
Self-Supervised Representation Learning on Neural
Network Weights for Model Characteristic Prediction

−Appendix

In the following, we provide the Appendix as part of the supplementary material to the main paper.
In Appendix Section A, we prove the permutation equivalence in the forward and backward pass
for (i) fully connected and (ii) convolutional layers. We also include an empirical evaluation of the
equivalence. In Section B, we provide further information about the downstream tasks and their
targets. Section C contains additional content about the model zoos. It includes high-level information
about the zoo’s properties, the modes of variation between the samples in the zoos, and the exact
architectures used when generating a zoo of trained neural networks. We also provide visualizations
of some of the properties of our model zoo for better intuition. Lastly, Section D includes additional
ablations and results, both in an in-distribution and out-of-distribution settings.

A. Permutation Augmentation 2
A.1 Neural Networks and Back-propagation . 2
A.2 Proof: Permutation Equivalence . 2

B. Downstream Tasks Additional Details 6
B.1 Downstream Tasks Problem Formulation . 6
B.2 Downstream Tasks Targets . 6

C Model Zoos Details 8
C.1 Zoos Generation Using Tetris Data . 8
C.2 Zoos Generation Using MNIST Data . 10
C.3 Zoos Generation Using F-MNIST Data . 10

D. Additional Results 14
D.1 Impact of the Compression Ratio N/L . 14
D.2 NN Model Characteristics Prediction on FASHION-SEED 14
D.3 In-distribution and Out-of-distribution Prediction 14

35th Conference on Neural Information Processing Systems (NeurIPS 2021).
1

A. Permutation Augmentation

In this appendix section, we give the full derivation about the permutation equivalence in the proposed
permutation augmentation (Section 2 in the paper). In the following appendix subsections, we show
the equivalence in the forward and backward pass through the neural network with original learnable
parameters and the permutated neural network.

A.1 Neural Networks and Back-propagation

Consider a common, fully-connected feed-forward neural network (FFN). It maps inputs x ∈ RN0 to
outputs y ∈ RNL . For a FFN with L layers, the forward pass reads as

a0 = x,

nl = Wlal−1 + bl, l ∈ {1, · · · , L},
al = σ(nl), l ∈ {1, · · · , L}.

(1)

Here, Wl ∈ RNl×Nl−1 is the weight matrix of layer l, bl the corresponding bias vector. Where Nl

denotes the dimension of the layer l. The activation function is denoted by σ, it processes the layer’s
weighted sum nl to the layer’s output al.

Training of neural networks is defined as an optimization against a objective function on a given
dataset, i.e. their weights and biases are chosen to minimize a cost function, usually called loss,
denoted by L. The training is commonly done using a gradient based rule. Therefore, the update
relies on the gradient of L with respect to weight Wl and the bias bl, that is it relies on ∇WL and
∇bL, respectively. Back-propagation facilitates the computation of these gradients, and makes use
of the chain rule to back-propagate the prediction error through the network [Rumelhart et al., 1986].
We express the error vector at layer l as

δl = ∇nlL, (2)

and further use it to express the gradients as

∇WlL = δl(al−1)T,

∇blL = δl.
(3)

The output layer’s error is simply given by

δL = ∇aLL � σ′(nL), (4)

where� denotes the Hadamard element-wise product and σ′ is the activation’s derivative with respect
to its argument. Subsequent earlier layer’s error are computed with

δl = (Wl+1)Tδl+1 � σ′(nl), l ∈ {1, · · · , L− 1}. (5)

A usual parameter update takes on the form

(Wl)new = Wl − β∇WlL, (6)

where β is a positive learning rate.

A.2 Proof: Permutation Equivalence

In the following appendix subsection, we show the permutation equivalence for feed-forward and
convolutional layers.

Permutation Equivalence for Feed-forward Layers Consider the permutation matrix Pl ∈
NNi×Nl , such that (Pl)TPl = I, where I is the identity matrix. We can write the weighted
sum for layer l as

nl+1 = Wl+1 al + bl+1

= Wl+1 σ(nl) + bl+1

= Wl+1 σ(Wlal−1 + bl) + bl+1.

(7)

2

As Pl is a permutation matrix and since we use the element-wise nonlinearity σ(.), it holds that

Plσ(nl) = σ(Plnl), (8)

which implies that we can write

nl+1 = Wl+1 I σ(Wl al−1 + bl) + bl+1

= Wl+1 (Pl)T Pl σ(Wl al−1 + bl) + bl+1

= Wl+1 (Pl)T σ(Pl Wl al−1 +Pl bl) + bl+1

= Ŵl+1 σ(Ŵl al−1 + b̂l) + bl+1,

(9)

where Ŵl+1 = Wl+1(Pl)T, Ŵl = PlWl and b̂l = Plbl are the permuted weight matrices and
bias vector.

Note that rows of weight matrix and bias vector of layer l are exchanged together with columns of the
weight matrix of layer l + 1. In turn, ∀l ∈ {1, · · · , L− 1}, (9) holds true. At any layer l, there exist
Nldifferent permutation matrices Pl. Therefore, in total there are

∏L−1
l=1 Nl! equivalent networks.

Additionally, we can write

(PlWl)new =PlWl− αPl∇WlL
=PlWl− αPlδl(al−1)T

=PlWl− αPl
[
(Wl+1)Tδl+1 � σ′(nl)

]
(al−1)T

=PlWl− α
[
(Wl+1PT)Tδl+1 � σ′(Plnl)

]
(al−1)T

=PlWl− α[(Wl+1(Pl)T)Tδl+1 � σ′(PlWlal−1 +Plbl)](al−1)T.

(10)

If we apply a permutation Pl to our update rule (equation 6) at any layer except the last, then using
the above, we can express the gradient based update as

(Ŵl)new = Ŵl − α
[
(Ŵl+1)Tδl+1 � σ′(Ŵlal−1 + b̂l)

]
(al−1)T� (11)

The above implies that the permutations not only preserve the structural flow of information in the
forward pass, but also preserve the structural flow of information during the update with the backward
pass. That is we preserve the structural flow of information about the gradients with respect to the
parameters during the backward pass trough the feed-forward layers.

Permutation Equivalence for Convolutional Layers We can easily extend the permutation equiv-
alence in the feed-forward layers to convolution layers. Consider the 2D-convolution with input
channel x and O output channels as1 = [

a1
.

aO
]. We express a single convolution operation for the

input channel x with a convolutional kernel Ko, o ∈ {1, ..., O} as

ao =bo +Ko ? x, o ∈ {1, · · · , O}, (12)

where ? denotes the discrete convolution operation.

Note that in contrast to the hole set of permutation matrices Pl (which where introduced earlier) now
we consider only a subset that affects the order of the input channels (if we have multiple) and the
order of the concatenation of the output channels.

We now show that changing the order of input channels does not affect the output if the order of
kernels is changed accordingly.

The proof is similar with the permutation equivalence for feed-forward layer. The difference here
is that we take into account only the change in the order of channels and kernels. In order to
prove permutation equivalence here it suffices to show that we can represent the convolution of
multiple input channels by multiple convolution kernels in an alternative form, that is as matrix vector
operation.

To do so we fist show that we can express the convolution of one input channel with one kernel to its
equivalent matrix vector product form. Formally, we have that

ao =bo +Ko ? x = bo +Rox, (13)

3

where Ro is the convolution matrix. We build the matrix Ro in this alternative form (13) for the
convolution operation from the convolutional kernel Ko. Ro has a special structure (if we have 1D
convolution then it is known as a circulant convolution matrix), while the input channel x remains
the same. The number of columns in Ro equals the dimension of the input channel, while the
number of rows in Ro equals the dimension of the output channel. In each row of Ro, we store the
elements of the convolution kernel. That is we sparsely distribute the kernel elements such that the
multiplication of one row Ro,j of Ro with the input channel x results in the convolution output ao,j
for the corresponding position j at the output channel ao.

The convolution of one input channels by multiple kernels can be expressed as a matrix vector
operation. In that case, the matrix in the equivalent form for the convolution with multiple kernels
over one input represents a block concatenated matrix, where each of the block matrices has the
previously described special structure, i.e.,

as1 =
[

a1
.

aO

]
=
[

b1
.

bO

]
+

[
R1

.
RO

]
x = bf +Rfx, (14)

where bf =
[

b1
.

bO

]
and Rf =

[
R1

.
RO

]
.

In the same way the convolution of multiple input channels x1, ...,xS by multiple kernels K1, ...,KO

can be expressed as a matrix vector operation. In that case, the matrix in the equivalent form for the
convolution with multiple kernels over multiple inputs represents a block diagonal matrix, where
each of the blocks in the block diagonal matrix has the previously described special structure, i.e.,[as1

.
ass

]
=
[
bf
.

bf

]
+

[
Rf 0 ... 0
. . . .
0 ... 0 Rf

] [
x1
.

xS

]
=
[
bf
.

bf

]
+R

[
x1
.

xS

]
, (15)

where R =

[
Rf 0 ... 0
. . . .
0 ... 0 Rf

]
, which we can also express as

a = b+R
[
x1
.

xS

]
, (16)

where a =
[as1

.
ass

]
and b =

[
bf
.

bf

]
.

Note that the above equation has equivalent form with equation (7), therefore, the previous proof is
valid for the update with respect to hole matrix R. However, R has a special structure, therefore for
the update of of each element in R, we can use the chain rule, which results in

∂f(R)

∂Rij
=
∑
k

∑
l

∂f(R)

∂Rkl

∂Rkl

∂Rij
= Tr

[[
∂f(R)

∂R

]T
∂R

∂Rij

]
. (17)

Replacing f() by L in the above and using the update rule equation (6) gives us the update equation
for Rij . Using similar argumentation and derivation that leads to equation (11) concludes the proof
for permutation equivalence for a convolutional layer �

Empirical Evaluation We empirically confirm the permutation equivalence (see Figure 1). We begin
by comparing accuracies of permuted models (Figure 1 left). To that end, we randomly initialize
model A and train it for 10 epochs. We pick one random permutation, and permute all epochs of
model A. For the permuted version Ap we compute the test accuracy for all epochs. The test accuracy
of model A and Ap lie on top of each other, so the permutation equivalence holds for the forward
pass. To test the backwards pass, we create model B as a copy of Ap at initialization, and train for 10
epochs. Again, train and test epochs of A and B lie on top of each other, which indicates that the
equivalence empirically holds for the backwards pass, too.

To track how models develop in weight space, we compute the mutual `2-distances between the
vectorized weights (Figure 1 right). The distance between A and Ap, as well as between A and B
is high and identical. Therefore, model A is far away from models Ap and B. Further, the distance

4

0 2 4 6 8 10
Epochs

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

A train acc
A test acc
Ap test acc
B train acc
B test acc

0 2 4 6 8 10
Epochs

10 3

10 1

101

Di
st

an
ce

 in
 2 ||vec(A) - vec(Ap)||

||vec(B) - vec(Ap)||
||vec(B) - vec(A)||

Figure 1: Empirical Evaluation of Permutation Equivalence. Left: Accuracies of orignal model A,
permuted model Ap and model B trained from Ap’s initialization. All models are indistinguishable
in their accuracies. Right: pairwise distances of vectorized weights over epochs of models A, Ap
and B. The distance between A and Ap as well as A and B is equally large and does not change
much over the epochs. The distance between Ap and B, which start from the same point in weight
space, is small and remains small over the epochs. both figures: permuted versions of models are
indistinguishable in their mapping, but far apart in weight space.

between Ap and B is small, confirming the backwards pass equivalence. We attribute the small
difference to numerical errors.

Further Weight Space Symmetries It is important to note that besides the symmetry used above,
other symmetries exist in the model weight space, which change the representation of a NN model,
but not it’s mapping, e.g., scaling of subsequent layers with piece-wise linear activation functions
[Dinh et al., 2017]. While some of these symmetries may be used as augmentation, these particular
mappings only create equivalent networks in the forward pass, but different gradients and updates in
the backward pass when back propagating. Therefore, we did not consider them in our work.

5

B. Downstream Tasks Additional Details

In this appendix section, we provide additional details about the downstream tasks which we use to
evaluate the utility of the hyper-representations obtained by our self-supervised learning approach.

B.1 Downstream Tasks Problem Formulation

We use linear probing as a proxy to evaluate the utility of the learned hyper-representations, similar
to Grill et al. [2020].

We denote the training and testing hyper-representations as Ztrain and Ztest. We assume that training
ttrain and testing ttest target vectors are given. We compute the closed form solution r̂ to the
regression problem

(Q1) : r̂ = argmin
r
‖Ztrainr− ttrain‖22,

and evaluate the utility of Ztest by measuring the R2 score Wright [1921] as discrepancy between
the predicted Ztestr̂ and the true test targets ttest.

Note that by using different targets ttrain in (Q1), we can estimate different r coefficients. This
enables us to evaluate on different downstream tasks, including, accuracy prediction (Acc), epoch
prediction (Eph) as proxy to model versioning, F-Score Goodfellow et al. [2016] prediction (Fc),
learning rate (LR), `2-regularization (`2-reg), dropout (Drop) and training data fraction (TF). For
these target values, we solve (Q1), but for categorical hyper-parameters prediction, like the activation
function (Act), optimizer (Opt), initialization method (Init), we train a linear perceptron by minimizing
a cross entropy loss Goodfellow et al. [2016]. Here, instead of R2 score, we measure the prediction
accuracy.

B.2 Downstream Tasks Targets

In this appendix subsection, we give the details about how we build the target vectors in the respective
problem formulations for all of the downstream tasks.

Accuracy Prediction (Acc). In the accuracy prediction problem, we assume that for each trained NN
model on a particular data set, we have its accuracy. Regarding the task of accuracy prediction, the
value atrain,i for the training NN models represents the training target value ttrain,i = atrain,i, while
the value atest,j for the testing NN models represents the true testing target value ttest,j = atest,j .

Generalization Gap Prediction (GGap). In the generalization gap prediction problem, we assume
that for each trained NN model on a particular data set, we have its train and test accuracy. The
generalization gap represents the target value gi = atrain,i − atest,i for the training NN models,
while gj = atrain,j − atest,j is the true target ttest,j = gj for the testing NN models.

Epoch Prediction (Eph). We consider the simplest setup as a proxy to model versioning, where we
try to distinguish between NN weights and biases recorded at different epoch numbers during the
training of the NNs in the model zoo. To that end, we assume that we construct the model zoo such
that during the training of a NN model, we record its different evolving versions, i.e., the zoo includes
versions of one NN model at different epoch numbers ei. Similarly to the previous task, our targets
for the task of epoch prediction are the actual epoch numbers, ttrain,i = etrain,i and ttest,j = etest,j ,
respectively.

F Score Prediction (Fc). To identify more fine-grained model properties, we therefore consider the
class-wise F score. We define the F score prediction task similarly as in the previous downstream
task. We assume that for each NN model in the training and testing subset of the model zoo, we
have computed F score Goodfellow et al. [2016] for the corresponding class with label c that we
denote as Ftrain,c,i and Ftest,c,j , respectively. Then we use Ftrain,c,i and Ftest,c,i as a target value
ttrain,c,i =Ftrain,c,i in the regression problem and set ttest,c,j =Ftest,c,j during the test evaluation.

Hyper-parameters Prediction. We define the hyper-parameter prediction task identically as the
previous downstream tasks. Where for continuous hyper-parameters, like learning rate (LR), `2-
regularization (`2-reg), dropout (Drop), nonlinear thresholding function (TF), we solve the linear
regression problem (Q1). Similarly to the previous task, our targets for the task of hyper-parameters
prediction are the actual hyper-parameters values.

6

In particular, for learning rate ttrain,i = learning rate, for `2-regularization ttrain,i =
`2-regularization type, for dropout (Drop) ttrain,i = dropout value and for nonlinear thresh-
olding function (TF) ttrain,i = nonlinear thresholding function. In a similar fashion, we also
define the test targets ttest.

For categorical hyper-parameters, like activation function (Act), optimizer (Opt), initialization method
(Init), instead of regression loss (Q1), we train a linear perception by minimizing a cross entropy loss
Goodfellow et al. [2016]. Here, also we also define the targets as detailed above. The only difference
here is that the targets here have discrete categorical values.

7

OUR ZOOS DATA NN
TYPE

NO.
PARAM.

VARYING PROP. NO.
EPH

NO. NNS

TETRIS-SEED TETRIS MLP 100 SEED (1-1000) 75 1000*75
TETRIS-HYP TETRIS MLP 100 SEED (1-100), ACT,

INIT, LR
75 2900*75

MNIST-SEED MNIST CNN 2464 SEED (1-1000) 25 1000*25
FASHION-SEED F-MNIST CNN 2464 SEED (1-1000) 25 1000*25

MNIST-HYP-1-FIX-SEED MNIST CNN 2464 FIXED SEED, ACT,
INT, LR

25 ∼ 1152*25

MNIST-HYP-1-RAND-SEED MNIST CNN 2464 RANDOM SEED,
ACT, INT, LR

25 ∼ 1152*25

MNIST-HYP-5-FIX-SEED MNIST CNN 2464 5 FIXED SEEDS,
ACT, INT, LR

25 ∼ 1280*25

MNIST-HYP-5-RAND-SEED MNIST CNN 2464 5 RANDOM SEEDS,
ACT, INT, LR

25 ∼ 1280*25

EXISTING ZOOS DATA NN
TYPE

NO.
PARAM.

VARYING PROP. NO.
EPH

NO. NNS

MNIST-HYP MNIST CNN 4970 ACT, INIT, OPT, LR, 9 ∼ 30000*9
`2-REG, DROP, TF

FASHION-HYP F-MNIST CNN 4970 ACT, INIT, OPT, LR, 9 ∼ 30000*9
`2-REG, DROP, TF

CIFAR10-HYP CIFAR10 CNN 4970 ACT, INIT, OPT, LR, 9 ∼ 30000*9
`2-REG, DROP, TF

SVHN-HYP SVHN CNN 4970 ACT, INIT, OPT, LR, 9 ∼ 30000*9
`2-REG, DROP, TF

1 INIT M INIT NO DATA LEAKAGE DENSE CHECK POINTS

UNTERTHINER ET AL. [2020]
√ √

× ×
EILERTSEN ET AL. [2020]

√
×

√
×

PROPOSED ZOOS
√ √ √ √

Table 1: Overview of the characteristics for the model zoos proposed and used (existing) in this work.

C. Model Zoos Details

In Table 1, we give an overview of the characteristics for the used model zoos in this paper. This
includes

• The data sets used for zoo creation.

• The type of the NN models in the zoo.

• Number of learnable parameters for each of the NNs.

• Used number of model versions that are taken at the corresponding epochs during training.

• Total number of NN models contained in the zoo.

In Table 1 we also compare the existing and the introduced model zoos in prior and this work in
terms of properties like initialization, data leakage and presence of dense model versions obtained by
recording the NN model during training evolution.

In Table 2 we provide the architecture configurations and exact modes of variation of our model zoos.

8

OUR ZOOS INIT SEED OPT ACT LR DROP `2-
REG

TETRIS-SEED UNIFORM 1-1000 ADAM TANH 3E-5 0.0 0.0

TETRIS-HYP UNIFORM,
NORMAL,
KAIMING-NO,
KAIMING-UN,
XAVIER-NO,
XAVIER-UN,

1-100 ADAM TANH,
RELU

1E-3,
1E-4,
1E-5

0.0 0.0

MNIST-SEED UNIFORM 1-1000 ADAM TANH 3E-4 0.0 0.0

MNIST-HYP-
1-FIX-SEED

UNIFORM,
NORMAL,
KAIMING-UN,
KAIMING-NO

42 ADAM,
SGD

TANH,
RELU,
SIGMOID,
GELU

3E-3,
1E-3,
3E-4,
1E-4

0.0,
0.3,
0.5

0,
1E-3,
1E-1

MNIST-HYP-
1-RAND-SEED

UNIFORM,
NORMAL,
KAIMING-UN,
KAIMING-NO

1∈ [1e0, 1e6] ADAM,
SGD

TANH,
RELU,
SIGMOID,
GELU

3E-3,
1E-3,
3E-4,
1E-4

0.0,
0.3,
0.5

0,
1E-3,
1E-1

MNIST-HYP-
5-FIX-SEED

UNIFORM,
NORMAL,
KAIMING-UN,
KAIMING-NO

1,2,3,4,5 ADAM,
SGD

TANH,
RELU,
SIGMOID,
GELU

1E-3,
1E-4

0.0,
0.5

1E-3,
1E-1

MNIST-HYP-
5-RAND-SEED

UNIFORM,
NORMAL,
KAIMING-UN,
KAIMING-NO

5∈ [1e0, 1e6] ADAM,
SGD

TANH,
RELU,
SIGMOID,
GELU

1E-3,
1E-4

0.0,
0.5

1E-3,
1E-1

FASHION-SEED UNIFORM 1-1000 ADAM TANH 3E-4 0.0 0.0

Table 2: Architecture configurations and modes of variation of our model zoos.

Figure 2: Visualization of samples representing the four basic shapes in our Tetris data set.

C.1 Zoos Generation Using Tetris Data

As a toy example, we first create a 4x4 grey-scaled image data set that we call Tetris by using four
tetris shapes. In Figure 2 we illustrate the basic shapes of the tetris data set. We introduce two zoos,
which we call TETRIS-SEED and TETRIS-HYP, which we group under small. Both zoos contain FFN
with two layers. In particular, the FFN has input dimension of 16 a latent dimension of 5 and output
dimension of 4. In total the FFN has 16× 5 + 5× 4 = 100 learnable parameters (see Table). We
give an illustration of the used FFN architecture in Figure 5.

In the TETRIS-SEED zoo, we fix all hyper-parameters and vary only the seed to cover a broad range
of the weight space. The TETRIS-SEED zoo contains 1000 models that are trained for 75 epochs. In
total, this zoo contains 1000× 75 = 75000 trained NN weights and biases.

To enrich the diversity of the models, the TETRIS-HYP zoo contains FFNs, which vary in activation
function [tanh, relu], the initialization method [uniform, normal, kaiming normal, kaiming
uniform, xavier normal, xavier uniform] and the learning rate [1e-3, 1e-4, 1e-5]. In addition,

9

each combination is trained with 100 different seeds. Out of the 3600 models in total, we have
successfully trained 2900 for 75 epochs - the remainders crashed and are disregarded. So in total, this
zoo contains 2900× 75 = 217500 trained NN weights and biases.

C.2 Zoos Generation Using MNIST Data

Similarly to TETRIS-SEED, we further create medium sized zoos of CNN models. In total the CNN
has 2464 learnable parameters, distributed over 3 convolutional and 2 fully connected layers. The
full architecture is detailed in Table . We give an illustration of the used CNN architecture in Figure
6. Using the MNIST data set, we created five zoos with approximately the same number of CNN
models.

In the MNIST-SEED zoo we vary only the random seed (1-1000), while using only one fixed hyper-
parameter configuration. In particular,

In MNIST-HYP-1-FIX-SEED we vary the hyper-parameters. We use only one fixed seed
for all the hyper-parameter configurations (similarly to [Unterthiner et al., 2020]). The
MNIST-HYP-1-RAND-SEED model zoo contains CNN models, where per each model we draw and
use 1 random seeds and different hyper-parameter configuration.

We generate MNIST-HYP-5-FIX-SEED insuring that for each hyper-parameter configurations we
add 5 models that share 5 fixed seed. We build MNIST-HYP-5-RAND-SEED such that for each
hyper-parameter configurations we add 5 models that have different random seeds.

We grouped these model zoos as medium. In total, each of these zoos approximately 1000× 25 =
25000 trained NN weights and biases.

In Figure 3 we provide a visualization for different properties of the MNIST-SEED,
MNIST-HYP-1-FIX-SEED, MNIST-HYP-1-RANDOM-SEED, MNIST-HYP-5-FIX-SEED and
MNIST-HYP-5-RANDOM-SEED zoos. The visualization supports the empirical findings from
the paper, that zoos which vary in seed only appear to contain a strong correlation between the
mean of the weights and the accuracy. In contrast, the same correlation is considerably lower if the
hyper-parameters are varied. Further, we also observe clusters of models with shared initialization
method and activation function for zoos with fixed seeds. Random seeds seem to disperse these
clusters to some degree. This additionally confirms our hypothesis about the importance of the
generating factors for the zoos. We find that zoos containing hyper-parameters variation and multiple
(random) seeds, have a rich set of properties, avoid ’shortcuts’ between the weights (or their statistics)
and properties, and therefore benefits hyper-representation learning.

In Figure 4, we show additional UMAP reductions of MNIST-HYP, which confirm our previous find-
ings. Similarly to the UMAP for the MNIST-HYP-1-FIX-SEED zoo, the UMAP for the MNIST-HYP
has distinctive and recognizable initialization points. The categorical hyper-parameters are visually
separable in weight space. As we can see in the same figure, it seems that the UMAP for the
MNIST-HYP zoo contains very few paths along which the evolution during learning of all the models
can be tracked in weight space, facilitating both epoch and accuracy prediction.

C.3 Zoo Generation Using F-MNIST Data

We used the F-MNIST data set. As for the previous zoos for the MNIST data set, we have created
one zoos with exactly the same number of CNN models as in MNIST-SEED. In this zoo that we call
FASHION-SEED, we vary only the random seed (1-1000), while using only one fixed hyper-parameter
configuration.

10

Figure 3: Visualization on the properties for the MNIST-SEED, MNIST-HYP-1-FIX-SEED,
MNIST-HYP-1-RANDOM-SEED, MNIST-HYP-5-FIX-SEED and MNIST-HYP-5-RANDOM-SEED zoos.
Row One. Boxplot of NNs accuracy over the epoch ids. Row Two. NNs accuracy plotted over the
mean of the NNs weights of each sample. MNIST-SEED shows homogeneous development and a
strong correlation between weight mean and accuracy, while varying the hyperparameters yields
heterogeneous development without that correlation. Rows Three to Five. UMAP reductions of the
weight space coloured by activation function, initialization method and sample epoch. Zoos with
fixed seeds contain visible clusters of NNs that share same initialization method or activation function.
Zoos with varying hyperparameters and random seeds do not contain such clear clusters.

11

Figure 4: UMAP dimensionality reduction of the weight space (left), weight statistics (middle)
and learned hyper-representations (right) for the MNIST-HYP zoo Unterthiner et al. [2020]. The
initialization methods for the trained NN weights are already visually separable to a high degree in
weight space, which carries over to the learned embedding space, while the statistics introduce a mix
between the initialization methods. For accuracy, in seems that the statistics filter out and contain
more relevant information than the weight space. Learned embeddings appears to cluster the models
according to their initialization methods and within the clusters help to preserve high accuracy.

𝑁! = 16

16×5
𝑙𝑖𝑛𝑒𝑎𝑟 𝐹𝐹

𝑁" = 5

5×4
𝑙𝑖𝑛𝑒𝑎𝑟 𝐹𝐹 𝑁# = 4

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦
𝑡𝑎𝑛ℎ

Figure 5: A diagram for the feed-forward architecture of the NNs in the TETRIS-SEED and
TETRIS-HYP zoos.

12

𝑙𝑖𝑛𝑒𝑎𝑟 𝐹𝐹

𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦
𝑡𝑎𝑛ℎ

𝑙𝑖𝑛𝑒𝑎𝑟 𝐹𝐹
𝑁! = 10

𝑁" = 20

𝑁" = 36

20×10
36×20

1. 2. 3. 1. 2. 3. 1. 2. 3.

1. 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛s
8 𝑤𝑖𝑡ℎ (5×5)

2.max − 𝑝𝑜𝑜𝑙𝑖𝑛𝑔
(2×2)

3. nonlinearity
𝑡𝑎𝑛ℎ

1. 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛s
8×6 𝑤𝑖𝑡ℎ (5×5)
2.max − 𝑝𝑜𝑜𝑙𝑖𝑛𝑔

(2×2)
3. nonlinearity

𝑡𝑎𝑛ℎ

𝑁# = 8×
24×24
4

𝑁$ = 8×6×(
8×8
4
)/2

𝑁% = 28×28 1. 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛s
6×4 𝑤𝑖𝑡ℎ (2×2)
2.max − 𝑝𝑜𝑜𝑙𝑖𝑛𝑔

(2×2)
3. nonlinearity

𝑡𝑎𝑛ℎ

Figure 6: A diagram for the CNN architecture of the NNs in the MNIST zoos.

TYPE DETAILS PARAMS

1.1 LINEAR CH-IN=16, CH-OUT=5 80
1.2 NONLIN. TANH

2.1 LINEAR CH-IN=5, CH-OUT=4 20

Table 3: FFN Architecture Details. CH-IN describes the number of input channels, CH-OUT the
number of output channels.

TYPE DETAILS PARAMS

1.1 CONV CH-IN=1, CH-OUT=8, KS=5 208
1.2 MAXPOOL KS= 2
1.3 NONLIN. TANH

2.1 CONV CH-IN=8, CH-OUT=6, KS=5 1206
2.2 MAXPOOL KS= 2
2.3 NONLIN. TANH

3.1 CONV CH-IN=6, CH-OUT=4, KS=2 100
3.2 MAXPOOL KS= 2
3.3 NONLIN. TANH

4 FLATTEN

5.1 LINEAR CH-IN=36, CH-OUT=20 740
5.2 NONLIN. TANH

6.1 LINEAR CH-IN=20, CH-OUT=10 200

Table 4: CNN Architecture Details. CH-IN describes the number of input channels, CH-OUT the
number of output channels. KS denotes the kernel size, kernels are always square.

13

D. Additional Results

In this appendix section, we provide additional results about the impact of the compression ratio
c = N/L.

D.1 Impact of the Compression Ratio N/L

In this subsection, we first explain the experiment setup and then comment on the results about the
impact of the compression ratio on the performance for downstream tasks.

Experiment Setup. To see the impact of the compression ratio c = N/L on the performance over
the downstream tasks, we use our hyper-representation learning approach under different types of
architectures, including Ec, ED and EcD (see Section 3 in the paper). As encoders E and decoders
D, we used the attention-base modules introduced in Section 3 in the paper. The attention-based
encoder and decoder, on the TETRIS-SEED and TETRIS-HYP zoos, we used 2 attention blocks with 1
attention head each, token dimensions of 128 and FC layers in the attention module of dimension
512.

We use our weight augmentation methods for representation learning (please see Section 3.1 in the
paper). We run our representation learning algorithm for up to 2500 epochs, using the adam optimizer
Kingma and Ba [2014], a learning rate of 1e-4, weight decay of 1e-9, dropout of 0.1 percent and
batch-sizes of 500. In all of our experiments, we use 70% of the model zoos for training and 15% for
validation and testing each. We use checkpoints of all epochs, but ensure that samples from the same
models are either in the train or in the test split of the zoo. As quality metric for the self-supervised
learning, we track the reconstruction R2 on the test split of the zoo.

Results. As Table 5 shows, all NN architectures decrease in performance, as the compression ratio
increases. The purely contrastive setup Ec generally learns embeddings which are useful for the
downstream tasks, which are very stable under compression. These results strongly depend on a
projection head with enough complexity. The closer the contrastive loss comes to the bottleneck of
the encoder, the stronger the downstream tasks suffer under compression. Notably, the reconstruction
of ED is very stable, even under high compression ratios. However, higher compression ratios appear
to negatively impact the hyper-representations for the downstream tasks we consider here. The
combination of reconstruction and contrastive loss shows the best performance for c = 2, but suffers
under compression. Higher compression ratios perform comparably on the downstream tasks, but
don’t manage high reconstruction R2. We interpret this as sign that the combination of losses requires
high capacity bottlenecks. If the capacity is insufficient, the two objectives can’t be both satisfied.

D.2 NN Model Characteristics Prediction on FASHION-SEED

Due to space limitations, here in Figure 6, we present the results on the FASHION-SEED together with
the results on MNIST-SEED. The experimental setup is same as for the MNIST-SEED zoo, which is
explained in the paper. Here, we add a complementary result to our ablation study about the seed
variation, that we presented in section 4.3 in the paper. Similarly to the discussion in the paper,
random seeds variation in the FASHION-SEED again appears to make the prediction more challenging.
The results show that the proposed approach is on-par with the comparing s(W) for this type of
model zoos.

D.3 In-distribution and Out-of-distribution Prediction

In Figures 7, 8 and 9 we show in-distribution and out-of-distribution comparative results for test
accuracy, epoch id and generalization gap prediction using the MNIST-HYP zoo.

In the majority of the results for accuracy and generalization gap prediction, our learned representa-
tions have higher R2 and Kendall’s τ score. Also, the baseline methods the distribution of predicted
target values is more dispersed compared to the true target values. On the epoch id prediction we
have comparable results but with lower score, we attribute this to the fact that the zoos contain sparse
check points and we suspect that there are not enough so that our learning model could capture the
present variability. Overall in the in-distribution and out-of-distribution results for test accuracy,
epoch id and generalization gap prediction, the proposed approach has a slight advantage.

14

Encoder with contrastive loss Ec

c REC EPH ACC GGAP FC0 FC1 FC2 FC3

2 – 96.7 90.8 82.5 67.7 72.0 74.4 85.8
3 – 96.6 89.4 81.5 68.4 69.4 71.1 85.1
5 – 96.4 89.5 81.8 67.1 68.7 69.7 84.0

Encoder and decoder with reconstruction loss ED

c REC EPH ACC GGAP FC0 FC1 FC2 FC3

2 96.1 88.3 68.9 69.9 47.8 57.2 33.0 58.1
3 93.0 74.6 69.4 66.9 53.5 46.5 38.9 48.3
5 87.7 80.5 60.0 63.3 37.9 48.8 24.4 52.6

Encoder and decoder with reconstruction and contrastive loss EcD

c REC EPH ACC GGAP FC0 FC1 FC2 FC3

2 84.1 97.0 90.2 81.9 70.7 75.9 69.4 86.6
3 75.6 96.3 88.3 80.7 66.9 70.8 66.1 83.2
5 64.5 96.3 85.2 80.0 63.5 68.0 61.3 73.6

Table 5: The impact of the compression ratio c = N/L in the different NN architectures of our
approach for learning hyper-representations over the Tetris-Seed Model Zoo. All values are R2

scores and given in %.

MNIST-SEED FASHION-SEED
W S(W) Ec+D W S(W) Ec+D

EPH 84.5 97.7 97.3 87.5 97.0 95.8

ACC 91.3 98.7 98.9 88.5 97.9 98.0

GGAP 56.9 66.2 66.7 70.4 81.4 83.2

Table 6: R2 score in % for epoch, accuracy and generalization gap.

Due to space limitations, for the MNIST-SEED, FASHION-SEED zoos and an additional SVHN-SEED
zoo we only include out-of-distribution results for accuracy prediction in Figure 10. Here, too, our
learned representations have higher scores in both Kendall’s τ as well as R2. Further, the accuracy
prediction for SVHN-SEED clearly preserves the order, but has a noticable bias. We attribute that effect
to the different accuracy distributions of MNIST-SEED (ID, accuracy: [0.2,0.95]) and SVHN-SEED
(OOD, accuracy: [0.2,0.75]). Due to the higher accuracy in MNIST-SEED, we suspect that the
accuracy in SVHN-SEED is overestimated.

References
Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp Minima Can Generalize

For Deep Nets. arXiv:1703.04933 [cs], May 2017. URL http://arxiv.org/abs/1703.04933.
arXiv: 1703.04933.

Gabriel Eilertsen, Daniel Jönsson, Timo Ropinski, Jonas Unger, and Anders Ynnerman. Classifying
the classifier: dissecting the weight space of neural networks. arXiv:2002.05688 [cs], February
2020. URL http://arxiv.org/abs/2002.05688. arXiv: 2002.05688.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent:
A new approach to self-supervised Learning. arXiv:2006.07733 [cs, stat], September 2020. URL
http://arxiv.org/abs/2006.07733. arXiv: 2006.07733.

15

http://arxiv.org/abs/1703.04933
http://arxiv.org/abs/2002.05688
http://arxiv.org/abs/2006.07733

MNIST-HYP FASHION-HYP SVHN-HYP CIFAR10-HYP
W S(W) Ec+D W S(W) Ec+D W S(W) Ec+D W S(W) Ec+D

MNIST-HYP (τ) .73 .73 .75 -.08 .71 .61 .38 .49 .55 .33 .58 .63
MNIST-HYP (R2) 72.7 81.1 89.4 -211 67 26 -140 -180 -137 -148 -337 -153

Figure 7: In-distribution and out-of-distribution results for test accuracy prediction. Representa-
tion learning model and linear probes are trained on MNIST-HYP, and evaluated on MNIST-HYP,
FASHION-HYP, SVHN-HYP and CIFAR-HYP.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986. Publisher: Nature Publishing Group.

Thomas Unterthiner, Daniel Keysers, Sylvain Gelly, Olivier Bousquet, and Ilya Tolstikhin. Predicting
Neural Network Accuracy from Weights. arXiv:2002.11448 [cs, stat], February 2020. URL
http://arxiv.org/abs/2002.11448. arXiv: 2002.11448.

Sewall Wright. Correlation and causation. J. agric. Res., 20:557–580, 1921.

16

http://arxiv.org/abs/2002.11448

MNIST-HYP FASHION-HYP SVHN-HYP CIFAR10-HYP
W S(W) Ec+D W S(W) Ec+D W S(W) Ec+D W S(W) Ec+D

MNIST-HYP (τ) .46 .47 .46 .06 .45 .32 .25 .46 .33 .18 .41 .16
MNIST-HYP (R2) 21.6 32.2 34.7 -64.9 27.8 6.9 -39.1 13.4 9. -21.9 19.2 -13.

Figure 8: In-distribution and out-of-distribution results for the epoch id predictions. Representa-
tion learning model and linear probes are trained on MNIST-HYP, and evaluated on MNIST-HYP,
FASHION-HYP, SVHN-HYP and CIFAR-HYP.

17

MNIST-HYP FASHION-HYP SVHN-HYP CIFAR10-HYP
W S(W) Ec+D W S(W) Ec+D W S(W) Ec+D W S(W) Ec+D

MNIST-HYP (τ) .36 .29 .35 .20 .10 .32 .13 .24 .19 -.05 -.02 .05
MNIST-HYP (R2) 15.3 24.8 32.9 -56.2 -81.8 -27.8 -24. -.9 -1.9 -16. -22.2 .5

Figure 9: In distribution and out-of-distribution results for the generalization gap predictions. Repre-
sentation learning model and linear probes are trained on MNIST-HYP, and evaluated on MNIST-HYP,
FASHION-HYP, SVHN-HYP and CIFAR-HYP.

18

MNIST-SEED FASHION-SEED SVHN-SEED
W S(W) Ec+D W S(W) Ec+D W S(W) Ec+D

MNIST-SEED (τ) .913 .987 .989 -14 -.781 .12 .581 -2.7 -.48
MNIST-SEED (R2) 69.5 85.6 87.2 36.5 65.9 67.5 .591 .542 .523

Figure 10: In-distribution and out-of-distribution results for test accuracy prediction. Representa-
tion learning model and linear probes are trained on MNIST-SEED, and evaluated on MNIST-SEED,
FASHION-SEED and SVHN-SEED.

19

	A. Permutation Augmentation
	A.1 Neural Networks and Back-propagation
	A.2 Proof: Permutation Equivalence

	B. Downstream Tasks Additional Details
	B.1 Downstream Tasks Problem Formulation
	B.2 Downstream Tasks Targets

	C Model Zoos Details
	C.1 Zoos Generation Using Tetris Data
	C.2 Zoos Generation Using MNIST Data
	C.3 Zoos Generation Using F-MNIST Data

	D. Additional Results
	D.1 Impact of the Compression Ratio N/L
	D.2 NN Model Characteristics Prediction on FASHION-SEED
	D.3 In-distribution and Out-of-distribution Prediction

