScanNet scenes [9]
and comprises 51, 583 linguistic descriptions. On average, each
scene contains 13.81 objects and 64.48 descriptions. The dataset’s
performance is evaluated using the Acc@𝑚IoU metric. It represents
the proportion of descriptions where the predicted box or mask
aligns with the ground truth, having an IoU > 𝑚, where 𝑚 ∈
{0.25, 0.5}. The results are categorized into unique and multiple.
An object is regarded as unique if it’s the sole entity of its class
in a scene, and multiple otherwise. For 3D referring segmentation,
there is another metric mean intersection-over-union (mIoU) which
calculates the IoU between the prediction and ground truth masks
averaged across all the test samples.

4.2 Implementation Details
Our experimental setup generally adheres to the default configura-
tions of Mask3D [37], except where explicitly noted. For the point
encoder, we utilize Minkowski Res16UNet34C [8]. For language em-
beddings, we utilize BERT [10], following its proven effectiveness in
capturing linguistic nuances.We employ the AdamWoptimizer [21]
with an initial learning rate of 4×10−5 , accompanied by a cosine
decay schedule to adjust the learning rate progressively. We con-
figure the training process to span a maximum of 20 epochs with
a batch size of 16. Following Mask3D, we set the coefficients for
different loss functions 𝜆𝑐𝑙𝑠 , 𝜆𝑏𝑐𝑒 , and 𝜆𝑑𝑖𝑐𝑒 to 2, 5, and 5, respec-
tively. For hyper-parameter optimization, we meticulously choose
values that best suit our model’s architecture and the task’s com-
plexity. Specifically, we set the contrastive loss coefficient 𝜆con to
0.3, the temperature parameter 𝜏 to 0.05 to manage the softmax
distribution’s sharpness, and the layer count 𝐿 to 3. Additionally,

Table 3: Ablation studies of different groups and neighbors
numbers for GEGWA on ScanRefer.

𝑁𝑔 𝑘 mIoU Acc@0.5
- - 39.24 43.95
64 8 41.54 45.86
64 32 42.25 46.63
32 16 41.18 45.47
128 16 42.39 46.78
64 16 42.16 46.56

Table 4: Ablation studies of input query designs for Linguistic
Primitives Construction (LPC) on ScanRefer.

Input Query mIoU Acc@0.5
FPS 39.24 43.95
Top-𝑘 40.18 44.31
Ours w/o Gaussian 40.51 44.74
Ours w/o Gumbel-softmax 40.86 45.03
Ours 41.58 45.81

we determine the number of primitives 𝑁𝑜 to 100 and the potential
object queries 𝑁𝑐 to 10, ensuring the model’s capacity to handle
diverse and intricate object interactions effectively.

4.3 Ablation Study
• Component Analysis. We conduct detailed experiments to
demonstrate the effectiveness of each component in the proposed
method. As shown in Table 1, our vanilla baseline integrating
Mask3D with language input only in the transformer decoder
achieves a mIoU of 39.24%, establishing a strong pipeline. Then, the
introduction of the Geometry-Enhanced Group-Word Attention
(GEGWA) enhances performance by 2.92% mIoU, highlighting its
effectiveness in fusing linguistic and visual features in the point en-
coder and minimizing the influence of irrelevant points and words
for improved cross-modal interaction. Furthermore, incorporat-
ing the Linguistic Primitives Construction (LPC) boosts mIoU by
2.34%, underscoring its importance in clustering diverse seman-
tic language information for target identification in 3D referring
segmentation. The addition of the Object Cluster Module (OCM)
further enhances our model, contributing a 1.57% increase in mIoU
by constructing a discriminative identification for the target. By
combining all these components in RefMask3D, we achieve new
state-of-the-art performance with a remarkable mIoU of 44.86%
and an Acc@0.5 of 49.24% on the challenging ScanRefer dataset,
demonstrating the effectiveness of our proposed approach.
• Different Fusion Strategies for GEGWA. In Table 2, we evalu-
ate the impact of different fusion designs. The absence of vision-
language fusion within the encoder results in a decrease of 2.92% in
mIoU, confirming the effectiveness of early-stage fusion. The w/o
bg configuration uses a standard cross-attention module without
background embeddings to filter out irrelevant information. This
approach underperforms our method by 0.91% in mIoU, highlight-
ing the importance of eliminating irrelevant data in cross-modal
interactions. The point-level fusion setup directly conducts fusion
in the individual point without considering the neighbors and geo-
metric information, leading to a 1.83% reduction in mIoU. This
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Table 5: 3D referring expression segmentation benchmark results on ScanRefer, evaluated by mIoU, accuracy IoU 0.25 and IoU
0.5. † The accuracy is obtained through our own implementation, which involved adding an auxiliary mask head.

Unique (∼19%) Multiple (∼81%) OverallStage Method Reference Modality 0.25 0.5 0.25 0.5 0.25 0.5 mIoU

Two TGNN [16] AAAI’21 3D - - - - 37.50 31.40 27.80
X-RefSeg3D [35] AAAI’24 3D - - - - 40.33 33.77 29.94

Single

BUTD-DETR [18]† ECCV’22 3D 76.63 63.30 38.01 29.70 45.53 36.22 35.47
EDA [41]† CVPR’23 3D 79.88 66.42 40.51 31.24 48.13 38.06 36.21

3D-STMN [40] AAAI’24 3D 89.30 84.00 46.20 29.20 54.60 39.80 39.50
RefMask3D (ours) - 3D 89.55 84.69 48.09 40.77 55.87 49.24 44.86

Table 6: 3D visual grounding results using 3D modality on
ScanRefer, with IoU 0.5 as the evaluation metric.

Method Reference Unique Multiple Overall
Two-stage methods

ScanRefer [5] ECCV’20 46.19 21.26 26.10
ReferIt3D [2] ECCV’20 37.50 12.80 16.90
TGNN [16] AAAI’21 56.80 23.18 29.70

InstanceRefer [46] ICCV’21 66.83 24.77 32.93
SAT [44] ICCV’21 50.83 25.16 30.14

FFL-3DOG [12] ICCV’21 67.94 25.70 34.01
3DVG-Trans. [48] ICCV’21 58.47 28.70 34.47

3DJCG [4] CVPR’22 61.30 30.08 36.14
BUTD-DETR [18] ECCV’22 64.98 33.97 38.60

D3Net [6] ECCV’22 70.35 30.50 37.87
EDA [41] CVPR’23 68.57 37.64 42.26

ViewRefer [13] ICCV’23 - 26.50 33.66
Single-stage methods

3D-SPS [31] CVPR’22 64.77 29.61 36.43
BUTD-DETR [18] ECCV’22 61.24 32.81 37.05

EDA [41] CVPR’23 69.42 36.82 41.70
RefMask3D (ours) - 78.69 38.15 45.62

outcome demonstrates that processes local groups with geometri-
cally adjacent points are beneficial for overall performance.
• Different Group and Neighbors Numbers for GEGWA. In
Table 3, we assess the impact of varying the number of groups
𝑁𝑔 and the number of neighbors 𝑘 . By holding 𝑁𝑔 constant at 64
and incrementally increasing 𝑘 from 8 to 32, we observed a rapid
improvement in performance followed by a plateau. Similarly, fixing
𝑘 at 16 and elevating 𝑁𝑔 from 32 to 128 also resulted in a swift rise
in outcomes, which then stabilized. Considering computational
efficiency, we ultimately opted for 𝑁𝑔 = 64 and 𝑘 = 16 as the
configuration that yields optimal results.
•Comparison with Other Designs for LPC. In Table 4, we exam-
ine the effect of input queries fed into the Transformer Decoder. The
FPS method, widely used in point sampling and described in Point-
Net++ [34], covers the entire scene but lacks focus on language-
relevant points. The Top-𝑘 approach [31] selects the top 𝑘 points
most relevant to a given text based on object confidence. We use
𝑘 = 100 in our experiments. According to the results in Table 4,
the proposed Linguistic Primitives Construction outperforms other
query inputs, achieving promising results. Besides, we observed
a notable point when not utilizing Gaussian initialization for the
primitives, opting instead for learnable parameters directly, which
resulted in a performance decrease of 1.07% mIoU. This finding

There is the brown chair
 nearest the TV.

(a)  #1 Primitive (b)  #5 Primitive (c)  #8 Primitive

“brown” “nearest” “chair”
Scene GT

Text

color namerelationship

Figure 4: Primitives heatmap visualization. Different prim-
itives represent distinct semantic attributes. Blue indicates
the lowest response levels, while red signifies the highest
response levels.

underscores the significance of employing Gaussian initialization
to ensure independence among multiple primitives, playing a cru-
cial role in effectively capturing diverse semantic information for
the final result. Additionally, the employment of Gumbel-softmax
enhances the overall performance which is in line with our analysis.

4.4 Comparison with State-of-the-Art Methods
• 3DReferring Segmentation Benchmark Results.We evaluate
RefMask3D on ScanRefer [5] and report the mIoU and Acc@𝑚IoU
performance in Table 5. For a fair comparison with SOTA methods,
we implement BUTD-DETR [18] and EDA [41] with an auxiliary
mask head [41]. The results show that RefMask3D outperforms ex-
isting methods, achieving the highest scores across all metrics with
a significant improvement of +5.36% in mIoU. This demonstrates
the effectiveness of RefMask3D and highlights its exceptional vision-
language understanding capabilities.
• 3D Visual Grounding Benchmark Results. Instance segmen-
tation predictions can be readily converted into bounding box pre-
dictions by determining the minimum and maximum coordinates
of the masked instances. With this capability, we extend our exper-
imentation to the realm of 3D visual grounding. Table 6 shows the
results on ScanRefer dataset [5], with Acc@0.5 as the metric. Our
findings show that RefMask3D surpasses previous methods, achiev-
ing an improvement of +3.36% in Acc@0.5 compared to previous
state-of-the-art methods. It is worth noting that this achievement
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Text this is the soap dispenser
 by the wall. it is near 
the bathroom sink.

the refrigerator is located 
closest to the left side of 
the room. to the left of 
the refrigerator is the 
kitchen sink.

a bookshelf is against 
wall with a door to the 
left of it. this bookshelf 
has a desk and chair in 
front of it.

this coffee table is in 
front of a chair on the left, 
and a small round table 
on it's right. to the left of 
it is an orange stool.

it is a brown chair with 
armrests and four legs. 
it is directly under a 
blackboard.

(a) (b) (c) (d) (e) (f)

this is a black leather 
loveseat. if you were 
sitting in it, the long, 
short bookshelf would 
be on the right.

Figure 5: Visualization results of complex language descriptions on ScanRefer. we use color masks for clarity: green represents
the ground truth, red indicates incorrect predictions by TGNN, and blue signifies correct predictions by ours.

Table 7: 2D referring image segmentation benchmark results
on the val split of RefCOCO/+/g. Overall IoU is employed as
the evaluation metric.

Method RefCOCO RefCOCO+ RefCOCOg
MCN [30] 62.4 50.6 49.2
CRIS [39] 70.5 62.3 59.9

RefTR [25] 70.6 - -
LAVT [43] 72.7 62.1 61.2
VLT [11] 73.0 63.5 63.5

GRES [26] 73.8 66.0 65.0
RefMask3D (ours) 75.3 66.9 66.3

is made using only the bounding boxes derived from instance seg-
mentation predictions, without dedicated designs for 3D visual
grounding. This highlights the effectiveness of our RefMask3D in
extracting and understanding more discriminative and effective
vision-language joint representations.
•2D Referring Image Segmentation Results. In Table 7, we
apply RefMask3D to 2D referring image segmentation by using
Mask2Former [7] framework based on Swin-B [28] backbone. We
remove GEGWA component which is specifically designed for 3D
realm. Our results are compared with the leading methods on Re-
fCOCO/+/g [32, 45]. We train a single RefMask3D model on Ref-
COCO/+/g without the need for extensive pre-training. RefMask3D
outperforms previous methods on all three benchmarks, underscor-
ing its versatility and effectiveness in referring segmentation.

4.5 Visualization
In Figure 4, we visualize the primitive heatmap on the given point
cloud. Different primitives represent distinct semantic attributes

like “color” (a), “relationship” (b), “name” (c). The above qualitative
results highlight our Linguistic Primitive Construction is capable
of acquiring corresponding attribute values which improves the
ability to accurately localize and identify the target object.

In Figure 5, we visualize the grounding truth masks, predictions
of TGNN [16], and predictions of RefMask3D in each column from
top to bottom. RefMask3D effectively interprets complex language
phrases like “soap dispenser” (a) and accurately segments the target
object, even among items of the same category (b)-(f). In contrast,
TGNN often misinterprets sentences and is easily misled by dis-
tractors. These qualitative results highlight RefMask3D’s superior
ability to fuse and align vision-language features, enabling a deeper
understanding of complex language descriptions.

5 CONCLUSION
In this work, we present an effective single-stage approach Ref-
Mask3D to address the challenging 3D referring segmentation and
grounding. In the proposed RefMask3D, first, a Geometry-Enhanced
Group-Word Attention (GEGWA) is introduced for continuous and
contextual fusion of language and vision features at the encoding
stage. Then, a Linguistic Primitives Construction (LPC) is utilized
to learn semantic primitives for representing distinct semantic at-
tributes, enhancing fine-grained vision-language understanding
at decoding stage. Moreover, an Object Cluster Module (OCM) is
designed to capture holistic information and produce object embed-
ding for generating the final segmentation prediction. The proposed
RefMask3D consistently achieves new state-of-the-art performance
on 3D referring segmentation, 3D visual grounding, and 2D re-
ferring image segmentation. Especially, RefMask3D surpasses the
previous 3D referring segmentation methods by a large margin of
5.36% mIoU on ScanRefer dataset, demonstrating its effectiveness.
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